
Integrating a Zoomable User Interfaces Concept into a Visual 
Language Meta-tool Environment 

 
Na Liu1, John Hosking1 and John Grundy1, 2 

Department of Computer Science1 and Department of Electrical and Computer 
Engineering2, University of Auckland, Private Bag 92019, Auckland, New Zealand 

{karen, john, john-g}@cs.auckland.ac.nz 
 

 
1. Introduction 

From our experiences developing and evaluating a 
wide range of visual language environments, and those of 
others, we have found that visual languages often have a 
major problem with lack of screen real estate [7, 3, 10]. 
Multiple views are often used to solve the problem by 
allowing large systems to be modelled by breaking them 
into smaller parts [3, 5]. However this approach has 
limitations and thus we have begun to explore a 
complementary approach - “Zoomable User Interfaces”, or 
ZUIs. We have added some prototype ZUI facilities to 
Pounamu, a meta-tool we have been developing for 
building multiple view visual language environments [3]. 
We motivate the need for ZUIs in visual language tools, 
illustrate our ZUI extensions to Pounamu, and discuss our 
experiences to date in building and using these facilities. 

2. Motivation 
Pounamu is a Meta-CASE tool that is used to specify 

and realise a wide range of domain-oriented, visual 
language environments. Pounamu provides tools enabling 
users to specify a meta-model that defines the constructs 
(information structures and associated semantics) of a 
visual programming language, and graphical notations that 
are used to visually represent the syntax of the language in 
multiple views. The specified visual language tool can be 
used for modelling during and after its specification with 
highly dynamic tool specification and target tool updates. 

Pounamu provides multi-view support both for its own 
meta-tool facilities and for the target visual language 
modelling views defined. Consistency is supported 
between views of the same and different types via the 
shared information repository layer. Figure 1 shows a 
Pounamu-defined Unified Modelling Language (UML) 
diagramming tool in use, with two UML views shown.  

Very often visual modelling of systems with such 
design views produces large, complex views that can 
become very hard to understand or navigate [3, 5, 7]. 
Splitting the visual design models into different views is 
important to manage the complexity of the visualisations. 
However, users have to repeatedly context switch when 
moving between multiple views in order to get an overall 
idea of contextually associated modelling elements [6, 1]. 
Also, our users of Pounamu modelling views have found 

that they often want to zoom in on parts of a view or zoom 
out to get a “bigger picture”, as well as have the tool 
handle multiple view consistency.  

 

 

 
Figure 1. Examples of multiple UML design views. 
A number of researchers have begun to experiment 

with zooming capabilities integrated into tools, both visual 
language and form-based. Bederson el at [1] made use of 
scene graphs for implementing two-dimensional graphical 
applications [1]. They also used similar approaches for 
complex map and tree visualisation [4, 7]. Mugridge et al 
[6] applied zoomable user interfaces to the Naked Objects 
framework for form-based interface construction. Other 
applications have included zoomable web browsers [2] and 
form-based user interfaces [8]. In these applications 
Zoomable User Interface facilitates provide a virtually 
unlimited screen space for views. They provide support for 
zooming in and out of views, splitting views into focal 
points and allowing users to construct new focus sub-
groups interactively. Toolkits to realise these zoomable 
user interfaces include Jazz [2], and ZVTM [10]. All of 
these applications are bespoke i.e. ZUIs have been used for 
domain-specific applications.  



We wanted to experiment with the suitability of ZUIs 
in a visual meta-tool environment to enhance large visual 
program diagram management and navigation. We added 
to Pounamu the following ZUIs: a Radar view (whole 
diagram zooming facilities), Zoomable view (part diagram 
and individual element zooming), Split view (Zoomable 
selection element zooming) and Focal view. All of these 
enhanced views support zooming-in and zooming-out of 
the Pounamu modelling elements in zoomable panels, in 
addition with the consistent editing among the modelling 
elements in different views. The ZUIs support different 
levels of design overview with fewer details. They 
supplement to the existing multi-view User Interfaces in 
Pounamu that support modelling a whole system in parts 
allowing easier control over each smaller view. 

