In Proceedings of 2nd International Workshop on Software Architectures, ACM Press, San Francisco, Oct 1996.

Towards a Unified Event-based Software Architecture

John C. GrundyT, John G. Hoskingﬁ and Warwick B. Mugridgeﬁ

Department of Computer Science
University of Waikato
Private Bag 3105, Hamilton, New Zealand
jgrundy @cs.waikato.ac.nz

Abstract

Event-based software architectures are commonly used to solve
a variety of problems. These architectures are complex to
design and implement, however, especially with conventional,
textual programming languages. We describe our recent work in
developing visual languages and support environments for the
design and implementation of a range of event-based software
architectures. A synthesis of this work to produce a more
general architecture description language and support
environment is described.

1. Introduction

Complex software architectures often use event propagation
between software components to maintain data consistency and
achieve component coordination. Examples are: client/server
architectures, where clients communicate with servers via
messages; Macintosh Apple Events™, where applications
exchange events [2]; FIELD [13], which integrates Unix tools
via message-passing; and tool abstraction systems [3], such as
spreadsheets, rule-based systems and active objects, where
update events on shared data structures trigger “toolie”
(processing) execution. These permit the development of
flexible consistency and coordination mechanisms, and, if
carefully designed, support much component reuse [3, 5, 13].

The design and implementation of such event-based
software architectures using textual, general purpose
programming languages is difficult [3, 5]. Each architecture
component generally encapsulates some of the code to
generate, propagate and handle events. Because of the
distributed nature of inter-component communication,
components are difficult to specify, coordinate, and visualise.
Architecture Description Languages (ADLs) are needed which
define the components, inter-component links, and the
propagation, transformation, and interpretation of events
along links. Environments to support ADLs for building such
systems would also be useful. We describe a design for such an
ADL and its environment.

Department of Computer Science T
University of Auckland
Private Bag, Auckland, New Zealand
{john,rick } @cs.auckland.ac.nz

We commence with a description of an event-based
architecture (CPRGs) that motivated this work. Two visual
languages are then introduced that provide elements of an ADL
and which process other kinds of events (based on procedural
actions). This is followed by a design that synthesizes and
generalises those event-handling elements to produce EASY, a
more general ADL and environment for event-based
architectures.

2. CPRGs

Change Propagation and Response Graphs (CPRGs) [5], and
their realisation in the MViews framework [4], provide an
architecture for constructing software systems where
consistency between multiple representations or views is
important. The main application of CPRGs has been the
development of integrated software development environments
[1, 6, 7] and user interface tools [5, 11].

In CPRGs, each architectural item is represented as a
component, which may be related to other components via
relationships (also components). Components have attributes
describing their state and operations (e.g. relationship
addition, attribute modification) applied to them which change
the graph's state. Operations generate change descriptions
recording the resulting state changes. Inter-component
consistency is maintained by modified components
broadcasting their change descriptions to all components
connected by relationships. Receiving components, including
intermediate relationships, interpret the change descriptions
and modify their state accordingly (possibly generating further
change descriptions).

Figure 1 shows a CPRG representing the dialog box at top
left. A dialog component represents the aggregate dialog box
with name, position, and interface attributes. It has a parts
relationship with its constituent components, and edit field
components have caption components. Modification of the
dialog's position attribute causes propagation of a change
description (1) to each part via the parts relationship. Each part
interprets the change description by changing its own
position. Each edit field propagates the change on to its
caption component causing it to also change position.
Modification of a part's position (2) causes propagation of a
change description to the dialog component. This may be
interpreted in several ways: abort or resize of the dialog as a
whole, if the component now lies outside the dialog box, or
ignored, if there is no overlap.

Enter your name:

fon]

[26 |)

name ("name")

edit field

final_value (final_name) *

position

B
position
value ("Enter your name:")

name ("name entry")
dialog . P
interface([init_name,
final_name,...])
Enter your age: @ ;

position

\\\\ name ("age")
init_value (init_name) init_value(20)

final_value(final_age)

Key: attribute (value)
[conponent 1~

parent (s)

relationship

change description propagation

child(ren)

—

“h

value ("Ok")

value ("Cancel")

position position

position

position

value ("Enter your age:")

Figure 1. Event propagation in the CPRG event-based Software Architecture.

CPRGs are an example of an event-based software
architecture, with state-change events propagated in the form
of change descriptions via links represented by relationships.
We have successfully used CPRGs to develop a wide range of
software development environments and tools. However,
although the architecture is an excellent implementation
vehicle, we have found difficulty in adequately expressing
designs. The visual architecture description language notation
used in Figure 1 is useful for designing and documenting CPRG-
based implementations, but is not used when implementing
these systems with conventional programming languages.

