

An architecture for efficient, flexible enterprise system integration

John Grundy1, 2, Jun Bai1, John Blackham3, John Hosking1 and Robert Amor1

1Department of Computer Science

2Department of Electrical and Electronic Engineering
University of Auckland

Private Bag 92019, Auckland, New Zealand
{john-g, john, trebor}@cs.auckland.ac.nz

3XSol Ltd, Level 2, 149 Parnell Road

Parnell, Auckland, New Zealand

ajb@xsol.com

Abstract

Integrating complex enterprise systems is challenging and
reliability and performance of the integrated systems can
be problematic when using typical solutions of distributed
transactions or on-demand message-based querying. We
describe a data-oriented approach for enterprise system
integration that uses information brokering. A broker
application isolates the interactions between a local
enterprise application server and a wide variety of remote
systems, performing data acquisition, storage,
transformation, update and status management. We
describe a prototype book brokering system developed
using Java 2 Enterprise Edition, CORBA, Java Messaging
Service and Web Services and using our integration
strategy. We outline the architecture, design and
implementation of this prototype and summarise our
experiences with this information integration technique.

1. Introduction

Enterprise systems integration has become important

in many domains, both intra-organisational, focusing on
supporting Enterprise Applications Integration [15, 21],
and inter-organisational, focusing on supporting Business-
to-Business E-commerce [1, 18]. Systems need to be
integrated in order for users to have easier access to data
and information processing facilities, for data to be more
easily kept consistent, for multiple organizations to more
efficiently interoperate, and for new and legacy
applications to co-exist and complement one another [18,
22]. However integrating enterprise systems is
challenging, due to varying degrees of support for
integration, a huge range of integration technologies, the
complexity of translating between different system data
structures and business processes, and ensuring integrated
system reliability and performance is acceptable.

There have been many approaches developed to
integrating enterprise systems. These range from file and
document exchange [5], database integration and
federation [3, 6, 14, 20], message and document

translation [19, 15, 9, 10, 17], distributed object
interaction [22, 2, 6], to workflow and business process
management [8, 21]. Most data-oriented approaches limit
the range of technologies that can be integrated and only
work on low-level database interaction. Message-oriented
approaches typically don’t manage persistent data and
require considerable effort to maintain as business
processes change. Distributed object transactions typically
require considerable over-head to map different object
representations and often have a poor impact on system
performance and reliability.

Our approach uses the concept of an information
broker that mediates interaction between multiple
enterprise systems, replicating data that needs to be shared
from one system to another to provide very efficient
access to it. The broker isolates the different system
technologies required for data access and update and
seamlessly translates data to and from a local enterprise
system’s data formats. The broker is notified of updates to
replicated data and performs data translations into
appropriate target remote system formats, applying
appropriate remote system data update operations. Data
inconsistencies, concurrent access and update and update
failure are all handled by the information broker initiating
appropriate compensation business process to correct. We
describe a prototype system built using this approach to
efficiently and effectively integrate a J2EE business-to-
customer web enterprise application with several remote
applications with very different integration technologies.

2. Motivation

Consider the enterprise system integration scenario in

Figure 1. In this example, a J2EE-implemented “book
broker” with JSP-implemented web interfaces and EJB-
implemented business logic provides a one-stop portal for
accessing the products of a group of book publishers [3,
4]. The broker obtains books from the publishers and
formulates a catalogue. The customer purchasing system
is populated with the catalogue and allows customers to
buy books from any publisher with a single order.

Book
Broker

Customer
Purchasing

Publishers
(suppliers)

Authoriser
Accounting Transport

ERP
System

Figure 1. Book broker scenario.

The broker receives orders, validates them (including
authorising payment from a bank) and sends (possibly
multiple) orders to publishers. The publishers notify the
broker of delivery details and the broker provides the
customer system with tracking information from courier
company delivery systems. The broker may also support
information exchange between the customer system and
ERP/accounting systems that the organization runs .