3. A Zoomable User Interfaces Example 
Consider a user wanting to model a complex UML 

design with several UML views, with some views getting 
very large and complex. Taking a prototype “Customer-
Order” web system design example, two UML class 
diagram views are modelled using the Pounamu specified 
UML tool and are shown in Figure 1. The two diagrams 
are displayed in two separate Pounamu views with the 
modelling element instance “Order” referencing the same 
entity in both views. If the views have more elements 
added, they become harder to display and navigate. 

Our prototype Radar views and Zoomable views 
support overviews of a conventional Pounamu view with 
different scaling factors.  The Split and Focal views form 
so-called “bi-focal” display views that display a user’s 
dynamic selections of scenes from the Radar and 
Zoomable views respectively. This combination of 
zoomable views allows the user to select any set of 
elements in the Radar view and the Zoomable view, and 
the corresponding selected elements are displayed in the 
Split view and Focal view respectively. When shapes are 
selected in the Radar view or Zoomable view, the ZUI 
system checks whether there exists proper relationships 
between the selected shapes. If relationships exist, they are 
consistently added into the Split or Focal view together 
with the selected shapes. 

The ZUI views support: 
• Zooming-in and zooming-out of displayed objects 
• Selection of a single or a particular group of objects 
• Relocating single objects into ZUI views 
• Panning objects into any position within the zoomable 

canvas that they belong to 
• Scaling of an object into a bigger or smaller size 
• Consistent editing of objects between ZUI views and 

the existing multi-views 
The two separate class diagrams from different views 

from Figure 1 have been combined into an overall view 
and displayed as zoomable views in Figure 2 (1). The 
Radar views and Zoomable views have been populated 

automatically in these prototype ZUIs from the shared 
meta-model instances. The positions of the objects in the 
Radar view have been rearranged by the user in the 
zoomable panel shown in Figure 2 (2) for a better layout of 
the overview (no overlapping, no distortion of shapes). The 
Zoomable view is synchronized with the objects’ location 
changes, its shapes repositioned if moved in the Radar 
view and vice-versa. Apart from zooming-in and zooming-
out, Radar views and Zoomable views also support 
dynamic selections of part of the display. In Figure 2 (2) 
the user has selected three elements in the Radar view, and 
the selected elements are displayed in the Split view. The 
elements in the Split view can be zoomed-in and zoomed-
out, panned and scaled. 

 

(1) 

(2) 

 
Figure 2. (1) Radar and Zoomable views and (2) 

Split view from Radar selections. 

 
Figure 3. Scaling of selected view shapes. 



Views support zooming of the whole view content, as 
shown by the smaller diagram in the Radar view, which 
can be zoomed in or out using the mouse. Views also 
support scaling of selected items. For example, in Figure 3  
(a) the user has selected a UML diagram element “Order” 
and scaled this up in the Split view to provide them a 
clearer and bigger view. Figure 3 (b) shows the Payment 
object zoomed-in in the Split view. This allows the user to 
focus in on selected view content but maintains the context 
of the zoomed information. 

Consistency between ZUI views and conventional non-
zoomable Pounamu views is supported. Editing 
consistency between a selected object is managed among 
all the ZUI views and multi-views. When any view object 
is modified in a view or standard Pounamu property sheet, 
the changes are synchronized among all the other views, 
property sheets and its tree node representation. 

Although the examples we have used illustrate a UML 
diagramming tool, we stress that our ZUI views can be 
used by any tool generated by our Pounamu meta tool. 

4. Discussion 
The ZUIs we have added to Pounamu supplement its 

existing multi-view interface. They do not affect any 
existing features and behave like add-ins with an enhanced 
display capability. The users can switch between the ZUIs 
and the existing multi-views in an uninhibited manner, and 
may choose not to use the ZUIs at all as they have been 
designed as a plug-in.. 

