Preprint of paper published in Journal of End User Computing, © Idea Group Publishing 1998.

SUPPORTING LARGE-SCALE END USER SPECIFICATION OF
WORKFLOWS, WORK COORDINATION AND TOOL INTEGRATION

John C. Grundy' , John G. Hoskingt and Warwick B. Mugridge T

TDepartment of Computer Science University of Waikato
Private Bag 3105, Hamilton, New Zealand

TfDepartment of Computer Science University of Auckland
Private Bag, Auckland, New Zealand

Abstract

Workflow Management Systems are a common example of an end user development system, in that they
support end user specification of work process models, end user enactment (running) of these models, and
end user evolution of workflows. Example applications of Workflow Management Systems include office
automation, software process modelling and business process codification. We describe a novel workflow
system which provides visual support for end users to specify both simple and complex aspects of
workflows, including workflow models, communication and collaboration techniques, and the tools used
to perform work. We illustrate both the utility of these work coordination mechanisms and the degree of
scalability they provide for both novice and experienced end users. We also outline the architecture of our
system, our experiences with this workflow tool, and future research directions in this area.

1. Introduction

Many software systems now support varying degrees of end user development. Many systems, such as
MS Word™, provide users with complex facilities to dynamically configure their tools; Web browsers,
such as Netscape™, provide users with mechanisms for integrating third-party software applications; and
cooperative work systems, such Lotus Notes™ and TeamFLOW™, allow multiple users to coordinate
their work with others. Due to the complexity of the work environments these and most other software
systems are deployed, end users often desire (or even require) mechanisms for dynamically specifying
their work processes, coordination mechanisms with other people, tools and processes, and the set of tools
and tool interactions they require in order to most effectively perform their work.

Workflow Management Systems (WFMSs) and Process-Centred Environments (PCEs) have been
developed to enable end users to specify just such aspects of their work and work environments. They
have become popular for use in various fields, including office automation, business process
reengineering and software development (Bandinelli et al, 1996; Medina-Mora et al, 1992; Swenson et al,
1994). Such systems typically allow users to model work processes using graphical and textual notations,
and then run (“enact”) these process models to guide (or enforce) work on particular projects. Most
workflow and process modelling notations and tools permit users to specify steps in their work processes,
the artefacts and tools used to perform each step, and the other users and tools they need to interact
(coordinate) with during work.Workflow models are often reused on different projects and refined
(improved) over time.

Workflow systems are typically used in conjunction with other tools for performing work, such as
document editors, information systems and software development tools (Bandinelli et al, 1996; Medina-
Mora et al, 1992). Often multiple people collaborative on a project and thus use these tools and the
workflows (Swenson et al, 1994). This requires coordinating the work done with both the tools for
performing work and the workflow tools themselves. Often the work coordination approaches, the
workflow models and the work tools used on a project, evolve over time. Thus end users of workflows

Page 1

require support for not only modelling, enacting and evolving workflows, but support for coordinating
their work with others and integrating a variety of different tools into their work processes.

Unfortunately most existing workflow and process modelling systems do not provide sufficient support
for specification of workflows, work coordination mechanisms and tool usage by end users, or provide
overly-complex facilities which many end users can not use. Many systems utilise complex, textual
languages to specify even simple coordination and tool integration mechanisms, which are difficult for
many kinds of end users to understand or modify (Swenson et al, 1994; Grundy and Hosking, 1998).
Many workflow notations and tools do not adequately support work coordination and tool integration,
relying on limited form-based facilities for specifying only some of these aspects of cooperative work.

We describe a workflow/process modelling environment we have developed which supports the
specification of simple and complex workflow models, work coordination schemes and tool usage, by
both novice and expert end users. This uses a graphical notation to describe both workflow (work
process) models and the handling of events to support work coordination and tool integration. This paper
focuses on the utility of our approach for end user specification of various work coordination activities.
We also compare its support to other workflow/process modelling systems, and briefly describe its
architecture, our experiences using the tool, and our future research directions.

2. Serendipity

Serendipity is a process modelling, enactment and work planning environment, which also supports
flexible event handling, group communication, and group awareness facilities (Grundy and Hosking,
1998; Grundy et al, 1996a). Serendipity’s notations are designed to be high-level and graphical in nature,
and its coordination and rule mechanisms be easily extended by end users. Key aims during our
development of Serendipity were: i) to produce notations that are suitable for both simple workflow and
work coordination tasks, and yet scale up to large, complex process modelling tasks, and ii) notations
which are simple enough for novice end users to understand and utilise, but powerful and expressive
enough for expert end users to extend the environment and workflow model capabilities as required.

The left and bottom windows shown in Figure 1 are Serendipity views modelling part of the ISPW6
software process example (Grundy et al, 1996a). Stages (rounded rectangle icons) describe steps in the
process of modifying an arbitrary software system, with each stage containing a unique id, the role which
will carry out the stage, and the name of the stage. Enactment event flows link stages, labelled with the
finishing state of the stage the flow is from. There are a number of specialised types of stage including
start, finish, AND, and OR stages. Modularity is provided in the form of hierarchical subprocess models.
The window at the left of Figure 1 is a subprocess model refining the “ispw6.2:Design, Code & Test”
stage of the process in the bottom window. Underlined stage IDs/roles mark the presence of a subprocess
model. Serendipity supports artefact, tool and role modelling for processes. Usage connections show how
stages, artefacts, tools and roles are used. Optional annotations indicate: data is created (C), accessed (A),
updated (U), or deleted (D); whether a stage must use only tools, artefacts or roles defined (V); and
whether a stage cannot use specified tools, artefacts or roles (7).

In addition to specifying the static usages and enactment event flows between process model stages,
Serendipity supports filters (rectangular icons) and actions (ovals), which process arbitrary enactment and
work artefact modification events. For example, the coordination of the process model via the
“ispw6.3:Monitor Progress” stage is defined by the top-right window of Figure 1. This uses two filters
and three actions to carry out the coordination. The Enacted filter selects only stage enactment events, in
this case when the ispw6.2 stage is enacted. This triggers the "Notify Changes Started action", which
notifies its associated role (in this case, the project manager) that changes have commenced. The other
filter acts similarly to notify commencement of testing. The other action takes artefact modification events
from the OOA/D design document and accumulates them into a changes summary. Serendipity models
may be used to guide work or to enforce particular work processes (by defining rules with filters and
actions). Complex filters and actions can be implemented by either reusing other, simple filter/action
models, or by using a textual API interface from Serendipity to its underlying implementation language
(Grundy and Hosking, 1998).

