
Pounamu: a meta-tool for multi-view visual language environment construction

Nianping Zhu1, John Grundy1, 2 and John Hosking1
Department of Computer Science1 and Department of Electrical and Computer Engineering2,

University of Auckland, Private Bag 92019, Auckland, New Zealand
{nianping | john-g | john}@cs.auckland.ac.nz

Abstract

We describe a meta tool for specification and generation
of multiple view visual tools. The tool permits rapid
specification of visual notational elements, the tool
information model, visual editors, the relationship
between notational and model elements, and behaviour.
Tools are generated on the fly and can be used for
modelling immediately. Changes to the meta tool
specification are immediately reflected in tool instances.

1. Introduction
Multi-view, multi-notational visual environments are

popular tools in a wide variety of domains ranging from
software design tools to circuit designers. Many
frameworks, meta-tool environments and toolkits have
been created to help support the development of such
visual language environments. These include MetaEdit+
[3], Meta-MOOSE [1], GME [5], Escalante [6], IPSEN
[4] and DiaGen [7]. We have had a long term interest in
developing frameworks and meta-tools supporting
development of such tools, including the MViews/JViews
framework and JComposer/BuildByWire meta-tools [2].

However, current approaches to developing such tools
suffer from several deficiencies. Tools may be easy to
learn and use but support only a limited range of target
visual environments, or, tools may be flexible but require
considerable programming to develop. In addition, most
meta-tools have an edit-compile-run cycle, requiring
complex tool regeneration for minor changes. Our aim
was to produce a new meta-tool, Pounamu1, to rapidly
design, prototype and evolve tools for a wide range of
visual notations. We based Pounamu’s design on two
overarching requirements: simplicity of use and simplicity
of extension and modification.

2. Tool Specification using Pounamu

Five sub-tools are used to create a Pounamu tool meta
description. Figure 1 (a) shows the shape designer in use.
A hierarchical view (left) provides access to tool
specification components and instantiated models. In
centre are editing windows for defining tool components

1 Pounamu: Maori word for greenstone jade, used to

produce tools, and objects of beauty, or taonga.

and model instances. Here, a shape is defined for a
generic UML class icon. This consists of Java Swing
panels, with embedded sub-shapes, such as labels,
editable text fields, layout managers, geometric shapes,
images, borders, etc. To the right is a property editing
panel supplementing the visual editing window. This
allows names and formatting information to be specified
and exposed for each shape component. General
information is provided in a panel at the bottom. The
connector designer allows specification of connectors, eg
a UML generalisation connector in Figure 1(b). The tool
permits specification of line format, end shapes, and
adjacent labels or edit fields.

(a)

(b)

Figure 1. Pounamu in use specifying (a) a visual

notation shape element and (b) a connector.

The underlying tool information model is specified
using the meta model designer. This uses an Extended
Entity Relationship model as its metaphor, chosen as it is
simple and accessible to a wide range of users. The meta
model in Figure 2(a) has two entities representing a UML
class and object, each with properties for their name,
attributes and methods, class type etc. An “instanceOf”
association links class and object entities and
“implements” association links classes. The meta model
tool has multiple views, so meta models can be broken
into manageable segments.

The view designer, is used to define a visual editor and
its mapping to the information model.

(a)

(b)

(c)

Figure 2 Examples of (a) meta-model designer (b)

view designer (c) event handler designer.

Each view type consists of the allowable shape and
connector types, and a mapping from each to
corresponding meta model types. Figure 2(b) shows the

specification of a simple UML class diagramming tool,
consisting of class icon shapes, and generalisation
connectors. Multiple view types can be defined mapping
to a common information model.

An event handler adds complex behaviour to a tool by
specifying the event type(s) that causes it to be triggered
(eg shape/connector addition/modification), filtering
condition e.g. property value, and response (i.e. action to
take) in the form of a piece of Java code. An API provides
access to the underlying tool representation. Handlers are
typically used to add constraints, complex mappings, back
end data import/export, code generation, and access to
remote services to support tool integration and extension.
Handlers are specified using the handler designer (Figure
2(c) and included in a tool via view and meta-model tools.

