
Preprint of paper published in International Journal of Software Engineering and Knowledge
Engineering, © World Scientific 1999.

VISUAL SPECIFICATION AND MONITORING OF
SOFTWARE AGENTS IN DECENTRALIZED PROCESS-

CENTRED ENVIRONMENTS
JOHN GRUNDY

Department of Computer Science, University of Waikato, Private Bag 3105

Hamilton, New Zealand

 Submitted 23rd January 1998
 Frist Revision 29th May 1998
 Accepted 3rd November 1998

Distributed, cooperating software agents are useful in many problem domains, such as task
automation and work coordination in process-centered environments. We describe a visual
language for specifying such software agents, which uses the composition of event-based software
components. These specifications may contain interfaces to remotely executing agents, and agents
may be run locally or on distributed machines using a decentralized software architecture. As
facilities to configure and monitor the state and activities of such distributed, cooperating software
agents is essential, we provide primarily visual capabilities to achieve this. Our static and dynamic
software agent visualization techniques have been used on several projects where distributed
information processing, system interfacing, work coordination and task automation are required.
We illustrate our visualization techniques with examples from these domains.

Keywords: distributed software agents, visual languages, end-user computing, process-centered
environments, work coordination, task automation

1. Introduction

Software agents are units of functionality that are able to carry out simple (or possibly
complex) tasks, as specified by agent owners, in an autonomous fashion. Usually the
specifier of an agent doesn't necessarily need to interact with the agent as it performs its
tasks. Such agents are useful for WWW searching, electronic commerce, office
automation and software engineering [1, 2].

We have utilized this concept of software agents to good effect in the process
modeling and enactment (also called "workflow management") systems that we have
been developing [3, 4]. Agents can be configured to carry out simple or complex
automation of tasks, coordinate work by multiple people on projects, and interface
workflow system components to third party software systems. These agents are specified
by composing small units of functionality with a visual language. When executing, the
state of these agents can be examined by users, and their configurations modified as
required. In our previous work we have built mainly local machine agents, with some

centralized, shared agents [3, 5, 6]. These agents suffered from difficulties in specifying
and controlling agents used by multiple people, difficulties in coordinating agent
activities, and the inability to produce robust agents that don't require a centralized,
single server architecture.

In this paper we describe a generalization of our work to facilitate the specification
and deployment of distributed, cooperating software agents for a decentralized workflow
management system. Our distributed software agents are specified using a simple visual
language that composes two basic units of functionality. Event filters receive events
from workflow components or other agents and pass these on to related agents if they
conform to specified patterns. Actions receive events, typically from filters, and carry
out some specified processing in response to the events received. Allowing such agent
specifications to be distributed requires the use of intermediate agents to facilitate inter-
agent communication and coordination. We describe visual language-based approaches
we have developed to do this. Distributed agents need to be created, configured,
inspected and monitored by users, or by other agents. We describe how this is achieved
in our workflow system by extensions of the visual languages used to specify the agents.
We then describe our experiences in deploying our distributed agents, compare and
contrast our approach to related research, and describe improvements and
generalizations of our approaches we plan to make in the future.

2. Problem Domain

Fig. 1 shows a screen dump from the Serendipity-II process modeling and enactment
environment [4]. Serendipity provides visual languages for specifying process models
and also utilizes these visual languages to provide information about enacted process
models (stage enacted, who enacted etc). Fig. 1 shows part of a simple software process
model (based on the ISPW6 Software Process Example [7]) modeled and enacted in
Serendipity-II. The left-hand view shows a basic sub-process for modifying a software
system, with ovals denoting process stages, lines denoting enactment event flows
between stages, and hexagonal icons show start/end states of a sub-process model. In
this sub-process, stages 1, 2 and 4 are enacted in order, indicating the project team plan,
design and make code changes sequentially. The process stage "5. test changes" involves
the project leader testing the code, and either indicating the design needs further
changes, or accepting or rejecting the modifications. As stages are completed or
suspended by users, enactment events flow along links between stages and in/out of sub-
process models, driving process enactment. This is a generic, reusable software process
model.

The top, right view shows a particular project sub-plan for the generic process stage
"2. design changes". For this project, user John is the leader, and users Mark and Bill
designers. Bill designs basic file changes first, then Mark and Bill concurrently make
further design changes. This sub-process completes when both Bill and Mark have
finished their changes.

Fig. 1. The Serendipity-II process modeling and enactment environment.