Page 2

ispwh.3:Monitor Progress-coord

start changing

start designing

uses [A)

.-".

iopw 2. 1:designer
Tesign Changes

«

changed design

areates (CU)

ispud 2.2 :designer

w [Faview Iesign Changes

" reviews (AN

reviewed design

SPE 00A/D (design doz)
T uses (R)
-

ispé . 2.5 codexs |
: Modify Code i

i

[:1i5)

FPE olussfrethod views

b
edits (AN

SPE alasses

changes

finished aoding

req identify errars

“uses (A)

faci
isput 2 5:0A Engineer
Tdentify Froblems a

design exror

dezign errox

£ix design

= I

test plans

[CAL)
&
ispws 2408 Engineexr

shanges complete

test results

£inish changes

“ I Hotify Testing
Hotify Changes Started
T &
Y.

ispwt 2 project team
Design, Code & Test | -

usad-in (AL

SPE O0A/D (design dec)

l Testing Bequn|

[’}

1

— —
Sumnar ise Cmng@

e
: changes list (O]
role -

role

izpw .5 iprojest manoger .

oumer (4] M
changes summmry

B

start planning

izpué. | projeat manager

Schedule & Assign Tosks

£inish assign

ispwb .2 project tean
Tesign, Code & Test

£inich changss £iy erpers LoToreddle

iopwd .3 project manager

[Foniter Erogress]

approve changes reject changes

sppraved

Figure 1. Part of the ISPW6 software process example modelled in Serendipity.

start changing

start designing

=1

aff.2.2:judy
Teview Design Changes

veviews [AU]

reviewed design

£ind arvors

92E uses

£ix design
=]

Artefact updates for: aff.2.1:Design Changes

T epe_programivides system
video : =dd fewture video::fine_amount
. root class-is_closs_izonlivideo : modify_features
. wideo::fine_amount © change attribute video::fine_:
. spe_program:video system : 2dd mv_version_recoxd
. widee::fine_ameunt © change attribute video::fine_:
. oot class-is_class_izonlivides : change_fevture
wideo::fine_smount : change attribute video::fine_:
. wideo::fine_mmount © change attribute video::fine_:
. root class-is_class_isenl:ivideo : change_feature

. spe_program:video system : 2dd spe_buse_feature o
widee : ndd £evturs vide ne_period

. oot class-is_class_iconlivideo : medify festures

[Context] [Undo]

244 zpe_buse_fasturs cenponant

anve_overdue

c

ustomer
lmala_fines
[Eines_owed
frent_rideo
freturn_video
lmala_total_cost
lereare

e lare
l=hange_name
|shange_nddress
lphone_no
nddressz
nddress1

Inane

rentals 0:n”

Updates on: customer

Fhupdntes_start(£0)
update(241. § [a£f.2.1:Design Changes—judy] add Eeature
custoner : fines_owed
update(25). § [aff.2.1:Design Changes—judy] add feature
sustomer: izale_fines
updates_snd. *7
"
* Customer class represents inportant customer datam
* and provides nodification routines on this data
.
.

alass(austomer,
fenturas(

rent_video,
return_vides,
sale_total_cost,
areute,
delete,
change_name,
change_nddress,
phone_no: integer,
nddvess2:string,

2ddress]:string,

T2 . [austomer::rentals, -5, rentals] : base_from_subset
13 . change elientisupplier [customer::rentals, -3, rentals] olie
14 . change elient/supplier [custoner::rentals, -», rentals] orde
15 . change attribute custemer::phone_no type integer

16 . change attribute customer: address? type string

17 . change =lass customer::nddress2 hind £o ateribute

18 . ahange eluss oustomer::phone_ne kind £o ateribute

19 . change attribute customer::addressl type stxingf

20 . change clags customer: mddressl kind to attribute

21 . change attribute customer::addressl type string

22 . add feature customer::return_vides

2dd fenturs sustemer::rent_video

. [a££.2.

[Context] [Undo] [Redo] [Cancel]

reanme:

Figure 2. An example of work context capture and presentation in SPE—Serendipity.

Serendipity has been integrated with software and information system development tools (Grundy and
Hosking, 1998; Grundy et al, 1996a; Grundy and Venable, 1996), office automation tools (Grundy and
Hosking, 1998), and a variety of CSCW tools (Grundy and Hosking, 1998; Grundy et al, 1996a). This was
done by using the filter/action language to specify event propagation mechanisms between Serendipity
artefacts (stages etc.) and the repositories of these other tools. Serendipity tool and artefact icons can be
linked by end users to appropriate other tool artefacts and repositories, producing interfaces from
Serendipity workflow and filter/action models to these external systems.

Page 3

Events propagated to Serendipity from integrated tools are utilised in various ways to support work
history determination for process stages, work coordination between multiple users and tools, and to
realise various tool integration mechanisms. Figure 2 shows Serendipity being used with an integrated
software development environment, called SPE (Grundy et al, 1995a, Grundy et al, 1996a). The
Serendipity ISPW6 process model from Figure 1 has been tailored for use on this particular project and
guides multiple developers’ work on the software. Enacted parts of process models are shown by shaded
icons and event flows. Changes made in the software development tools stored against process stages, and
process stage information augmenting artefact update descriptions in the software tools.

The following sections focus on Serendipity’s support for modelling, enacting and evolving workflow
models, its support for both simple and complex kinds of end user-specified work coordination, and its
support for describing tool usage and integration with workflows. We focus on both the support provided
by Serendipity for these purposes, how different kinds of end users can make use of this support, and
scalability issues of our notations and their support environment.