Key requirements of such a book purchasing broker
for integrating these diverse enterprise systems include:
• Minimal (ideally no) modification should be

necessary to the various enterprise systems
• The performance of the customer purchasing portal

must be very good, without delays caused by
accessing remote applications and databases across
wide area networks

• Integration should be done in a consistent manner
with no bespoke solutions for different technologies

• Systems should not have direct knowledge of each
other and integration support be isolated

• Data and business process integration both need to be
supported in the integration framework

• The integration approach should be scalable, reliable
and provide secure control over business data.

Existing solutions that could be used in this scenario

include the book broker querying and updating publisher
data via remote database queries [6], the broker using on-
demand web service queries [15, 18], EDI and XML
messages [5, 19] or remote object accesses within
distributed transactions [1, 2, 8, 22]. All of these
approaches introduce major performance overheads if the
interaction with the remote systems is done by the
customer purchasing portal while the customer waits.
Similarly, if a publisher system is temporarily unavailable
then the customer can not access its data. All of these
technologies may be provided by different publishers,
requiring different bespoke integration solutions to be
implemented by the customer purchasing system for each

publisher. A virtual or heterogeneous database system
[11, 13, 14, 20] could be used as a portal to the remote
data, mapping data formats and database operations.
However, again performance would suffer greatly if
queries and updates are passed to the remote systems
directly, and different integration technologies like
messaging and distributed object APIs may not be
supported. Various EAI and B2B solutions have been
developed to overcome some of these problems, such as
asynchronous messaging and XML document exchange
[7, 9, 10], the J2EE Connector Architecture, and Business
Process and Data Integration [8, 17, 21]. All are useful in
some situations but many have the same performance
impact e.g. the need to query several systems and
assemble a result before customers can use it.

3. Our Approach

We have been developing an integration conceptual

model which solves many such system integration
problems by the use of three key techniques: the
replication (copying) of data to be shared between
systems; the optimistic access and update of this
replicated data by other distributed systems; and the
resolution of data or business process inconsistencies that
may be introduced using a long running transaction
protocol. Our approach for the book broker system is
illustrated in Figure 2.

Customer
System (J2EE)

Broker (J2EE)

Publisher #1
(RDBMS)

Publisher #2
(CORBA)

Publisher #4
(JMS)

Publisher #3
(SOAP)

← Copy books
→Update books
→ Update orders (new or changed)
←Update shipping information
→Update payment information

← Copy catalogue
←, →Update books
→ Update orders (new or changed)
←Update shipping information
→Update payment information

Figure 2. System integration via replicated datasets.

A broker is used to integrate publishers of books and a
customer book purchasing system. The broker copies
books (and authors, sales figures, delivery cost
information etc) from publishers to the customer system,
translating data formats as appropriate. The broker also
copies orders for books generated by customers to
publishers (not shown here), and book delivery tracking
information from publishers to the customer system (not
shown). The customer system accesses and updates such
replicated data as if it is its own i.e. it “looks and feels”
like customer enterprise system data. Updates may be
made to some replicated data e.g. creating or updating
orders, updating book sales committed, etc. Such updates
are detected and translated by the broker into publisher
system updates. Similarly, as data is changed in the

publisher systems the changes are detected and applied to
data replicated in the customer systems e.g. number
available, cost etc. Sometimes updates to replicated data
are rejected by remote systems and we use a form of the
Business Transaction Protocol (BTP) [16] to resolve this
by having the broker detect this and ask the customer
system to run “compensation” business transactions to
correct any data inconsistencies.

4. A Supporting Architecture

The architecture of our approach for the book broker

J2EE example application is outlined in Figure 3. A
broker server acts as an intermediary between publisher
and customer order management systems. The broker
provides a temporary information repository and a set of
interfaces to other systems. These interfaces perform data
queries and updates on these external systems via a
variety of communication technologies, ranging from
RDBMS APIs and XML document mark-up to CORBA,
RMI and message-oriented middleware. Some interfaces
are generic and can be tailored to interact with different
systems e.g. the RDBMS and XML document interfaces
whereas others are specific to a particular system e.g.
CORBA and RMI interfaces. All interface components
map the external system data representation into an XML-
encoded broker data format and vice versa.