Implementers must hand-code the structures of the CPRG
component definitions (as object-oriented classes), and must
handcode the event response mechanisms. While many CPRG
components are highly reusable, especially CPRG
relationships [5], much hand implementation remains for
complex CPRG-based systems. Thus a major problem is that
there is no explicit representation of event flows in the textual
implementation language code. Event generation is combined
with the coding of operations, while responses are coded into
receivers. This makes the behaviour of systems difficult to
understand at the design level. We have explored several
approaches to more explicitly representing event flows and
responses to produce an ADL for CPRGs which can be better
translated into an implementation.

3. ViTABaL

ViTABaL is based on the tool-abstraction paradigm [3].
Abstract data structures (ADSs) are shared by a collection of co-
operating toolies. Each toolie supplies part of the overall
system function, extending or modifying the functionality of
the ADSs and other toolies. Interaction is via action-based
events, with toolies being able to augment or change calls to
the interface of ADSs; this is in contrast to CPRGs, where the
events are due to state changes. In [7] we present a design

notation for tool abstraction, which elaborates on the informal
one of [3], together with the ViTABaL environment for
supporting the notation.

Figure 2 shows an example of the ViTABaL notation (and
environment) used to design a tool abstraction version of the
KWIC (Key Word In Context) system of [12]. ADSs
(rectangles) are connected to toolies (ovals) by event
connections. Toolies respond to action events (named calls
with their arguments) specified on the event connections. A

. —>
variety of event types are supported: broadcast (===), where
the named events are sent from the sender ADS (or toolie) to the

receiver toolie; request (===), like broadcast, but where the

<>
sender waits for the receiver to respond; listen_before (eveme),
where the listener is sent an event before the receiver responds

to the event; and listen_after (ﬁ>), where the listener is sent
the event after the receiver has responded to the event. The
listen_before and listen_after event types are particularly
powerful as they permit additional toolies to transparently
"plug in" to an existing design. This simplifies design
modification and better facilitates component-based software
design than traditional approaches [3].

Additional annotations are supported in ViTABal for
indicating that toolies execute concurrently [7]. Concurrent
toolie execution requires synchronisation at various points to
ensure toolies operate in a sensible order (when required) and
that data fetches/updates from ADTs are atomic.
Synchronisation is achieved by having ADTs which are
accessed by concurrent toolies enforcing locking and
sequencing of toolie requests. More sophisticated
synchronisation is achieved by designers using coordinator
toolies which process requests from other, concurrently
executing toolies. We have had ViTABaL programs running on
several networked Macintosh computers with concurrent,
interacting toolies running on different machines.

S |==——/)—/————"—"—"—"— root toolies

read(+line) line_buffer

input_file jncert(-line)

BE line_buffer

— — N
gﬂl (D:;_iﬂput (sﬁhifter:)————'sorter*(.sorte’f) (kwxe
wic -
inputy .~ - do_output i
R ’(_mput!) —oute kwic g
=) _ — output finished
L insert(-line) swop_lines(-posl, -pos2)

shifted_lines shifted_lines

- /<E)utput:>

get_line(-pos, +line) ;

write(-line)

i’
output_file

Y /
insert(-shifted_line)
¥
I

shifted_lines i
x i

shifted_line_buffe

input::do_input

/tupdates_start(t0) .
update(10). % rename input_file to input_chanel

append(-line)

update(12). % add connection to shifter
update(13). % 2dd broadeast shifterffinished_input
updates_end. */

input::do_input:-

interface(
input_file@read(+line),
line_buffer@insert(-line)

1,

inplementation(
while(input_filefread(Line),

line_buffer@insert(Line))

line_buffer@insert(’' finished_input')

).

update(11l). ¥ change line_buffer@insert(-line) to line_buffer@ |updates_end. ¢/

omit::listen_before(insert) =
/tupdates_start(tl).

omit::listen_before(line_buffer@insert(Line)):-
interface(
line_buffer@insert(-line)
1,
implementation(
((Line = '*
true
; line_bufferf@insert(Line)
)|
.

; Line = end_of_file) ->

el

Figure 2. Specifying event propagation and handling in ViTABaL.

A great advantage of ViTaBAL over most other Tool
Abstraction systems is that when a program is moved from
multiple machines back to one machine, or vice-versa, the
designer need change no ViTABaL designs. The ViTABaL
compiler generates the required low-level message passing and
synchronisation code.

ViTABaL toolies may be implemented within exploded
ViTABaL diagrams, allowing hierarchical toolie event
responses to be coded. Bottom-level toolie event responses are
coded textually (a variety of Prolog is currently used), as shown
in the textual views in Figure 2. These responses can be quite
small, or can be implemented by large programs, using any
conventional program structuring technique (i.e. not tool
abstraction-based). ViTABaL generates object-oriented code
which very efficiently implements tool abstraction designs,
and supports visualisation of executing systems through
design diagram animation [7]. ViTABaL code is very efficient
as the code generator is able to determine whether listen
before/after processing and synchronisation or inter-machine
message passing is required. If these high-overhead activities
are not used by some toolies, then very efficient method-
calling code is generated. This is unlike most other Tool
Abstraction systems, which always assume interdepencies may
exist and thus always encode high-overhead active object or
trigger mechanisms into code.