3. Workflow Development
aff.2:Design, Code & Test-subprocess
KN @ (Eremors)
m T
start designing £ind errors
?“a © i uses (A1 video changes yles [A)

i W[eEEsen
=
mwy 5 N

" changed design A :
@ @ R Eix design design exror
= sesaes (98] code Leror
O

ceviews (A

reviewed design

fir aode
wvides system 00ASD e e

Cruses () [Taf£.2.5:jskn
Medify Code

design exror

code exror

aff:Add Fines Facility-process aff.2.5:Modify Code- john's work plan —n———
K & t
= ?‘e sehedule
aff . liproject manager E T [uff. 2.5 1:gcbn] [nff.2.5.2 :obn]
Zchedule & Aszign Tasks [Modify Video Class] [Add "fines" to austomer]
ini ; 44ed fines data ndded finer dutan
e finish assign B
— = L 1=
; — nff.2.3.4:jobn
@ - (AT -
Tesign, Code & Test
;85 . 38{ zdd fines funatisnality
finish ohn -
Inish SMENGSS fir errors peschedule 2££.2.5 3:j0hn
Add aulo_fines
finished
aff . Fiproject manager
finished
approve changas reject changes
finished coding
-

Figure 3. A reused template and expanded work plan for a particular project.

End users can readily model, enact, reuse and improve Serendipity process models, due to their primarily
graphical nature. For example, the process models in Figure 3 were reused from the ISPW6 software
process model template shown in Figure 1. This reused model is to guide the work to be done for
modification of a video library program in SPE. The idea is to add a fines facility to the software, and
have Serendipity guide the work done in SPE and record all changes made to the software.

Page 4

The project manager has copied the ISPW6 template and changed the process stage prefixes to “aff”
("Add Fines Facility"). The abstract names for developers have been changed to those who are filling
these roles for this particular project using this workflow template. Search and replace facilities are
provided by Serendipity to ease this task. A project-specific “work plan” for coder “john” has also been
developed by the project manager (bottom right window). Other end users can also develop and modify
their own plans, and the group can collaboratively modify any part of the workflow model as a whole.
Changes to this project-specific workflow model can be abstracted back into the reusable template to
improve it. Figure 4 shows an example of changes made to the add2.1 subprocess being merged back into
the iswp6.2.1 subprocess to improve this reusable template.

Serendipity supports both synchronous, “what you see is what I see” editing of workflow diagrams by
multiple users, as well as merging changes made to asynchronously (indendently) modified models. Such
multi-user viewing and editing of workflows is required in order for Serendipity workflows to be used in
complex, multi-user work environments.

ispwo.2.1:0esign Changes-subprocess

do derign .
?‘G wideo 0O0A

i'e &) wi ..

- fix znalysiz-level

fix design

ispwd 2. 1.3 :designer

: Find Exrors
1
E % igpwt.2.1.1:designer _:r_vsls bk
Modify Analysis
FLOH
[

4 design exror
@ @ redified analysis
£ix design-1 1
done analrsis meds u Figneleve E
izpwé 2. 1.2 degigner

Medify Design
aff . 2.1.2:judy
Medify Design [-

a modified dasign

wideo 00D

aff . 2.1.4:judy

nff.2.1.1:judr

Medify Analysis

done dezign meds

abanged design

Merge Conflicts

. =mdd icen nff . 2.1.3:Medify Doourentztion

. %% phyge Ervor: ispwé.2.1.3:Tind Errors — name conflict
. add glue done design mods({aff.2.1.2:Modify Designl-modify doecs
. ¥4¢ thrge Ervor: ne merge for nff.2.1.3:Modify Doourentztion
. wdd glue done docs meds(aff.2.1.5 :Medify Docurentation)-(aff. 3
. **# Merge Erxor: no merge for aff. 2.1.3:Modify Documentation

Updates on: aff.2.1:0esign Changes-subprocess

& . =2dd icon nff.2.1.4:Medify Analysis

T . =ff.2.1:Iegign Changes-subproaess-Flan 3tnge Ioon:anff.2.1.1

L] add icon aff.2.1.2:Modify Design

2 . =2dd icon nff.2.1.5:Medify Documentation
10 . =2dd iocon nf£.2.1.4:Loonte errros
11 . aff.2.1:Mesign Changes-subprocess-Flan Stage Icon:aff.2.1.4
12 . aff.2.1:Mesign Changes-subprocess-Flan Stage Icon:zff.2.1.4
13 . =ndd glue (nff.2.1.zsl:de desgign)-medify anolysis(aff.2.1.1
14 . 2dd glue done analysis mods(aff.2.1.1:Modify Analysis)-modif
15 . =2dd glue done design mods(nf£.2.1.2:Moedify Designl-modify dod
= 16 . =ndd glue done doos mods(nff.2.1.3:Medify Docunentation)-(zff
17 . 2dd glue [aff.2.1.ss2:fix design)-locate errors({aff.2.1.4:Log
15 . =2dd glue fix analysiz-levell(nff.2.1.4:Locate ervorsl-fix errd
19 . =ndd glue fix design-level(nff.2.l.4:Loante errors)-fix arror

[RN

[Diew] [Add] [Delete]
(Tiew) [Add | [Delete | [contest | [undo | [Redo]
[Context] [Undo] [Redo] h !

b o

Figure 4. Independant modification and merging of workflow models.

The Serendipity workflow notation and support environment allow both novice and experienced end users
to understand, reuse and modify both simple and complex workflow systems. Detailed information can be
specified about a model using textual forms and views, but most information about the work processes
being modelled are captured in the graphical diagrams. The visual notation and support environment
allow novice users to experimentally build and enact (even incomplete) workflows, adding more
information and complexity as they refine their work processes. Experienced users can specify complex
process stage interactions, tool and artefact usage, and inter-person communication. The notation’s simple
conceptual model of “enactment flow” between stages dividing up steps in a work process, is both simple
enough for novice users to understand and use, but allows very complex, interacting workflow models to
be developed by experts.

Page 5

The notations and support environment scale up from modelling simple workflow problems to use on
large, complex problems. Serendipity not only provides multiple view support with consistency
management for workflow models, but multi-user editing and merging capabilities, search facilities,
libraries of reusable templates, and dialogues for viewing enacted process stages, stage statistics,
enactment histories etc.