In order to make more effective use of this process modeling and enactment facilities on
projects, Serendipity-II needs to provide users with facilities to automate tedious and
repetitive tasks [4]. For example, users often wish to be informed when another users
accesses and/or modifies work artifacts they have an interest in, users often wish to
record artifact modification and process enactment events so they can review work done
on parts of a project, users need to have Serendipity-II interact with third party tools
(e.g. detect events from them, invoke them, etc.), and need to collaborate not only on
doing work but in using and evolving their shared process models. To facilitate these
activities, we have added "software agents" to Serendipity-II, that are specified and
deployed by end-users. These agents utilize a simple event filtering and actioning model,
described by visual language extensions to the basic Serendipity-II process modeling
and planning notation.

The bottom, right view in Fig. 1. shows a simple software agent that detects changes
to file Design.doc by Bill and informs John of this. The rectangular icon is an event filter
that receives enactment, tool or artifact change events from process stages or other
filters. If the event matches a specified pattern, it is passed onto connected filters or
actions. Event actions are denoted by shaded oval icons with one label. The
"NotifyUser" action in Fig. 1. sends an email or chat message to the specified user, in
this case John, denoted by the face icon. The arc connecting the action and role (face

icon) is a usage connection, in contrast to an event flow, indicating parameterization or
a method calling relationship between the agent components. Event filters thus detect
events of interest, while actions perform predefined or parameterized processing in
response to received events. Process stages, in contrast, represent process model and
enactment information.

While local (i.e. single-user) agents are useful, many agents must be distributed i.e.
used by multiple users, and must be able to communicate and coordinate with other
agents, both local and distributed. Our end-user agent specification and configuration
facilities, and our software architecture for Serendipity-II, thus need to support agent
distribution and interoperation. We do not use transparent locality of agents in
Serendipity-II, as users need to ensure remote agents specified by others do not interfere
with their process model and information artifacts. Thus users must always explicitly
allow remote agents to have access to their events and/or process and local agent
information, to ensure the security and integrity of their data.

User #2's environment

Objects representing
process information &
local agents

Multiple views of
process information

receiver

sender

Local
agents

receiver

senderUser #1's environment

…

Other user/agent

Other user/agent

…

…

Fig. 2. The decentralized software architecture of Serendipity-II.

We have utilized a fully decentralized software architecture for Serendipity-II, in order
to ensure its process modeling and enactment facilities are fast, robust and secure [4].
Fig. 2 illustrates this architecture. Each user has a collection of objects with identifiers
unique to all Serendipity-II users, and these are used to model Serendipity-II repositories
and multiple views. Objects can be replicated locally and remotely, and retain an
indication of the object they were copied from. Each Serendipity-II environment
provides object and event "sender" and "receiver" components. These allow the
environment to broadcast objects and events to one or more other users' environments in
a point-to-point fashion, and to receive objects and events from one or more other users'
environments. We use a partially replicated architecture in which shared data is
replicated on in users' environment, with events or replacement objects used to keep data
consistent. This allows users to continue working even when others' environments

become inaccessible, and changes to object states which have occurred while a user is
"off-line" to be later reconciled with other users' versions of process models, views and
so on. Users may also have local objects which represent information "private" to that
user. A user determines which other users can have copies of a subset of their objects,
ensuring security of information access and usage.

Some environments in this architecture may, in fact, be autonomous software agent
environments, whose operation is configured remotely by users via the sending of agent
specifications to be run. Software agent specifications may also be run by a user's own
Serendipity-II environment, as solely local agents or as agents that communicate with
other, distributed agents.

3. Specifying Software Agents

We use a simple visual language to specify software agents. This language uses two
main components: filters and actions. Filters receive events from other Serendipity-II
components (other filters, actions, process stages, artifact interfaces or 3rd party software
tools) and pass them on to connected components (usually other filters or actions).
Filters may also provide a "querying" facility, where another filter or an action sends the
filter a message and the filter replies to satisfy the query. Actions receive events,
typically from filters although also from other kinds of Serendipity-II components, and
carry out some specified processing in response to the event. Action processing may also
be invoked in the same manner as querying filters, with the action returning a result in
response to the query from a filter or other action.

Fig. 3. Simple, local software agent specification in Serendipity-II.

Fig. 3 shows an example of a simple software agent specification in Serendipity-II. The
process stage "2. design changes" produces "enactment events" when it is started,
suspended, completed or the user indicates they are currently doing work on this part of
a work process. This "Design changes started/finished" agent (which is reuses a
predefined simple event filter) checks the event is a start or finish enactment event. If the
filter passes this event on, the action "Store Change" records this enactment event in a
Serendipity-II "version record" (event history) artifact, by sending the version record
artifact component "stage 2 work history" an appropriate message. The reason a
message send to the version record component is used, rather than propagating the event
to it, is that version records don't respond to events - they provide methods to manage
stored events. Thus filters and actions utilize a combination of event detection, response
and propagation and message sending (i.e. method calling) as appropriate. The top
dialogue shows the "property sheet" for the filter component, indicating the predefined
filter it is reusing, while the bottom dialogue shows the work history version record's
dialogue, displaying the events which have been recorded by this simple software agent.