Data is replicated from external systems e.g. a
publisher and stored by the broker. Systems requiring
access to data, such as the customer system, has the data
translated into its own information model by the broker
and its database updated via its interface component to the
broker. Updates to this data by the customer system are
detected by the broker's customer system interface
component and copied back into the broker. The broker
then translates this updated data into appropriate publisher
system data updates via the appropriate publisher system's
interface component. The broker implements a "long
transaction" model across this replicated dataset, detecting
when concurrent access/update to the dataset is made or

when a system rejects updates to the dataset made by
another system, and resolving these problems by invoking
appropriate “compensation” business processes.

As can be seen in Figure 3 a range of communication
technologies are supported by our integration approach.
The broker uses an XML-based representation of datasets
as documents, with information describing entity key
correspondence, changes made to document elements, and
document status (e.g. committed, pending commit,
rejected). CORBA, RMI and DCOM-based interface
components typically provide synchronous, remote
procedure call APIs. Most require a hand-coded
implementation of the interface that maps the broker
XML dataset encoding to and from the remote system's
business process data via sequences of API calls. SOAP
and XML document exchange support asynchronous
messaging and XML document encoding of remote
system data. Java Messaging Service (JMS) provides a
message-oriented information exchange protocol using
either XML-encoded messages or binary-format
messages. Database APIs provide synchronous table row
query, insert, update and delete. Interactions with external
systems are transactional i.e. the updating of a broker
dataset may result in many remote system API calls which
are carried out as one transaction.

Our approach makes as much use as possible of high-
level business processes and subscribe/notify architectures
in the integrated systems to provide this data-oriented
systems integration. Some systems provide high-level
APIs which allow the broker to enact remote system
business processes, be informed immediately of data
updates in the remote systems and to invoke remote
system business processes to resolve data inconsistencies
that may arise as part of its long transaction model.
However, some systems provide only low-level, data
query and update e.g. RDBMS interface, some XML
document data encodings and some message-based
systems. Some integration technologies support the
remote system "pushing" data change notifications to the
broker e.g. some CORBA, SOAP and messaging systems.

Customer
Browsers

Customer
System JSPs

Customer
System EJBs

J2EE Server

Customer
Interface

Book Broker Server

RDBMS
Interface

CORBA
Interface

SOAP
Interface

Publisher #1
App Server

Publisher #2 App
Server IDLs

Publisher #3 App
Server

Web
Server

XML

XML

SQL
RMI

SQL

SOAP

IIOP

JMS
Interface

Message-
driven EJBs

Publisher #4
App Server

1

2

3
4

5

6

7 8

9

10

10 11

12
13

14 15

16

Figure 3. Architecture of our integrated system.

We briefly describe how integration of these

distributed enterprise systems is achieved in such an
architecture, demonstrating the range of integration
technologies and system interactions supported. A
RDBMS publisher interface component issues a query
to obtain book data (1) which it translates into an XML
document and sends to the broker (2). A SOAP-based
interface is pushed changed book data messages (3) and
it sends the changed book data (possibly after querying
the publisher system for it) to the broker (4). The broker
may temporarily store this data (5) and translates the
remote system book data formats into the customer
system book format, sending it to the customer system
interface (6). The customer system's book data is
updated via its API (7) (in this example via RMI calls to
EJBs in its application server). Changes to book data
e.g. number of items ordered are detected by the
customer system interface (8), data and change
information encoded and sent to the broker (9). The
changed data is sent to the publisher interfaces by the
broker (10) and is translated into SOAP messages sent
to publisher #2 (11) and RDBMS database updates for
publisher #1 (12). If the remote systems reject these
updates e.g. database transaction fails (12) or
notification message (13), or the broker detects
concurrent access to the data (e.g. new changes from
publishers time-stamped earlier than data change set
from customer system) (14), message(s) must be sent to
the customer system (15). The customer system runs
appropriate business process(es) to resolve the
inconsistency (compensation transactions) e.g. undoes
the effects of its "invalid" book updates; updates orders
for the book to satisfy violated publisher system
constraints e.g. back-orders or cancels orders for out-of-
stock order items; or informs the customer and asks

them to e.g. modify their order due to inability to fulfil it
as it stands.