5. Work Coordination

Figure 1 showed an abstract work coordination view built using Serendipity filter/actions to keep the
project manager informed of progress on a project using this workflow model. Filter/actions were used to
detect changes made to artefacts when particular process model stages were enacted, and the project
manager is informed of these in various ways. Other work coordination schemes can be developed using
our filter/action language to support simple or complex work coordination using workflow models and
integrated tools.

For example, in Figure 5 coder “john” has defined a new event-handling view in Serendipity and added
filter/actions to keep him aware of modifications done by “judy” on the artefact “video class” (the artefact
changes are stored in a “change list” artefact), and to inform him when “rick” starts work on “test unit”.
In this example, changes judy makes are stored and thus john would browse this modification history at a
later date, or have a dialogue showing these changes automatically updated for him. In contrast, when rick
starts testing, john is informed immediately by a broadcast message.

aff.2.5:Modify Code- john's interest El

=1 =Ef 2 4:vick his
video class L
L]

Judy

Srrre M@ Hotify with ms@
S _—— -
T E

store in [GAD)

store for role ™

awmer [AF],,

john

e

role

2E£.2 5 :jehn
Tedify Code

Figure 5. Extra actions specified to keep people aware of other’s work.

The conceptual basis of Serendipity’s event handling language is one of filtering “interesting events”
(including stage enactment, artefact update, tool and communication events), and then carrying out
actions in response to the filtered events. This visual language has proved to be useful and accessible for
novice users of Serendipity, allowing them to build simple work coordination schemes. The work
coordination examples in Figures 1 and 5 are simple enough for novices to both understand and to build
for themselves for use in similar situations. Our filter/action language has also proved to be powerful
enough for experienced users to build reusable, complex event handling models to implement a range of
diverse work coordination facilities (Grundy et al, 1997b; Grundy and Hosking, 1998).

Figure 6 shows an example of a filter/action model, built by an expert end user, being used to highlight
icons in Serendipity views, to indicate access/update of artefacts and use of tools. Other users' enacted
stages are highlighted, in addition to the user who is being shown this view (judy). Artefacts and tools in
use by judy and her collaborators are highlighted. This was achieved by storing recent artefact
modification and tool events, and filter/actions use this history to highlight appropriate icons to support
group awareness (Grundy et al, 1997b).

Page 6

While the definition of such filter/actions is complex for more inexperienced end users to build, such
novice end users can easily reuse the packaged filter/action behaviour on their own Serendipity process
model views. Users select the highlighting filter/actions they require, e.g. “example2—
serendipity highlight” as in Figure 6, and attach these to artefacts representing Serendipity views and
tools (i.e. to meta-level representations of Serendipity artefacts). End users can modify template
visualisation filter/actions to suit their own awareness needs, due to the accessibility and power of
expression of our visual event handling language. Highlighting and constraint filter/actions can also be
applied to other tools integrated with Serendipity, as described in the following section.

aff.2:Design, Code & Test-subprocess |
1
\ & EN 0 ple2-ser
= T N ®
= i process stage
% Z. 150 - g, fl— ie y
=l oR-tan AR T e 2
amy = = B
E Flny =
@ @ artefact updates(IE)
o [[ermstact woees]
dut.
Updnte ;
icon
“is‘j”i Righlight
(highlight icon;
test pl
<af m
SPE class/method views
ity
edits (AU) -
- e
finish chang.

Figure 6. Highlighting icons to support awareness.

The specification of work coordination schemes is one of the more poorly-supported aspects of most
existing WFMSs and PCEs. Most utilise form-based interfaces or textual languages to allow users to
specify simplistic event handlers, which provide a basic mechanism to inform users of interesting event
occurances or coordinate multiple process usage. In contrast, Serendipity provides a visual language
which can be used by novice users to build simple event handling models, using a wide range of template
filter/actions. In addition, expert end users can build highly sophisticated filter/actions, even using an API
to the implementation language of Serendipity, to build very complex work coordination schemes. These
filter/actions can then be easily reused by the experts, or novices, by their packaging into single,
parameterised filter/action icons in the Serendipity visual event-handling language.

5. Supporting Tool Integration

Tools ranging from those built with the same underlying architecture as Serendipity to third-party tools
can be integrated with our workflow environment, with differing levels of integration completeness. SPE,
other software and information system development tools, and a variety of small Computer-Supported
Cooperative Work (CSCW) tools have been tightly integrated with Serendipity (Grundy and Venable,
1996; Grundy et al, 1996a). Figure 7 shows how integrated messaging and annotation tools, as well as
SPE, can be integrated with Serendipity and utilise its process model information. Descriptions of
changes in SPE are augmented with enacted process stage information to help better describe why and
when changes were made in SPE (examples of this are also shown in Figure 2). The messaging and
annotation tools are sent Serendipity process model information which is incorporated into the sent
messages and stored notes respectively.

Page 7

1
K @& (5 sore) —
Y e
[?‘e anla_fines
start designing find errors Teen L3 fines_owed
i cant_video
i‘e) - =3 - ; return_video
:";.“ (R} video changes uses (A) % @ aale_total_sost
i, 2.5 S erente
= B 4 lote
[<bange_nane
L = E change_nddress
-7 ehanged design Tix design phene_no
& @ . design erro - ddrenes
nddress1
areates (O] -
% o beond pans
Review Design Changes e
2 e rentals O:n
reviews (AU) Py
2 Tentals
veviewed design ‘;’:‘;’f"‘“d““
ete
i erente
e - . 0RsD mount_paid
ides systen i due_dute
design errox] e
dnte_returned|
[dnte_rented
code error
. ranted by 0:n
) . finished coding
] tev
M i
ool #*updates_start(t0) .
=] update(24). % [aff 2 .1:Design Chonges—i
SPT clagsimethod views custones : £ Conversation with rick
i update(25). 4
edits (AU customer:ieall
R updutes_end. | judy's comments:
i Ead -
wvideo syetam elasses | ¢ Custener LOrk context:aff.2.1:Design Changes
i [l ' o d id A " o " i
Notes for 'customer’ class , e EET |l am adding a "last_fines_calc_date" attribute to the customer class [
. A . to fix the problem of too much fines being calculated. El H
rick’s work contest: aff.2.5:/dentify Problems alasstoustond |OK ~ 'l fixt that up too. Any other problems | should deal with at thi F
Send to: |judg | features(stage?
- R rent_vides |
Kind: [comment -] Tl Ok
" - 1L 1
The customer::calc_fines method is not | Z:e:;::’“ 41 rick's comments:
i ine . del, .
correctly calculatlng_the am!Junt to flne_ It cm:t:,nm Work context:aff.2.5:1dentify Problems
seems to be calculating all fines every time, cmge—am Good id Youll 9 1o Tin the Ioaic in The "caleT - hod 1 =
rather than adding new fines. | think you need phone_no ;i NM II'IIeah. ':(u ;u;e toh 15 efpglc '"I el t'?a C- '"is f'met od too. o
to have another attribute which remembers dvesslien o check out how the new fines calculation works Tirst.
the last time fines were calculated. ||
[LenidsSaue] [Reply] iy
i . [Send] Save as Note -
[Uiew Al] [Prev] [ment] [Cancel] et m
h #

x 4

Figure 7. Examples of work context awareness and communication support.