Pounamu is implemented using conventional Swing 
GUI components for views, property sheets and view 
components. We used the Jazz [3] framework to add our 
new ZUI capability to Pounamu views. Jazz uses the 
Java2D rendering engine. It supports the rendering of 
lightweight Swing components in a scene graph and 
provides panning, zooming, selecting, scaling and rotating 
functions on Swing widgets through virtual cameras. The 
Pounamau ZUI views have been implemented via 
specialised Pounamu modeller view classes at back-end 
and a set of change event listeners at front-end to manage 
consistency and integration. These ZUI components and 
event handlers are plugged into the Pounamu 
“ModellerPanel” component and initialised. 

Apart from various UML diagram types and models, 
we have experimented with ZUIs applied to several 
complex Web services composition models. Since web 
services models can become very large and complex, they 
provided a good test case for the ZUIs implementation. 
Users found it relatively easy to navigate around and use 
the zoomable views in Pounamu. Our experiences to date 
indicate that having ZUIs in Pounamu for high-level 
design overviews and complex view navigation is a very 
promising extension to the target visual language tools. 

Our current prototype has problems with nested Swing 
component zooming due to limitations of the Jazz 

framework we used. Repainting of ZUIs can be a problem 
and some errors are caused when mouse actions are passed 
to the inner-most Swing widgets. Jazz applications are also 
very memory intensive, which we found placed an 
unreasonable limit on the number of elements that could be 
added to our zoomable views. We are planning more 
formal user evaluations on a ZUI-enabled Pounamu 
application to further validate our ZUI concepts. 

5. Summary 
We have introduced Zoomable User Interfaces into 

Pounamu, a visual language meta-tool, providing enhanced 
view navigation and management features. The Zoomable 
User Interfaces provide the user with support for flexible 
and dynamic design overviews and view element focus, 
and help address problems of lack of screen space and 
display capability in complex views.  

6. References 
1. Bederson, B., Meyer, J. and L. Good. Jazz: An Extensible 

Zoomable User Interface Graphics Toolkit in Java, in 
Proceedings of 2000 ACM Conference on User Interface and 
Software Technology, ACM Press, 171-180. 

2. Bederson, B. and Meyer, J. Implementing a Zooming User 
Interface: Experience Building Pad++, Software - Practice 
and Experience, vol 28, no. 10, August 1998, 1101-1135. 

3. Grundy, J.C., Hosking, J.G. and Mugridge, W.B., 
Inconsistency management for multiple view software 
development environments, IEEE Transactions on Software 
Engineering, Vol. 24, No. 11, November 1998, 960-981. 

4. Hornbaek, K., Bederson, B. and Plaisant, C. Navigation 
patterns and usability of zoomable user interfaces with and 
without an overview, ACM Transactions on Computer-
Human Interaction, vol. 9, no. 4, December 2002, 362-389. 

5. Meyers, S., Difficulties in Integrating Multiview Editing 
Environments, IEEE Software, vol. 8, no. 1, 49-57, Jan 1991. 

6. Mugridge,W.B. Nataraj, M. and Singh, D. Emerging User 
Interfaces through First-Class Viewers, In Proceedings of the 
2003 New Zealand Conference on Computer-Human 
Interaction, Dunedin, New Zealand, July 3-4 2003. 

7. Plaisant, C., Grosjean, J., and Bederson, B.B., SpaceTree: 
Supporting Exploration in Large Node Link Tree, Design 
Evolution and Empirical Evaluation, In Proceedings of the 
2002 IEEE Symposium on Information Visualization, Boston, 
October 2002, pp. 57 –64. 

8. Pook, S., Lecolinet, E., Vaysseix, G. and Barillot, E.. Context 
and interaction in zoomable user interfaces. In Proceedings of 
the 2000 ACM Conference on Advanced Visual Interfaces, 
Palermo, Italy, May 2000, ACM Press, pp. 227-231. 

9. Zhu, N, Grundy, J, Hosking, J, Pounamu: a meta-tool for 
multi-view visual language environment construction, in Proc 
IEEE VL/HCC’04, Rome, Italy, September 2004. 

10. ZVTM, Zoomable Visual Transformation Machine, 
http://zvtm.sourceforge.net/. 