5. Example Implementation

In order to provide a suitable book brokering system

solution we have developed a design for the broker
comprised of a number of components, illustrated in
Figure 4. Remote system interfaces source or sink data
in publisher systems using a wide variety of
technologies (including both push- and pull-based
querying, message subscription and API calling). When
replicating publisher system data these remote interfaces
translate their data sets obtained via database queries,
file reads, message extraction and API calls into a
common XML dataset format. This dataset contains
data, data update operation and remote system keying
information. Datasets are transformed into a canonical
book broker information structure and then book broker
data tables and “key tables” (mappings of system key
information) are updated. Customer system data is
updated when appropriate book broker data has been
changed by this replication process. The book broker
dataset is transformed into the customer system dataset
and then the customer system remote interface applies
data updates to the customer system via its API. When
the customer system changes publisher system data that
has been copied into its database, the broker detects
these changes, translates its dataset into the remote
publisher system data format and has the publisher
system remote interface apply appropriate update
operations to the publisher system (e.g. database
updates, message construction or API calls).

Book Broker

Business Processes

1. App server interface

2. Data Managers
3. Key/status

Tables

5. Broker Database

1..n

read/write notify

query/ins/upd/del

5.Remote IFs (data
replication)

6.Transformation
(replication)

Publisher Systems

Query (SQL,
messages, etc)

Notify
(messages,
call-backs)

Remote datasets
in XML

7.Local Data/ Key
tables Update

Local data in XML

8.Local update
detection

9.Encode local data

read/write

detect
updates

read
11.Remote IFs
(remote update)

10.Transformation
(remote update)

Customer System

Updates

Local data in XML

Remote data in XML

Figure 4. Broker architectural components.

1

2

4

5

6

3

Figure 5. Example of customer system, book broker and publisher system interfaces.

We have built a prototype book broker that integrates
a J2EE-implemented customer ordering system, a J2EE-
implemented book broker, and four publisher systems,
one providing a database API, one SOAP XML
messaging, one CORBA IDLs and one Java Messaging
Server messages. The customer on-line ordering system
was developed as part of a previous project and is a
generic on-line E-tailing system that we configured to
provide book catalogue management, searching, ordering
and tracking of book orders. No code changes were made
to this system to integrate it with the publisher systems
via the book broker server. Our book broker server’s
functions are modelled on those of a bespoke book broker
application developed as part of a previous project [4].
Figure 5 shows an example of screen dumps from the
running prototype.

After replicating book data from the publisher
systems, an example shown in (1), the book broker
formulates a canonical catalogue from all publishers’
book information, copying this into the customer on-line
purchasing system. Subsequent publisher system updates

to catalogue items detected by the broker are made as
updates on the customer catalogue data. The customer
system provides numerous web-based interfaces,
including book search (2) and a shopping cart metaphor
used to assemble orders for books (3). Upon “checking
out” the new order is detected by the book broker server
and its data copied. The book broker splits this into an
order for each publisher whose books have been ordered,
with an example shown from one publisher system (4).
Updates to publisher orders e.g. shipping information are
detected by the broker and copied to the customer system.

Problems may occur due to our integration strategy’s
adoption of asynchronous, optimistic data exchange.
These include: data being used in a system’s transaction is
modified by its “owning” system and updated in the
broker; updates made by a system to remote data can be
rejected by that remote system; and data updates can
“cross” between the publisher and customer systems i.e.
be made concurrently. The book broker server
implements a “long transaction” model, using a form of
the Business Transaction Protocol, to resolve

inconsistencies that may occur due to these problems. The
book broker may take several approaches to resolving
inconsistencies where the book record is in use in a
customer system transaction: inform the user after check-
out (or during ordering) of changed values or
unavailability of the old book information (5) or may
delay the update of the book information and send an
order to the publisher using previous information
(possibly having this rejected as e.g. insufficient payment
provided). Rejected orders e.g. invalid data (old data
used), insufficient payment, customer over credit limit or
book(s) no longer available are detected by the broker and
have a status associated with the order and/or order lines
indicating reasons for failure. This information is
presented to the customer when appropriate (6).
Automatic resolution strategies can be employed by the
broker or customer system in some situations e.g.
invalid/out of stock book order lines deleted; back-orders
automatically created for out-of-stock books, or email
messages sent to the customers.