L (E250n
= T
(ZE)
e ®
= & =1

video class (restricted)
edits—with ()

[

@ [

= [[Raa sencralisation AT
[3
e
21T
S W ool
Error: Mult. inberitanoe ;
r
P = —
(\imoxe Lurrant q@,‘
Bl

Figure 8. Constraining integrated tools with Serendipity filter/action models.

With tightly integrated tools like SPE, Serendipity filter/actions can even be used to constrain the
behaviour of the tools. Figure 8 illustrates how SPE tool actions may be restricted by a software process
model, illustrating a simple form of Method Engineering (Harmsen and Brinkkemper, 1995). The video
class is prevented from using multiple inheritance, thus extending the semantics of SPE itself by using
Serendipity filters and actions to process SPE artefact modification events. We have also built

Page 8

considerably more complex filter/actions and workflow models to support more comprehensive Method
Engineering for a range of Information Systems Engineering tools (Grundy and Venable, 1996).

Figure 9 shows Serendipity being used to support process modelling for a suite of office automation
programs, including Macintosh versions of Microsoft Word™, Microsoft Excel™, the GlobalFax™
fax/OCR application, and the Eudora™ email utility. Two simple Serendipity process models describing
semi-automated processes of ordering and receiving stock for an organisation. Actions are used to launch
the programs and to create, open, and save files via Apple Events sent from Serendipity to the running
programs.

Third-party tools, like those shown in Figure 9 can not be constrained or integrated to the same degree as
our tools built with an open message-passing architecture (Grundy et al, 1996b, Grundy et al, 1996¢).
However, we have built up useful office automation system workflows and work coordination
mechanisms, as illustrated in the Figure 9 example. Simple communication with these tools is supported
by a range of template filter/actions to invoke tools, tell tools to open/close/save files, and to tell tools to
exit. We have also developed filters which detect when tools exit or when they open, close and update
files, generating events that end user defined filter/action models can make use of.

EO0=————— orders.2:create orders-model E——|
orders:order goods-process EEe——
= 2
K & o)
|
i 2 e
L3y ?‘9 cala amounts s =§
ig uses (41 M5 Eazel ?‘e)
.2 orders 1iorders superviser | s ; f= - ;)}* —
S S gy il pm G
= & L= =
‘:' . o 8 Fon ME Word
(A1) uses B = !
FLil, . - b d H
ay [(H : enloulated : - . el i ne
; Louesz 1)] goe ovders (Mord) BN
@ [1y @@ & 5
= Q) R0 - rders Frorters clemk = . :
& edits with
- ereates (CAUD
aaloulation erver gy k. = ; ;
(O} syder ervor orders erested ; B L L
N erentes (0U) =] y ¥
.* ME Exeel L uses (A
oxders . 4:ordess supervisor : [oxders 2 Liorders cleck | a
- -' o <
. checks (A) wiew with E
role . }] uses [A)
. crders [Word)) o arented orders
orders correst : B a ereating £ailed H
orders superviser aves (R amounts (Exeel)
¥ e
gets orders from = | a -
FE L d
f e J‘EE srdars (Werd)
orders . 3:secratnry uses (]
. Global FAX
Far erders to supplies
faxing failed
faxed orders a
< il

Figure 9. A simple office automation process described in Serendipity.

6. Architecture

Serendipity is currently implemented using the MViews Prolog-based architecture for building multi-
view, multi-user editing tools (Grundy and Hosking, 1996). MViews provides a general model for
defining software system data structures and tool views, with a flexible mechanism for propagating
changes between software components, views and tools. ISDE data is described by components with
attributes, linked by a variety of relationships. When a component is updated, a change description is
generated. Change descriptions are propagated to all components dependent upon the updated
component’s state. Dependents interpret these change descriptions and possibly modify their own state,
producing further change descriptions. This change description propagation mechanism supports a diverse
range of software development environment facilities, including attribute recalculation, multiple views
with flexible, bi-directional textual and graphical view consistency, a generic undo/redo mechanism,
component versioning, and collaborative view editing (Grundy et al, 1996b).

Page 9

Environments such as SPE are integrated with Serendipity by instructing SPE’s repository to forward all
events generated by SPE tools or artefact modifications onto Serendipity, which then forwards the event
to the currently enacted process model stage. This mechanism is used to build work histories within
Serendipity for each process model stage, and to annotate SPE and other environment events with process
model stage information (i.e. why a change was made or event generated). A similar approach has been
used with CSCW tools, such as note annotations and textual chats, to indicate the process stage a note or
chat is focused on.

Rather than alter the implementations of Serendipity and SPE directly to provide the awareness
visualisation techniques described in the previous Sections, we have used Serendipity’s filter/action
language to implement them. This has the advantage of not having to modify the source code of the
environments, allows end users to look at how the wvarious visualisation etc. utilities have been

implemented, and because of the high-level nature of our filter/action language, this allows end users to
tailor these to their own needs.

A simple “work history” determining filter/action is shown in Figure 10. This is used to collect artefact,
tool and communication events generated by the user’s actions, are store these in a work history artefact
(right-hand event flow). Any “set current stage” enactment events cause this work history to be
partitioned, grouping artefact etc. events according to which stage the developer currently had enacted.
Process model users can modify this filter/action to only record particular kinds of events, or to record
them in different work history artefacts (Grundy et al, 1997b).