Fig. 4 illustrates how the simple enactment event storage agent in Fig. 3 can be
parameterized and reused. Two inputs (Stage and Storage) allow different process stages
and event storage components to be utilized with this packaged software agent.
Additionally, two outputs pass on the stored event (EventOut) or pass an "error" event if
storage failed for some reason (ErrorOut). Other software agents can listen for such
output events generated by this storage agent.

Fig. 4. Reusable, parameterized agent specification in Serendipity-II.
A wide variety of simple filters and actions are provided by Serendipity-II in a
searchable component library. Users can build up their own software agents from these

simple filters and actions, and package these for reuse using appropriate
parameterization, as illustrated in Fig. 4. New filters and actions can also be
implemented in Java using an API, and added to the Serendipity-II library to
dynamically extend the environment's capabilities.

4. Specifying Distributed Software Agents

In general, many software agents used with Serendipity-II need to be distributed i.e. be
run by different users' environments, and some of these agents will need to communicate
with other agents being run by different environments. Thus the specification of agents
must include the ability to specify agents comprising of local and remote filter and
actions. In Serendipity-II we have chosen to not make locality of agent components or
agents themselves transparent to ensure users always know whether or not an agent is
local and thus controlled by them, or if it is remote and controlled by someone else. This
is to ensure that other users cannot specify agents that adversely effect a user's process
models and local agent information, ensuring security and integrity of a user's
environment. This was a major problem with its predecessor, Serendipity [3, 8], which
used a centralized agent architecture and provided inadequate controls over other users
deployment of agents.

We have extended the agent specification facilities of Serendipity-II to support the
description of inter-agent communication, data sharing and coordination. Various issues
arise when extending the specification of software agents in Serendipity-II to allow
distribution of agents:
• Distributed agents or agent components need to be described i.e. which agents run

as part of the local user's environment, which run on other machines, which
machines do they run on, etc.

• Shared access to distributed data needs to be synchronized i.e. concurrent updates
serialized or locking used on shared data components.

• Events need to be propagated to distributed filters and actions, messages sent to
distributed filters and actions, and replies to messages received from distributed
filters and actions. Some event and message propagation could be non-blocking,
while others require the agent to which the request is sent to complete its
response/processing before the sending agent continues execution.

• Distributed agents need some form of unique identification, so that other agents can
identify and communicate with them.

• Distributed agents may become unavailable for periods of time, and agents should
take this into account to ensure robust behavior when other agents fail

We utilize a variety of approaches to satisfy these requirements when providing
distributed software agents in Serendipity-II:
• Local agents and remote agents can be specified in multiple views, with some views

specifying local agents and other views remote agents
• Actions are provided that support remote event and message sending and receiving

facilities
• Annotations can be used to indicate "remote" filters and actions by indicating the

user or autonomous agent environment they are run by
• Actions are provided to ensure exclusive access to remote agents for periods of

time, to serialize message and event propagation to shared, distributed agents, and
to store events when remote agents are unavailable for retransmission at a later time

Fig. 5 shows an example of simple, distributed agent specification in Serendipity-II. In
this example, a user "John" specifies two software agents using multiple views. One
agent runs remotely as part of user "Bill"'s environment (the right hand specification),
and detects events of interest to John. It then forwards these events to an agent in John's
environment via a remote event sending action ("send to john's receiver"). The second
agent runs locally on John's machine and receives changes from the remote agent,
storing them for later perusal by John. If the event is a change to the artifact
"Shape.java", then John is immediately informed by a broadcast message, by the action
Notify by Message. The two attribute dialogues show attributes of the sender and
receiver actions, publicizing the receiver component and telling the sender component
which machine/receiver to send changes to.

Fig. 5. Specifying distributed agents with multiple views and remote interfaces.

In this example, John defines the agent specification he requires, specifying both local
(left hand view) and remote (right hand view) parts. He specifies properties of the
remote agent interface action, including remoteUser and remoteName. When this remote
agent interface action is run on Bill's machine, it forwards events it receives from the
two filters to the specified host and local interface. In this example, these are John's
environment and the local receiving interface action "billChangeReceiver1" - shown in
the left hand view by action icon "receive bill's code changes". When this local event
receiving action is sent events, it forwards these to the action and filter connected to it.