6. Discussion

The integration architecture provided by our book

broker server allows for a very diverse range of publisher
systems to be integrated with the on-line customer
purchasing system in a seamless manner with none of the
integrated systems aware of the others with which they
are integrated. We began by integrating the customer
purchasing system via its Enterprise JavaBean APIs and a
publisher system via its database API. We subsequently
added the CORBA, SOAP and JMS-implemented
publishers. The addition of further publisher systems did
not impact the operation of the existing integrated systems
or require modification to their integration interfaces.
Building some integration interfaces was quite
straightforward e.g. the relational database and SOAP
interfaces, but others were quite complex e.g. the EJB and
CORBA interfaces, due to the need to handle distributed
transactions across these interfaces and a sometimes long
sequence of remote object calls. Some interfaces were
remotely deployed as “remote integration agents” (e.g.
for some database and JMS systems) on the remote
system host to provide better performance and security.

We have run several performance tests on our book
broker system, analysing the time taken to replicate data
and perform remote updates of data. These operations
normally run asynchronously but the additional loading
on both the broker and integrated systems of interaction
with the integration interface components can become
significant. We found with our prototype that the broker
could acquire thousands of books, even those represented
using complex structures, within a few seconds, even with
moderately loaded publisher systems to query and

customer system to update. Order querying from the
customer system and order update in publisher systems
requires significantly more processing as much business
logic and database updates need to be performed.
However, the number of orders processed is far less than
book information transfer and we found performance
perfectly adequate. For example, Figure 6 shows results
of one of the performance tests we conducted to gauge
broker performance under various loading conditions. In
this example, we are timing the construction of orders in
the customer system and their export to the broker when
the customer system is both unloaded and when more and
more concurrent transactions with less and less time
between transaction requests are made. This shows that
with heavy (over 90% CPU) loading of the customer
system the broker can receive orders in reasonable time.

0

50

100

150

200

250

0 100 250 500 1000

1 thread
2 threads
4 threads
8 threads
unloaded

Time
(milliseconds)

to process
order

Time (ms) between transaction requests to customer system
Figure 6. Performance of broker under loading.

Our approach to resolving inconsistencies that occur
because of the asynchronous data replication/update
approach has worked well in this application domain.
Most of the time inconsistent data usage between systems
does not occur as data changed in one system is updated
via the broker in another system before it is accessed or
further updated. Some inconsistencies turn out not to
matter in practice. For example, when updating the
number of books sold in the customer system, this change
is passed through the broker to the book publisher system
as a relative update (+ or – change) to the publisher’s
book attribute. Even if this value is different to the
number of books sold in the publisher (as publisher direct
sales may have changed it), the relative update almost
always works. In this scenario, even if the change is
rejected by the publisher system, the current value in the
publisher system need only be replicated back into the
customer system (as it is the definitive value) and will be
properly updated by the publisher system. Even where
inconsistency resolution is very difficult, the systems can
inform the user and let them manually start further
business transactions.

Compared to the bespoke book broker prototype our
system was modelled on [4], our approach has numerous
advantages. Both data acquisition and update are

supported using a homogeneous approach and new
systems can be seamlessly added with a much reduced
development effort. Multiple threading and process can be
used to provide additional scalability and performance.
Data inconsistency is handled using business transactions
after detection by the broker. We are currently
implementing a generic integration broker application and
integration agents that can be used for a wide range of
system integration problems. This will include
configuration tools allowing data model and data
operation correspondences to be specified declaratively
and some remote integration agents to be declaratively
configured. We are also experimenting with presenting
users with richer information about broker-moderated
remote data e.g. showing them additional status
information from the broker such as “data committed in
local system but not remote system” or “previous remote
data change rejected”.

7. Summary

We have developed an information brokering system

that allows a wide range of systems to be integrated in a
seamless fashion. Integration interface components isolate
remote system communication technologies and data
models. Interaction can be at data read/write or higher
level messages or API calls corresponding to business
process enactment. A broker server replicates and updates
information between integrated systems. An optimistic
long-transaction model is used to allow high performance,
reliability and scalability of the approach. Existing
enterprise system business processes are used to solve
data inconsistencies that may arise. We have successfully
prototyped a system using this approach to integration.