S 1=————= Determine IWWH-subprocess g—l

- it
& =N
(TN E role avent E: role event(E]

g-e @ | | For Swrrent .S‘tagcl

Frore Drent

owened-byr

% = started stmge

‘ artefact event

— — _ :
E store Work Star::ﬂ} r
= =

ip-oeog

started stage &vent :
B

work history

]

<af w |

Figure 10. A Simple filter/action determining work histories.

7. End User Experience

We have had considerable success with using our workflow and event-handling notations for small and
medium-sized software process, method engineering and office information system applications. Both
novice and expert end users can utilise the notations to configure their work coordination schemes and to
make use of other tools from within their workflow models. Serendipity provides additional support tools
for searching for specified keywords, recording events to manage inconsistencies between views and
enactment events for stages, abstracting workflow and filter/action models into reusable templates, and
for grouping templates for browsing and reuse.

The power of expression of Serendipity’s workflow and event handling languages for novice users, and
the accessibility of the notations for these users, has proved reasonable. There is some confusion when
novices try and specify filter/actions using multiple event sequeneces, and when they use usage link

Page 10

annotations in both languages. Expert users can build substantial workflow models using the workflow
notation, and quite complex work coordination, tool usage specifications and tool integration schemes
with the event handling notation. To use facilities of the Serendipity implementation which aren’t directly
supported by existing filters or actions they must use the textual API language (Prolog). However, once
complex filter/actions have been built using the hierarchical graphical language or textual API, they can
be packaged for reuse by both novices and experts as single, reusable icons.

The multi-user support within the current version of Serendipity, and its implementation platform,
MViews, is not sufficient for complex, multi-user workflow-based systems. The performance of the
multi-user aspects of Serendipity need to be made both more responsive and more robust to allow the
environment to be deployed within “real-world” complex work environments. In addition, the tool
integration approaches for third party tools (i.e. those not built with MViews) are currently inadequate, as
few tool events and interactions can be handled by the current Serendipity filter/actions which interact
with these third party tools.

We are continuing to improve our notations, adding improved modelling capabilities for expressing
function calling between filter/action icons and for expressing specialised forms of event filtering, tool
repository querying and better supporting tool integration. We are also developing notational extensions
for better expressing multiple event filter/actions, where event sequencing can be expressed using a visual
finate state machine representation. We are also making compilation improvements to the efficiency of
the filter/action models, which are currently interpreted. These improvements are required to help
Serendipity be more extensively used in larger workflow-based systems.

8. Future Work

Due to the problems mentioned above that we encountered when trying to deploy Serendipity on large
workflow systems, we are currently porting Serendipity to JViews, a Java-based successor to MViews
(Grundy et al, 1997a). This will allow a more open-architecture and portable workflow environment to be
developed, and mean third party tools can much more effectively be integrated with Serendipity. The
filter/action language from Serendipity has been reimplemented as a stand-alone tool for processing
events from JViews components, and is part of the JComposer componentware environment for building
JViews-based systems (Grundy et al, 1997a). Parts of these filter/action models can be compiled and thus
execute much more quickly than the Serendipity versions, making them more powerful for a wider range
of end user programming tasks.

Figure 11 shows a running Entity-Relationship modeller generated using JComposer, and our new event-
handling language being used to provide work coordination support. The visualised JViews components
(top left window) can be used in an event-handling view (top right window) to specify the presentation of
events of interest to a user (in this case the user of this tool). The bottom-right window shows our visual
query language being used to query the tool repository (in this case to find all entities with a specified
name which have links to at least one relationship).

We are continuing to develop JComposer and its support tools, and will utilise the JComposer event
handling language and visual query language in a port of Serendipity. We are also building components to
provide better integration support for third-party tools, based on the Java Beans componentware API. This
will allow end users more control over a wide variety of tools used with JComposer and Serendipity, and
thus support better end user specification of work coordination and tool integration mechanisms.

Page 11

Disualisatio

ER Diagram: 3 -
name="test ER model” En'f,' 27
C:}El;n-fm
/ ?| Propetty Chang e (hame) |

Bage Entity: 13 Enfity: 27

rame="Customer || |[rarme="inv_of" name="acc_or

arity="0n" atity="1:n"
——

- E[m Reusable Query
et 00
@ CL’" bt Entity
desctiption
—
Stockltem
; Pelationship
Izhildren.emply()
Role Gilue
o]
—

Figure 11. Visualising running tool data and extending tool event handling with JComposer.

9. Related Work

Much research into Computer Supported Cooperative Work (CSCW) systems has focused on low-level
interaction mechanisms, such as synchronous and asynchronous editing. Examples include most
Groupware systems (Ellis et al, 1991), GroupKit (Roseman and Greenberg, 1996), Mjolner (Magnusson
et al, 1993), C-MViews (Grundy et al, 1995b), and Rendezvous (Hill et al, 1994). These systems
generally lack support for end user tailoring of work coordination mechanisms, as provided by
Serendipity. Our experiences with such systems suggest that the techniques provided by Serendipity for
coordinating work, allowing end users to specify work coordination and group awareness mechanisms,
and integrating third party tools are essential to make CSCW tools organisationally feasible.

Some work has been done on providing higher-level process modelling and coordination facilities, such
as workflow configuration in Action Workflow (Medina-Mora et al, 1992), TeamWARE Flow
(Teamware Inc., 1996), and VPL (Swenson et al, 1994), software process protocols in
ConversationBuilder (Kaplan etl al, 1992) and Oz (Benshaul and Kaiser, 1994), and various kinds of
shared workspace awareness in GroupKit (Roseman and Greenberg, 1996). Once again, these approaches
generally do not provide the level of end user configuration of work coordination and awareness
mechanisms, as provided by Serendipity, which are required in large workflow-based systems. Most
workflow management systems, such as Action Workflow (Medina-Mora et al, 1992), Regatta (Swenson
et al, 1994) and TeamFLOW (Teamware Inc., 1996), and groupware tools like Lotus Notes™, provide a
limited range of “interesting events”, supporting interaction with other tools and some forms of
notification and work coordination based on event occurrence. These are usually codified using a form-
based approach where modellers specify simple actions to carry out based on a range of possible events.
Our visual event handling language provides a much wider range of capabilities, but remains accessible to
both novice and expert end users. It also allows expert users to build very complex filter/action models
supporting work coordination and tool integration, but package these for novice end users to easily reuse.