John cannot have the remote part of this agent automatically run by Bill's
environment, but instead must ask Bill to run the event detection and forwarding agent
in Bill's environment. This ensures users cannot run inappropriate agents affecting other
users without their knowledge. The remote event sending action used in this example
can be configured to store changes locally if the receiving agent is not running , i.e. if
John is off-line temporarily. Such event sending agents can also be run by several other
users, to allow John to be informed of events generated within several other
environments. Events sent by remote sending agents are received by receiver
environment receiver components, and are processed in serial by appropriate change
receiver agents. These receiving agents can perform further processing of the received
event e.g. order the stored events by sender, timestamp, etc. Serendipity-II provides a
variety of other reusable filters and actions for distributed agent specification. These
include priority queuing of messages and events sent to remote agents, locking of remote
artifacts for read-only and/or exclusive access, time delayed agent execution, and so on.

We have chosen not to distinguish a local agent component from a remote interface
in our notation, instead using the notion of reusable sender/receiver actions that handle
remote data, message and event communication. This approach has proven to be a
natural way of extending local agents to support distributed processing, and allows for a
wide variety of actions supporting remote interfaces to be used.

Interfaces to remote agents can be encapsulated into other, reusable actions. For
example, Fig. 6 shows the definition and use of an agent for communicating with a
remote shared file repository. In this example, the agent definition is in the left-hand
window, and specifies that when a stage enactment event is received by the agent, it will
retrieve all files associated with the stage from the remote file server agent, locking these
files for read-only by other users. The LockSharedFile and GetSharedFile actions
provide a remote interface (in this example via a socket connection) with a file
repository server. These could be replaced by actions which interface to a different
shared file system/server, by actions which provide compatible interfaces for the
GetSharedFiles action to use (i.e. another action that provides lockFile() and getFile()
message interfaces).

This shared file check-out agent is reused in another agent specification in the right-
hand view, to facilitate automatic check-out and check-in of design artifacts for a
software process model. Note the use of an action to notify the environment user of

failure (e.g. remote file server agent down, error during data transfer, remote files locked
by another user etc.).

Fig. 6. Examples of remote system integration and task automation.

Fig. 7. Specifying distributed software agents with user discrimination annotations.

While the approach of using "remote" filters and actions in multiple view agent
specifications works well, we have found that sometimes users wish to specify
distributed agents with local and remote agent parts in the same view. Fig. 7 shows an
example of this for the storage of enactment events generated by other users. In this
example, user John has defined an agent that has components that run remotely. The
names of these remote filters and actions are suffixed by a "user discrimination"
annotation, which is used to determine which environment part of an agent should run
on. Serendipity-II takes such a specification and generates local and remote agent
specifications, and uses remote message and event propagation actions to facilitate their
communication.

5. Using Distributed Software Agents

In order to use distributed software agents that have been specified as in the previous
section, users must be provided with facilities to:
• create instances of agent specifications to be "run" in appropriate environments
• configure running agents e.g. connect to them other agent instances, disconnect

them from other agent instances and set any parameter values they may have
• monitor and inspect running agent states and interconnections
• monitor running agent tasks and inter-agent coordination mechanisms

Local agent specifications are "run" as the user constructs the specification i.e. instances
of appropriate filter and action components are created as the user builds the
specification. When an agent receives events, it processes these according to its
specification. Even partially constructed agents are executing, allowing users to
incrementally build, test and refine their agent specifications. Agent specifications may
be abstracted into templates for reuse. Such a template specification can not itself be
run, but a copy of the template made, resulting in a running instance of the template
agent. Serendipity-II provides facilities allowing users to modify agents copied from
templates and to merge such changes back into the template. Similarly, if a template is
modified, users can request such changes be applied to agents copied from the template
definition.

Agents that are to be run remotely are defined as templates in a user's local
environment, then sent to remote environment(s) for instantiation. Fig. 8 shows such an
example of creating and configuring a distributed agent in Serendipity-II. In this
example, John has created a template agent specification (the detect and send enactment
event agent), and has set some parameters for this agent (these are attributes belonging
to filters and actions that make up the agent specification which require values).

John has then asked Serendipity-II to send the configured agent template
specification to user Bill's environment, by adding Bill as a collaborating user of this
view. Bill has this agent specification imported into his environment as a template. This
agent will not begin executing until Bill creates an instance of the template (i.e.
authorizes the agent to run), which is illustrated in Bill's view in Fig. 8. If the agent is to

be run by an autonomous agent environment, the agent will be created and run if the user
sending the template agent specification has authorization to have agents run by the
receiving environment. When a user changes a remote agent's specification, changes to
the template specification are sent to the remote user's environment for authorization
before the remote agent is modified.