8. References

1. Alonso G, Fiedler U, Hagen C, Lazcano A, Schuldt H,

Weiler N. WISE: business to business e-commerce.
Proceedings Ninth International Workshop on Research
Issues on Data Engineering: Information Technology for
Virtual Enterprises. RIDE-VE'99. IEEE CS Press, 1999,
pp.132-9. Los Alamitos, CA, USA.

2. Aleksy M, Schader M, Tapper C. Interoperability and
interchangeability of middleware components in a three-tier
CORBA-environment-state of the art. Proceedings Third
International Enterprise Distributed Object Computing.
Conference, IEEE CS Press. 1999, pp.204-13. Piscataway,
NJ, USA.

3. Blackham, J., Grundeman, P., Grundy, J.C., Hosking, J.G.
and Mugridge, W.B., Supporting Pervasive Business via
Virtual Database Aggregation, In Proceedings of
Evolve’2001 – Pervasive Business, Sydney, Australia,
March 15-16 2001, DSTC Press.

4. Bloomfield, D., Amor, R. and Grooman, M. The Evolving
CONNET Gateway to European Construction Resources,

Proceedings of the CIB W102 conference, Melbourne,
Australia, 26-27 March 2001.

5. Cheung, D., Lee, S.D., Lee, T., Song, W., Tan, C.J.
Distributed and scalable XML document processing
architecture for E-commerce systems. In Proceedings of the
Second International Workshop on Advanced Issues of E-
Commerce and Web-Based Information Systems. IEEE,
2000, pp.152-157.

6. Emmerich, W., CORBA and ODBMSs in Viewpoint
Development Environment Architectures, in Proceedings
of the 4th International Conference on Object-Oriented
Information Systems, Springer Verlag, 1997, pp. 347-360.

7. ebXML Group, ebXML documentation,
http://www.ebxml.org/.

8. eXcelon Corp, eXcelon B2B Integration Server White
Paper, www.exceloncorp.com.

9. Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies & Solutions,
Sept. 1999, pp.10-14.

10. Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall,
P. Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 2001 IEEE
Automated Software Engineering Conference, San Diego,
CA, 26-28 Nov 2001, IEEE CS Press.

11. Gupta, A. Harinarayan, V. Rajaraman, A. Virtual database
technology, Proceedings of the 1998 14th International
Conference on Data Engineering, 23-27 Feb 1998, 297 –
301.

12. IBM Corp, MQ Series Integrator, www.ibm.com.
13. Idenhen, K., Introducing OpenLink Virtuoso: Universal

Data Access Without Boundaries, White paper,
www.openlinksw.com.

14. Lim, E.P. and Chiang, R.H.L. The integration of
relationship instances from heterogeneous databases.
Decision Support Systems, vol.29, no.2, Aug. 2000,
pp.153-67. Publisher: Elsevier, Netherlands.

15. Morgenthal, J.P. XML: The New Integration Frontier, EAI
Journal, Feb. 2001, www.eaijournal.com.

16. Oasis Group, OASIS Business Transaction Protocol 1.0,
June 2002, www.oasis-open.org.

17. OrderWare Inc, OrderWare Data Transformation Manager
White Paper, June 2002, www.orderware.com.

18. Peyret, H. Mission-critical Web Services: Plan for Long-
running Transactions, Giga Information Group, 2002.

19. Swatman, P.M.C., Swatman, P.A., Fowler, D.C. A model
of EDI integration and strategic business reengineering.
Journal of Strategic Information Systems, vol.3, no.1,
March, 1994, pp.41-60.

20. Uchoa, E.M.A. and Melo, R.N. HEROS: a framework for
heterogeneous database systems integration. Database and
Expert Systems Applications. 10th International
Conference, DEXA'99, Lecture Notes in Computer
Science Vol.1677, Springer-Verlag. 1999, pp.656-67.
Berlin, Germany.

21. Vitria Technolgy Inc, Vitria BusinessWare White Paper,
www.vitria.com.

22. Wu, E. A CORBA-based architecture for integrating
distributed and heterogeneous databases. Proceedings Fifth
IEEE International Conference on Engineering of Complex
Computer Systems, IEEE CS Press, 1999, pp.143-52. Los
Alamitos, CA, USA.