Many Process-Centred Environments (PCEs), such as SPADE (Bandinelli et al, 1996), Merlin (Peuschel
et al, 1992), Marvel (Barghouti, 1992), Oz (Ben-Shaul and Kaiser, 1994), CPCE (Lonchamp, 1995), and
EPOS (Jaccheri et al, 1992), use complex, textual descriptions of processes and tool configurations which
are often very difficult for end users to understand and modify, often can not be modified while in use,
and have poor exception handling. The event-handling of most graphical process modelling languages is

Page 12

codified graphically for “enactment” events (state transitions), but textually for stage guards and actions,
and for coding interaction with people or other tools. ProcessWEAVER (Fernstrom, 1993) provides a
textual co-shell language which allows users to specify actions for process model nodes when fired by
input tokens. SLANG (Bendinelli et al, 1996) uses textual specifications of guards and actions for nodes
in a state transition network. Marvel and Oz (Ben-Shaul and Kaiser, 1994) use guarded rules specified
over data types. Adele (Belkhatir et al, 1994) provides an activity manager, which uses a textual language
to specify database-related event handling for process models. These approaches all use textual languages,
and hence all but expert end users find such specifications difficult to understand, modify and reuse. In
contrast, our visual language-based approaches are much more accessible to both novice and expert end
users, but are expressive and powerful enough for experts to greatly extend the environment’s
capabilities.

Visual dataflow-based languages, such as Fabrik (Ingalls et al, 1998) and Prograph (Cox et al, 1989),
provide graphical dataflow models which are similar in nature to our event-handling language, but use
dataflow rather than event-flow, which tends to be less appropriate and useful in a workflow and tool
integration domain (Swenson et al, 1994). Some visual languages, such as ViTABaL (Grundy and
Hosking, 1995), utilise an event-driven model but lack the equivalent of Serendipity's filters, actions, and
interest specification capabilities. Because of their general-purpose nature, these visual programming
languages lack specific workflow modelling capabilities, and thus can not express and represent process
model event-handling and work coordination tasks as effectively as Serendipity’s languages.

Many workflow tools and PCEs are generally not well integrated with existing tools used to perform work
Bendinelli et al, 1996, Krishnamurthy and Hill, 1994, Marlin et al, 1993). They thus can not achieve the
same degree of utilisation of high-level workflow and process model information to augment work tool
and low-level CSCW capabilities as supported by Serendipity. Some work, including
SPADE/ImagineDesk (Bandinelli et al, 1996), ConversationBuilder (Kaplan et al, 1992),
MultiviewMerlin (Marlin et al, 1993), wOrlds (Bogia and Kaplan, 1995), and Oz (Valetto and Kaiser,
1995), attempts to bridge the gap between workflow/PCEs and CSCW. So far these have had some
success, but there are continuing problems of integrating existing tools into the environments, effectively
utilising workflow/process model information in the integrated tools, and with limitations of the process
modelling tools used (Bogia and Kaplan, 1995; Marlin et al, 1993; Valetto and Kaiser, 1995). Our
integration of MViews-based tools with Serendipity has been very successful, and our filter/action
language can even allow such tools to be constrained (Grundy et al, 1996a). With more open-
architectured third party tools becoming available with our JViews-based version of Serendipity,
improved integration of these tools should also be possible.

10. Summary

We have described visual languages and a support environment for the end user specification of
workflows, work coordination mechanisms and tool integration in workflow systems. Our notations allow
both novice and expert end users to readily model their work processes, to specify both simple and
complex event-handling for these models, and to integrate a variety of tools for both performing work and
communicating with other users into their workflow models. We have had success using these end user
programming techniques in a variety of application domains, including software process modelling,
software development, method engineering, CSCW applications and office automation systems. Our
notations, while being accessible to novice end users, are also powerful enough for expert end users to
build very sophisticated work coordination and tool integration facilities. The languages are also useful in
both small-scale, single-user workflow systems, and larger, multi-users work environments.

We have ported a modified form of our event-handling language to Java, and are continuing to redevelop
our workflow, CSCW and software development tools. This Java Beans-based implementation will allow
our techniques for work coordination specification and tool integration to be more effectively used with
wider range of third-party tools in complex application domains. We are also continuing to develop both
the workflow and event-handling notations of our environments, to preserve and extend the accessibility
to all kinds of end users, while improving their power and usefulness in diverse application domains.

Page 13

References

Bandinelli, S., DiNitto, E., & Fuggetta, A. (1996). Supporting cooperation in the SPADE-1 environment, /EEE Transactions on Software
Engineering, 22 (12), December, 1996.

Barghouti, N.S. (1992). Supporting Cooperation in the Marvel Process-Centred SDE, in Proceedings of the, 1992 ACM Symposium on
Software Development Environments, ACM Press, pp. 21-31.

Belkhatir, N., Estublier, J., and Melo, W.L. (1994). The Adele/Tempo Experience, Software Process Modelling & Technology. Finlelstein,
A., Kramer, J. and Nuseibeh, B. Eds, Research Studies Press.

Ben-Shaul, I.Z. and Kaiser, G.E. (1994). A Paradigm for Decentralized Process Modeling and its Realization in the Oz Environment, in
Sixteenth International Conference on Software Engineering, May, 1994, pp. 179-188.

Bogia, D.P. and Kaplan, S.M. (1995). Flexibility and Control for Dynamic Workflows in the wOrlds Environment, in Proceedings of the
Conference on Organisational Computing Systems, ACM Press, Milpitas, CA, November, 1995.

Cox, P.T., Giles, F.R., and Pietrzykowski, T. (1989). Prograph: a step towards liberating programming from textual conditioning, in
Proceedings of the, 1989 IEEE Workshop on Visual Languages, IEEE Computer Society Press, pp. 150-156.

Ellis, C.A., Gibbs, S.J., and Rein, G.L. (1991). Groupware: Some Issues and Experiences, Communications of the ACM, vol. 34, no. 1, 38-
58, January, 1991.