John's View Bill's View

Fig. 8. An example of creating and configuring distributed software agents.

Users may need to inspect and monitor running agent states, particularly when they are
developing agents and wish to check agents are performing as expected. Users may also
need to add new connections to running agents to add extra functionality to an
environment. We allow users to inspect and reconfigure remote agent states by
representing remote agents with environment discrimination annotations. Serendipity-II
requests state information from these remote agents to present to users, and updates this
information semi-synchronously as the remote agent state. Users can also specify new
links from remote agents to local agents or to other remote agents, to reconfigure agent
behavior or to monitor remote agent states (by displaying agent events/activity in version
record dialogues, detecting "interesting" sequences of remote agent events and
informing the user of these, etc.).

Fig. 9 shows an example of remote agent monitoring and reconfiguration. John is
running an order entry/inventory management process model. An agent "Enact Reorder
Products" detects when a product needs reordering, based on a lower threshold for the
product in stock, and automatically enacts a reorder sub-process when this is required.

User Bill has defined an agent to monitor the performance and state of this remote agent
of John's. User Bill has also opened the "property sheet" of this remote agent, as shown
in Fig. 9. Serendipity-II requests the current state of the agent, and while this sheet is
open asks the remote agent to send state change events so it can update the displayed
state appropriately.

Bill has added two new links between John's remote agent and local software agents
which are being used to monitor and display events entering the remote agent and
"error" events generated by the remote agent. The addition of such links, and
consequently remote change sender actions to forward events to Bill's environment, must
be approved by the owner of the remote environment before the monitoring can begin.
The "lb" annotation on the event flow into Store Events In action in this example
denotes that events flowing INTO the remote agent are being forwarded, compared to
events flowing out being sent to the filter.

Fig. 9. Monitoring distributed software agent execution and state.

Distributed software agents in Serendipity-II often need to coordinate their work with
other agents and users, need to keep track of tasks assigned to them and their progress
on these tasks, and need to record information about the work they have done. All of
these are achieved by defining shared Serendipity-II process models for agents, and
allowing agents to distribute and enact these process models to plan, coordinate and
record their work. Users may examine these enacted agent process models, if the agents
make these accessible, to monitor the higher-level aspects of distributed agent behavior.
Fig. 10 shows an example of distributed software agents for automating a simple
inventory system management process model. The view on the left is the enacted
process model used by these agents, which specifies the tasks the agents must perform,
other agents and tasks they must coordinate with, and allows the agents to record the
work they have done against these process steps. The views on the right are two

distributed agent templates, which run on autonomous agent environments. In this
example, user John has requested the enacted workflow view and stage enactments, to
examine what the agents have done to date. The enactment history dialogue shows the
stage enactments and deenactments caused by the agents, recording their work to date.

Fig. 10. Planning, coordinating, recording and monitoring agent work with process model views.

6. Implementation and Experience

Serendipity-II is implemented using JViews, a Java-based framework for building
multiple-view, multiple-user distributed environments. A meta-CASE tool we have
developed, JComposer, was used to design Serendipity-II visual languages and editors,
and to generate the JViews classes to implement the Serendipity-II environment. JViews

utilizes Java Beans components, resulting in highly interoperable implementations,
allowing environments like Serendipity-II to be integrated with a range of third party
software systems. We utilized JViews abstractions to develop the decentralized
architecture of Serendipity-II, and to develop a wide range of low-level filters and
actions for distributed software agent specification. Performance of Serendipity-II with
several users and a range of local and distributed software agents has proved more than
adequate during its deployment to date. In part this is due to the multiple point-to-point
agent communication mechanisms employed, and the use of autonomous agent
environments to run various software agents.

The low-level filters and actions used to facilitate distributed software agent
construction, such as remote change propagation and messaging, sequencing of event
and message handling, locking of shared agents, and prioritization, were implemented in
Java, using the JViews object serialization and communication framework abstractions.
We built a range of reusable software agents on top of these using Serendipity-II itself,
including agents for interfacing to other systems, remote event recording agents, and
remote messaging and event propagation agents with various fault-tolerant behavior. We
extended Serendipity-II itself so that filters and actions can be assigned to remote
environments. Event and message links between these and other filters and actions
running on local or other remote machines are translated by the environment into remote
send/receive actions.

We have used Serendipity-II distributed software agents on a range of applications,
including office automation and software development projects. To date we have found
users of Serendipity-II generally find our visual agent specification and monitoring
facilities easy to use for simple or moderately complex software agents. However,
complex software agents require good command of these languages, and sometimes the
underlying implementation of remote filters and actions, in order to achieve efficient and
fully functional agents. We are currently generalizing the Serendipity-II remote filter and
action components for use in JComposer itself. This will allow any JViews-based
environment to define and utilize distributed software agents. Currently JComposer
allows users to specify local agents using filters and actions similar to those of
Serendipity-II, but does not include much support for distributed agent communication
and coordination.