ViTABaL thus provides an ADL for the event-based tool
abstraction paradigm, together with facilities for efficiently
realising that design. Weaknesses of ViTABaL include the use
of event connections as the sole mechanism for system

structuring, which is not as rich a structural notation as CPRG
relationships. Unlike CPRGs, ViTABaL cannot handle state
change events directly; they must be handled via action
events, leading to redundancy when several actions can lead to
a common state change. Event responses are coded textually,
and design level support for this is desirable.

4. Serendipity

Serendipity is a process-centred environment that handles both
state change and simple action events, albeit in a less-general
framework than our other approaches. Serendipity provides
graphical and textual views for process modelling, enactment
and improvement [8, 9, 10]. In Figure 3, ‘ml:modell-process’
shows a Serendipity model for part of a software process.
Process stages are enacted by completion events from
preceding stages. Serendipity also provides graphical views for
specifying event handling for process models via filters and
actions, such as ‘ml.3:done testing’ in Figure 3. Filters
(rectangles) apply pattern-matching to incoming events,
propagating matching events to other filter/actions. Actions
(ovals) respond to events by executing operations which
generate new events, display information, or modify data. The
‘ml.3:done testing’ event handler specifies that when process
stage ‘m1.3:check changes’ is made current (i.e. testing begun,
detected by filter ‘Made Current’) or the stage finishes (testing
stopped, detected by filter ‘finished testing’), action ‘Notify
Role’ notifies the °‘coders’ for stage ‘ml.2:implement
changes’.

Events may be caused by stage enactments (as shown
above), artefact modifications, or tool applications. The
filter/action language also supports: filters and actions which
receive multiple events and do not terminate after handling a
single event; event handling submodels; and other filtering
annotations [8]. An API interface allows filters and actions to
be defined in Prolog and called when an event is received,
making the language extensible. This also allows filter/actions
to be implemented as hierarchically using our visual language,
reusing library filter/actions (“tenplates”), or using the API
interface, which may be a small piece of Prolog code or even an
interface to a large existing system (a database, client-server
connection, etc.). Serendipity filter/actions can run
concurrently in a similar manner to ViTABaL toolies, and use a
similar approach to coordination. Either actions are built
which handle inter-action coordination or concurrent access to
data is moderated by artefact interfaces. Serendipity is
implemented using MViews, utilising CPRG structures and
event propagation.

The filter action event handling component of Serendipity
thus extends the event-based model of CPRGs. Filters provide a
visual design level notation for specifying event responses,
whereas ViTABaL visually describes only the toolie event
connections, and not the event responses. Serendipity has the
same advantages as ViTABaL over related textual approaches
(such as rules, action routines or active object triggers) in that
event propagation and handling is explicitly represented in a
high-level, graphical manner. However, it is currently strongly
tied to the Serendipity process modelling environment, and
thus cannot be used to design general event-based systems.

5. EASY: A Unified Event-Based Architecture

To unify and generalise our work on CPRGs, ViTABaL and
Serendipity, we have designed EASY (Event Abstraction
SYstem). EASY permits CPRGs state-change events and
ViTABaL action events to be handled in a unified manner, while
incorporating the event filtering and response abilities of
Serendipity. This aims to maintain the advantage of ViTABal
and Serendipity of visual representation of event propagation
and response mechanisms, while improving on their handling
of the structural aspects of event-based software architectures,
which is done well in CPRGs.

Figure 4 shows an example of an EASY instance modelling
a dialog similar to that of Figure 1, but with multiple edit
fields. CPRG components and relationships form the
“backbone”, specifying data components and
interconnectivity, such as dialog, fields and ok_button.
ViTABaL toolies, such as follow_drag and abort_input, use
CPRG structures as their shared ADS pool, and respond to the
events affecting these components. Toolies specify events
they’re interested in, as in ViTABalL, and listened-to
components generate event representations as change
descriptions, as in CPRGs, before or after the component state
changes, as required by the listening toolies. The change
descriptions (event representations) are propagated to the
listening toolies which match them to the event patterns they
respond to, and the appropriate response code is invoked.
Serendipity filters and actions are used to specify toolie
responses, and support complex event propagation via pattern-
matching and actioning via library actions, definition of
submodels, or the API interface. Usage connections indicate
toolie parameters (e.g. field_value) and toolie usage (e.g.
used_by).