Fernstrom, C. (1993). ProcessWEAVER: Adding process support to UNIX, in 2nd International Conference on the Software Process:
Continuous Software Process Improvement, IEEE CS Press, Berlin, Germany, February, 1993, pp. 12-26.

Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge, W.B. (1995a). Connecting the pieces, Chapter 11 in Visual Object-Oriented
Programming. Manning/Prentice-Hall.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. (1995b). Support for Collaborative, Integrated Software Development, in
Proceeding of the 7th Conference on Software Engineering Environments, IEEE CS Press, April 5-7, 1995, pp. 84-94.

Grundy, J.C. and Hosking, J.G. (1995). ViTABaL: A Visual Language Supporting Design By Tool Abstraction, in Proceedings of the, 1995
IEEE Symposium on Visual Languages, IEEE CS Press, Darmsdart, Germany, September, 1995, pp. 53-60.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996a). Low-level and high-level CSCW in the Serendipity process modelling
environment, in Proceedings of OZCHI'96, IEEE CS Press, Hamilton, New Zealand, Nov 24-27, 1996.

Grundy, J.C. and Venable, J.R. (1996). Towards an environment supporting integrated Method Engineering, Proceedings of the IFIP 8.1/8.2
Working Conference on Method Engineerig, Atlanta, August 26-28, Chapman-Hall, 1996.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996b) Supporting flexible consistency management via discrete change description
propagation, Software - Practice & Experience, vol. 26, no. 9, 1053-1083, September, 1996.

Grundy, J.C., Hosking, J.G., Mugridge, W.B., and Amor, R.W., (1996¢). Support for Constructing Environments with Multiple Views, in
Joint Proceedings of the SIGSOFT'96 Workshops, ACM Press, San Francisco, October 14-15, 1996, pp. 212-216.

Grundy, J.C. and Hosking, J.G. (1996). Constructing Integrated Software Development Environments with MViews, International Journal
of Applied Software Technology, Vol 2, No. 3/4, 1996.

Grundy, J.C., Mugridge, W.B., and Hosking, J.G. (1997a). A Java-based toolkit for the construction of multi-view editing systems, in
Proceedings of the Second Component Users Conference, Munich, July 14-18, 1997.

Grundy, J.C., Mugridge, W.B., and Hosking, J.G. (1997b). Utilising past event histories in a process-centred software development
environment, in Proceedings of the, 1997 Australian Software Engineering Conference, Sydney, Sept. 30-Oct 2, 1997.

Grundy, J.C. and Hosking, J.G. (1998). Serendipity: integrated environment support for process modelling, enactment and improvement,
Automated Software Engineering: Special Issue on Process Technology, vol. 5, no. 1, January, 1998, Kluwer Academic Publishers (in
press).

Harmsen, F., and Brinkkemper, S. (1995). Design and Implementation of a Method Base Management System for a Situational CASE
Environment, in Proceedings of the 2nd Asia-Pacific Sofiware Engineering Conference (APSEC'95), IEEE CS Press, Brisbane,
December, 1995, pp. 430-438.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F., and Wilner, W. (1994). The Rendezvous Architecture and Language for Constructing
Multi-User Applications, ACM Transactions on Computer-Human Interaction, vol. 1, no. 2, 81-125, June, 1994.

Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., and Doyle, K. (1997). Fabrik: A Visual Programming Environment, in Proceedings of
OOPSLA ‘88, ACM Press, pp. 176-189.

Jaccheri, M.L., Larsen, L., and Conradi, R. (1992). Software Process Modeling and Evolution in EPOS, in Proc. Fourth International
Conference on Software Engineering and Knowledge Engineering , Capri, Italy, June, pp. 17-29.

Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli, C. (1992). Flexible, Active Support for Collaborative Work with
ConversationBuilder, in, 1992 ACM Conference on Computer-Supported Cooperative Work, ACM Press, 1992, pp. 378-385.

Krishnamurthy, B. and Hill, M. (1994). CSCW'94 Workshop to Explore Relationships between Research in Computer Supported
Cooperative Work & Software Process, in Proceedings of CSCW'94, ACM Press, April, 1994, pp. 34-35.

Lonchamp, J. (1995). CPCE: A Kernel for Building Flexible Collaborative Process-Centred Environments, in Proceedings of the 7th
Conference on Software Engineering Environments, IEEE CS Press, 1995, pp. 95-105.

Magnusson, B., Asklund, U., and Mindr, S. (1993). Fine-grained Revision Control for Collaborative Software Development, in Proceedings
of thel1993 ACM SIGSOFT Conference on Foundations of Software Engineering, December, 1993, pp. 7-10.

Marlin, C., Peuschel, B., McCarthy, M., and Harvey, J. (1993). MultiView-Merlin: An Experiment in Tool Integration, in Proceedings of
the 6th Conference on Software Engineering Environments, IEEE CS Press, 1993.

Page 14

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). The Action Workflow Approach to Workflow Management Technology,
in Proceedings of CSCW'92, ACM Press, 1992, pp. 281-288.

Peuschel, B., Schifer, W., and Wolf, S. (1992). A knowledge-based software development environment supporting cooperative work,
International Journal of Software Engineering and Knowledge Engineering, vol. 2, no. 1, 76-106.

Roseman, M. and Greenberg, S. (1996). Building Real Time Groupware with GroupKit, A Groupware Toolkit, ACM Transactions on
Computer-Human Interaction, vol. 3, no. 1, 1-37, March, 1996.

Swenson, K.D. (1993). A Visual Language to Describe Collaborative Work, in Proceedings of the, 1993 IEEE Symposium on Visual
Languages, IEEE CS Press, pp. 298-303.

Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., and Irwin, K. (1994). A Business Process Environment Supporting
Collaborative Planning, Journal of Collaborative Computing, vol. 1, no. 1, 1994.

TeamWARE Inc. (1996).TeamWARE Flow, (http://www.teamware.us.com/products/flow/).

Valetto, G. and Kaiser, G.E. (1995). Enveloping Sophisticated Tools into Computer-Aided Software Engineering Environments, in /EEE
Seventh International Workshop on Computer-Aided Software Engineering, July, 1995, pp. 40-48.

Page 15