7. Discussion

A variety of approaches have been developed for visually specifying and monitoring
distributed and parallel processing systems. Some examples include VISPER [9],
HeNCE [10], ViTABaL [11], PEDS [12], Meander [13], Object Coordination Nets
(OCNs) [14], and HyperReal [15]. Most of these systems are oriented towards general
parallel and distributed systems programming, analysis and/or visualization. Examples
of such systems include Meander, HyperReal, PEDS, and Hence. These languages thus
provide a rich set of notational symbols and constructs for specifying parallel and
distributed aspects of programs, inter-machine communication and inter-process

coordination mechanisms, locking and temporal sequencing. In our problem domain of
providing tools for end-users to specify and monitor distributed software agents, many
of these issues are handled transparently by our agent architecture. Some visual
approaches for visual distributed systems specification, such as HyperReal, VISPER,
ViTABaL and OCNs, could be utilized to specify distributed software agents in similar
ways to Serendipity-II's visual agent programming language. These systems, however,
also tend to incorporate a wide range of notational symbols and constructs to handle the
complexities of general-purpose distributed systems specification. ViTABaL and OCNs
match Serendipity-II's language characteristics the most closely, but deal with high-level
distributed processing specification and interconnection, and rely on textual languages
for more detailed process behavior specification. In contrast, Serendipity-II distributed
agents can comprise visually specified local and distributed components, as appropriate,
which utilize substantially similar notational conventions.

Various approaches have been developed for specifying autonomous software
agents, including distributed agents. Examples include Zeus [16], AgentSheets [17],
Agent Building Environment [18], JAFMAS [19], and Aglets [20]. Many of these
approaches utilize purely textual languages or frameworks programmed in textual
programming languages, and thus distributed agent development in such systems is time-
consuming and mainly done by programmers. Some systems, such as AgentSheets, Zeus
and Aglet Workbench’s Tahiti, utilize visual languages to specify agent behavior and
structure. Most such systems are rather limited in the range of agents that they can
produce, with only agents with simplistic data, processing and interface characteristics
being supported. Many agent-based systems provide mobile agents which can be highly
distributed, but often do not allow developers to directly control agent inter-
communication and coordination mechanisms. This results in inefficient or inappropriate
agents, and sometimes means agent robustness is limited. While some systems, such as
Zeus and Aglet Workbench’s Fiji, provide a variety of agent monitoring and
visualization capabilities, these are often limited to single agent states or histories, rather
than visualizations of multiple agents states and histories of work and coordination.

Many workflow management systems and process-centered environments
incorporate facilities for specifying aspects of software agents, many of which may
function in a distributed fashion. Examples include SPADE [21], Oz [22],
ProcessWEAVER [23], ADELE-TEMPO [24], Serendipity [3], and APEL [25]. Some
systems, like ADELE and Oz, only provide textual, rule- or event-based languages for
specifying software agent behavior. While these tend to be powerful and expressive,
they give little high-level overview of agent interaction and structure, and are very
difficult for end-users to understand and modify. Graphical approaches include petri net-
based languages, like those of SPADE and ProcessWEAVER, which provide simple
graphical overviews of structure but rely on (often complex) textual definition of
transitions. More visual, event-based and dataflow-based approaches, like those of
Serendipity and APEL, provide more accessible and expressive visual languages for
end-users. However, most workflow and process-centered systems utilize centralized

databases and servers where agents are run, with very limited or no support for
decentralized agents. Some workflow systems, such as METUFLow [26] and Exotica
[27], provide decentralized architectures for workflow and agent execution.
Unfortunately these systems do not use visual languages to support system definition and
visualization, and are difficult to specify, configure and monitor with textual
implementation languages.

The approach we have used in Serendipity-II to facilitate the specification and use of
distributed software agents is to extend a visual, event-based language to incorporate a
range of packaged components for use in distributed agents. Some limited extensions to
the language have included annotations to indicate agent locality, but most components
of the language are used for both local and distributed agent composition and
visualization. This has great advantages in terms of keeping the visual notation simple
and consistent, enables end users to understand and deploy distributed agents
themselves, and many distributed, cooperating agents useful in our problem domain are
easy and quick to build and deploy. The use of a highly decentralized architecture on
which these visual agent specifications are run results in secure, robust agent
implementations. We have successfully developed and deployed a range of agents using
our techniques, and have had several diverse agents developed by non-programmer uses
of Serendipity-II.