mi:modell-process

start changes

ml.1l:designexr
design changes

design error

finished design

finish coding

implement changes
tested correct

£inish Cv

(ANDY

tested correct

ml.4:project manager

approve changes

approved

¢ changes approved >

: ml.3:tester
coding exxox
check changes

m1.3:done testing =————

ml.3:tester

check changes

I finished testing

”"“‘ stage
T w

“role

implement changes

Figure 3. Specifying event filtering and actioning in Serendipity.

name

\

drag(DX,DY)

@ used_by *
used_by
drag(DXi’)/ follow-drag follow-drag
drag(DX,DY) A name label
— type
used_by edit_field P
field_value

field_caption

bad_input(field) \

highlight

Cisa) CemoD
[date_field | [name_field || _age_field |

(buttons)

usage

toolie (action)

event flow
(optional name/args)

3
@

\I ok_button I

I cancel_buttonl

pr;;§33~i.~

Figure 4. Merging CPRG organisation, ViTABaL event propagation and Serendipity event filtering/action.

We are currently implementing an environment to support
EASY. Multiple views will be provided as in ViTABaL and
Serendipity, allowing system structure to be modularised
vertically, via multiple, partially overlapping views, or
horizontally, using hierarchical views. Serendipity’s API is
preserved to allow developers to extend the functionality of the
language by defining filters and actions (toolie responses)
using the environment’s implementation language. A
ViTABaL-like visualisation system will allow developers to
examine the execution of architectures using EASY views.
Serendipity filter/actions are all currently interpreted, but these
will be compiled where there are not dynamic structures to
achieve better performance, as is currently done with ViTABaL
event response code.

6. Summary

Our work has focused on providing visual ADLs and supporting
environments for the design and construction of complex
event-based software architectures. CPRGs provide an ADL for
building such architectures using components, relationships
and versatile state-change event propagation and response.
ViTABaL provides a visual language and environment for the
design and construction of tool-abstraction action-event-based
architectures. Serendipity provides an extensible filter/action
language for propagating and responding to events. A synergy
of these languages and environments in EASY will provide
wider-ranging support for event-based architecture design and
construction. We are currently building an environment for
EASY; this will support concurrent toolie execution and
synchronisation enhancements. Integrating this environment
with user interface specification and construction tools,
including MViewsDP [5] and Skin [11], will allow user
interface events to be processed via EASY abstractions.

References
[1] Amor, R., Augenbroe, G., Hosking, J.G., Rombouts,
W., and Grundy, J.C. Directions in modelling
environments. Automation in Construction , 4
(1995), 173-187.

Apple Computer Inc. Inside Macintosh: Volumn 1V,
Addison-Wesley (1991).

[2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

[11]

(12]

(13]

Garlan, D., Kaiser, G.E., and Notkin, D. Using Tool
Abstraction to Compose Systems. COMPUTER 25,
6, 30-38.

Grundy, J.C. and Hosking, J.G. A framework for
building visusal programming environments. In
Proceedings of the 1993 IEEE Symposium on Visual
Languages, 1IEEE CS Press, Bergen, Norway,
September 1993, pp. 220-224.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Supporting flexible consistency management via
discrete change description propagation. to appear in
Software - Practice & Experience.

Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B. Connecting the pieces. Chapter 11
in Visual Object-Oriented Programming, Burnett, M.,
Goldberg, A., Lewis, T. Eds, Manning, (1995).
Grundy, J.C. and Hosking, J.G. ViTABaL: A Visual
Language Supporting Design By Tool Abstraction.
In Proceedings of the 1995 IEEE Symposium on
Visual Languages, 1IEEE CS Press, Darmsdart,
Germany, September 1995, pp. 53-60.

Grundy, J.C., Hosking, J.G. “Serendipity: integrated
environment support for process modelling,
enactment and improvement,” Working Paper,
Department of Computer Science, University of
Waikato, 1996.

Grundy, J.C. and Hosking, J.G. Visual Language
Support for Planning and Coordination in
Cooperative Work Systems. In Proceedings of the
1996 IEEE Symposium on Visual Languages, IEEE CS
Press, Boulder, 1996.

Grundy, J.C. and Venable, J.R., “Towards an
environment supporting integrated Method
Engineering,” In Proceedings of Method Engineering
‘96, Atlanta, August 26-28, 1996.

Hosking, J.G., Fenwick, S., Mugridge, W.B., and
Grundy, J.C. Cover yourself with Skin. In
Proceedings of OZCHI'95, Wollongong, Australia,
Nov 28-30 1995, pp. 101-106.

Parnas, D.L. On the Criteria To Be Used in
Decomposing Systems into Modules. CACM 15, 12,
1053-1058.

Reiss, S.P. Connecting Tools Using Message
Passing in the Field Environment. IEEE Software 7,
7, 57-66.