3. Modelling Tool Example Usage

To use a tool, a user opens the tool project(s) required
and Pounamu dynamically initialises the tool facilities
specified by the tool project(s). Generation of the tool
happens automatically and immediately following
specification of a view editor associated with the tool.
Users can create model views using any of the specified
view editors. Each view editor provides an editing
environment for diagrams using the shapes and
connectors it supports. Consistency between multiple
views is implicitly supported via the view mapping
process with no programming required to achieve this,
unless very complex mappings are required that need
event handlers to implement them. Figure 3 shows the
simple UML class diagramming tool in use. View (1)
shows a simple class diagram with two UML class
shapes and an association connector. View (2) shows
another class diagram, reusing the Customer class
information.

(1) (2)

(3)

Figure 3. Example UML modelling tool usage.

(c)
(b)

(a)

Figure 4. Pounamu exemplar tools: (a) web services integration (b) circuit designer (c) process modeller.

Changes to either view are reflected through to the
other view. View (3) shows an object diagram view, with
an object of class Order. Changes to the class name are
reflected in this view and only methods defined or
inherited by a class may be used in message calling. The
latter is controlled by event handlers managing the
consistency requirement.

4. Tool Modification and Extension

Our second requirement was simplicity of extension
and modification. Users can at any time modify tool
specifications. Changes are immediately reflected in
models being edited using that tool. This provides
powerful support for evolutionary development.

Having defined a simple tool, and experimented with
its notation, additional behaviour can be added using
event handlers to implement more complex constraints
(eg uniqueness of class names) or add back end
functionality (e.g. generate C# skeleton code from model
instances). Back end support can also be added using
XSLT or other XML-based transformation tools applied
to the XML based tool representation or via a web
services-based API.

5. Example Applications
We have evaluated Pounamu’s suitability for multiple-

view visual language environment development by using
it to implement a wide variety of tools and evaluating the
development process against our primary requirements.
These include tools for design in UML supporting all
Some of these include a full UML tool supporting all
major view types; electrical circuit modelling, semantic
modelling using Traits, web services system integration,
and software process modelling integrated with a process
enactment engine. Examples are shown in Figure 4.

In each case Pounamu permitted rapid development of
an environment for a simple version of the supported
notation, satisfying our first requirement. These tools

were then iteratively expanded in a manner matching the
second of our requirements. This involved, for example:
• elaboration of notations, such as expansion of the

range of UML diagrams supported in the UML tool
• addition of event handlers for constraint

management, particularly for visual constraints and
for consistency management between elements in the
information model.

• integration of backend code generation for the web
services and process modelling tools, and

• use of the web services API to integrate the process
modelling tool with a process enactment engine.

Acknowledgements

We acknowledge the financial support of the New
Zealand Foundation for Research Science and
Technology’s New Economy Research Fund.

References
[1] Ferguson R, Parrington N, Dunne P, Archibald J,

Thompson J, MetaMOOSE-an object-oriented framework
for the construction of CASE tools, In Proc Int Symp on
Constructing Soft. Eng. Tools (CoSET'99) LA, May 1999.

[2] Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Visual
specification of multiple view visual environments, In Proc
IEEE VL'98, Halifax, Nova Scotia, Sept 1998, pp. 236-243

[3] Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully
configurable Multi-User and Multi-Tool CASE
Environment, in Proceedings of CAiSE'96, LNCS 1080,
Springer-Verlag, Crete, Greece, May 1996.

[4] P. Klein, A. Schürr: Constructing SDEs with the IPSEN
Meta Environment, In Proc SEE'97, pp. 2-10

[5] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G.: Composing Domain-Specific
Design Environments, Computer, 44-51, Nov, 2001.

[6] J.D. McWhirter and G.J. Nutt, Escalante: An Environment
for the Rapid Construction of Visual Language
Applications, In Proc. VL '94, pp. 15-22, Oct. 1994.

[7] M. Minas and G. Viehstaedt, DiaGen: A Generator for
Diagram Editors Providing Direct Manipulation and
Execution of Diagrams, Proc. VL '95, 203-210 Sept. 1995.