Due to our approach of packaging most facilities for building distributed agents into
reusable filters and actions, users must determine and deploy appropriate agent
communication and coordination mechanisms using appropriate filters and actions. In
addition, while some distributed agent components we provide anticipate and handle
distributed agent failure, many agents have such behavior built into them. This is not
always straightforward in complex workflow systems, and relies on agent designers
understanding and utilizing our architecture appropriately. Systems which handle such
coordination, communication and failure detection transparently alleviate this sometimes
difficult task, although are consequently less flexible. Designers of Serendipity-II agents
can produce very inefficient agents if inappropriate aspects are distributed. For example,
if an agent only acts upon a certain kind of event, having a remote stage or other agent
send every event to the agent for filtering is very inefficient. Putting event filtering on
the remote environment, and having it only forward appropriate events, is much more
efficient but our system relies on agent designers to make such a decision. Analyzing
and monitoring remote agent execution is still difficult in Serendipity-II, with improved
facilities to visualize event and message propagation inside and between remote agents
highly desirable.

We are currently enhancing the visualization capabilities of Serendipity-II to provide
feedback to users on distributed agent behavior over time. To do this we are recording
events sent to agents and propagated by agents, in addition to state information provided
by agents. This information can be viewed in a variety of ways e.g. event traces, cause-
effect graphing, animation of agent specifications to show execution etc. We are also
developing a different kind of view for specifying agent locality and inter-agent

communication, using software architecture diagrams. Agents are assigned to
environments with these diagrams, and communication mechanisms can be inferred from
inter-environment links.

8. Summary

Distributed workflow management systems can make use of software agents to assist
users to coordinate their tasks, automate repetitive tasks and integrate workflow systems
with, possibly distributed, third party software tools. We have described a primarily
visual language for specifying both local and distributed software agents for a workflow
system which utilizes a decentralized architecture. Agent specifications incorporate
event filters and actions which may facilitate communication and coordination between
distributed agents. Agents may additionally have annotations indicating machine
locality, with inter-machine communication mechanisms generated between local and
remote agents. Running distributed agent states may be visualized, and their entry and
exit events intercepted for monitoring purposes. Agents can themselves utilize enacted
workflow models to coordinate and record their work. We have utilized our distributed
agent specification and monitoring techniques in several small-to-medium scale
application domains, and are continuing to enhance our languages and components for
distributed agent construction and visualization. Our experiences with these applications
has demonstrated that visual language approaches to specifying and monitoring
distributed software agents are useful techniques in this problem domain.

Acknowledgements

The helpful comments of the anonymous reviewers on an earlier draft of this paper are
gratefully acknowledged. Funding support was provided for part of this research from
the New Zealand Public Good Science Fund.

References

1. H.S. Nwana, Software Agents: An Overview. The Knowledge Engineering Review 11
(1996) 205-244.

2. D.T. Ndumu and H.S. Nwana, Research and development challenges for agent-based
systems. IEE Proc. on Software Engineering 14 (1997) 2-10.

3. J.C. Grundy and J.G. Hosking, Serendipity: integrated environment support for process
modelling, enactment and work coordination. Automated Software Engineering 5 (1998)
27-60.

4. J.C. Grundy, J.G. Hosking, W.B. Mugridge and Apperley, M.D. A decentralized
architecture for process modelling and enactment, Internet Computing 2 (1998), IEEE CS
Press, 53-62.

5. J.C. Grundy, W.B. Mugridge and J.G. Hosking, "Utilising knowledge of past events in
Process-Centred Software Engineering Environments", in Proc. of 1997 Australian
Software Engineering Conference, Sydney, Australia, (Sept./Oct. 1997), IEEE CS Press,
pp. 127-136.

6. J.C. Grundy, J.G. Hosking and W.B. Mugridge, "Low-level and high-level CSCW in the
Serendipity process modelling environment", in Proc. of 6th Australian Conf. on Computer-
Human Interaction, Hamilton, New Zealand (Nov. 1996), IEEE CS Press, pp. 69-77.

7. M.I. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, L.J. Osterweil, M.H. Penedo and
H.D. Rombach, "Software Process Modeling Example Problem", in Proc. of the 6th
International Software Process Workshop, Hokkaido, Japan (Oct. 1990), IEEE CS Press.

8. J.C. Grundy, J.G. Hosking and W.B. Mugridge, "Coordinating distributed software
development projects with integrated process modelling and enactment environments", in
Proc. of 7th IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises,Stanford, CA (June 1998), IEEE CS Press, (in press).

9. N. Stankovic and K. Zhang, "Towards visual development of message-passing programs",
in Proc. of the 1997 IEEE Symp. on Visual Languages, Capri, Italy (Sept. 1997), IEEE CS
Press, pp. 144-151.

10. A.L. Beguelin, "HeNCE: Graphical Development Tools for Network-based Concurrent
Computing", in Proc. of the 1992 Scalable High Performance Computing Conf.,
Williamsburg, VA (April 1992), pp. 129-136.

11. J.C. Grundy and J.G. Hosking, "ViTABaL: A Visual Language Supporting Design By Tool
Abstraction", in Proc. of the 1995 IEEE Symp. on Visual Languages, Darmsdart, Germany
(Sept. 1995), IEEE CS Press, pp. 53-60.

12. D.Q. Zhang and K.A. Zhang, "Visual Programming Environment for Distributed Systems",
in Proc. of the 1995 IEEE Sym. on Visual Languages, Darmsdadt, Germany (Sept. 1995),
IEEE CS Press, pp. 310-317.

13. G. Wirtz, "A Visual Approach for Developing, Understanding and Analyzing Parallel
Programs", in Proc. of the 1993 IEEE Symp. on Visual Languages, Bergen, Norway (Sept.
1993), IEEE CS Press, pp. 261-266.

14. G. Wirtz, J. Graf and H. Giese, "Ruling the behaviour of distributed software systems", in
Proc. of the Int. Conf. on Parallel and Distributed Processing Techniques and
Applications, Las Vagas, Nevada (July 1997).

15. F. DePaoli and F. Tisato, "Architectural Abstractions for Real-Time Software", In Proc. of
the 2nd Asia-Pacific Conf. on Software Engineering, Brisbane, Australia (Dec. 1995), IEEE
CS Press, pp. 199-208.

16. H.S. Nwana, D.T. Ndumu, and L.C. Lee, "ZEUS: An Advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems", in Proc. of 3rd Practical Application of Intelligent
Agents and Multi-Agents, London, UK (April 1998).

17. A. Repenning, "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite
Rules", in Proc. of IEEE Symp. on Visual Languages, , Darmstadt, Germany (Sept. 1995),
IEEE CS Press, pp. 226-233.

18. D. Gilbert, “Intelligent Agents: The Right Information at the Right Time”, May 1998,
http://www.networking.ibm.com/iag/iaghome.html.

19. D. Chauhan, “A Java-based Agent Framework for MultiAgent Systems Development and
Implementation”, May 1998, http://www.ececs.uc.edu/~abaker/JAFMAS/JAFMAS.html.

20. D.B. Lange and D.T. Chang, “IBM Aglets Workbench: Programming mobile agents in
Java,” September 1996, http://www.trl.ibm.co.jp/aglets/whitepaper.htm.

21. S. Bandinelli, E. DiNitto and A. Fuggetta, Supporting cooperation in the SPADE-1
environment. IEEE Trans. on Software Engineering 22 (1996), 841-865.

22. I.Z. Ben-Shaul, G.T. Heineman, S.S. Popovich, P.D. Skopp, A.Z. Tong and G. Valetto,
"Integrating Groupware and Process Technologies in the Oz Environment", in 9th Int.
Software Process Workshop, Airlie, VA (Oct. 1994), IEEE CS Press, pp. 114-116.

23. C. Fernström, "ProcessWEAVER: Adding process support to UNIX", in 2nd Int. Conf. on
the Software Process, Berlin, Germany (Feb 1993), IEEE CS Press, pp. 12-26.

24. N. Belkhatir, J. Estublier and W.L. Melo, The Adele/Tempo Experience, Software Process
Modelling & Technology, eds. A. Finkelstein, J. Kramer, J. and B. Nusibeh (Research
Studies Press, 1994) 187-222.

25. S. Dami, J. Estublier and M. Amiour, APEL: A Graphical Yet Executable Formalism for
Process Modelling, Automated Software Engineering 5 (1998), 61-96.

26. E. Gokkoca, M. Altinel, I. Cingil, E.N. Tatbul, P. Koksal and A. Dogac, "Design and
implementation of a Disrtributed Workflow Enactment Service", in Proc. of 2nd IFCIS
Conf. on Cooperative Information Systems, Charleston, SC (June 1997), IEEE CS Press.

27. G. Alonso, C. Mohan, R. Gunthor, D. Agrawal, A. ElAbbadi and M. Kamath,
"Exotica/FMQM: A Persistent Message-based Architecture for Distributed Workflow
Management", in Proc. of the IFIP WG8.1 Working Conference on Information Systems
Development for Decentralized Organisations, Trondheim, Norway (Aug. 1995), Chapman
& Hall.

