
Copyright 2003 IEEE. Published in the Proceedings of 2003 IEEE Human-Centric Computing Conference, Auckland, New Zealand, October 2003. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

Approaches to Supporting Software Visual Notation Exchange

Hermann Stoeckle1, John Grundy1, 2 and John Hosking1

Department of Computer Science1 and Department of Electrical and Electronic Engineering2,
University of Auckland, Private Bag 920, Auckland, New Zealand

{herm, john-g, john}@cs.auckland.ac.nz

Abstract

A wide range of software tools provide software engineers
with different views (static and dynamic) of software
systems. Much recent work has focused on software
information model exchange. However, most software
tools lack support for exchange of information about
visualisation notations (both definitions of notations and
instances of them). Some basic converters have been
developed to support the exchange of notation
information between software tools but almost all are
custom-built to support specific notations and difficult to
maintain. We describe the development of several
notation exchange converters for tools supporting
software architecture notations. This leads to a unified
converter generator framework for notation exchange.

Keywords: Static and dynamic software visualization,
notation converter, converter generation

1. Introduction
A vast (and still increasing) number of software

visualisation notations exist. These include static
visualisation notations at varying levels of abstraction e.g.
class diagrams, component diagrams and deployment
diagrams [2, 15]; dependency graphs [16, 17], software
architecture structure [4, 7, 17], and for dynamic
visualisation e.g. call-graphs and control flow [1, 12, 16],
message sequencing [17, 14, 18, 2]; dynamic architectures
[6, 14]; and various run-time software characteristics like
performance and resource utilisation [6, 16]. Many tools
support variants of these visualisation notations and
developers would like to exchange notation information
between the tools from time to time e.g. exchange a UML
diagram from a CASE tool to MS Visio™ for further
enhancement; exchange diagram notation descriptions
between CASE tools so the tools allow viewing and
possibly editing of the same format notation; and
exchange notation instance information with other tools to
support viewing the information in a different platform
e.g. web interface, 3D virtual reality interface to the

visualisations etc. In addition to exchanging notation
information in custom tool formats we may wish to
convert between low-level display formats e.g. a CASE
tool diagram into SVG, VRML or GXL exchange formats
[3, 10, 11]. Currently to support these kinds of software
visualisation notation exchange a custom converter or
translator must be developed [9, 8, 11]. These take
considerable effort to build, test and deploy and are
difficult to modify if the notation itself or the tool notation
information formats change. They also typically lose parts
of the information in one tool when translating to another
tool’s notation information model.

We describe our work building several translators for
different software visualisation notation formats. The
original notations are those defined and used by our
Pounamu meta-tool to describe various visualisation
notation shapes, their properties and their relations. We
have hand-built several notation converters supporting the
translation of static and dynamic software architecture
notation information between Pounamu and an earlier
software architecture modelling tool (SoftArch), and to
graph-based formats (GXL) and graphic-based formats
(SVG, VRML), used by other rendering and editing tools.
From insights during this work, we describe our new
approach to generating notation converters from inter-
visual notation mapping specifications.

2. Motivation
We have been developing Pounamu, a new meta-tool

to support the specification of software engineering tools.
This allows software engineers to define new meta-
models and meta-views for software tools and realise
tools based on these specifications. Pounamu was
designed to provide thick client CASE tools to support the
developer in different parts of software development.
Pounamu views consist of a wide range of graphical
shapes and connectors representing information about a
software system, as well as dialogue-based views.
Pounamu currently uses its own proprietary representation
format for its software notations.

(2)

(4)

(3)

(1)

Figure 1: Some examples of software architecture visualization notation exchange between software tools.

We wish to support import and export of software
visualisations (both static and dynamic) between
Pounamu-based environments and other software
engineering tools. We also want to allow users of
Pounamu to interact with views using different viewing
and editing technologies, including web-based thin client
and 3D virtual reality. For complex dynamic software
visualisations in particular, we want to make use of 3rd
party viewing tools like 3D viewers and information
visualisation tools. To achieve this, Pounamu has to
support import and export of a wide range of external
notation formats. This can include formats of applications
dealing with graphs, view layouts, software information
(e.g., UML-based models), data visualization tool formats
or even translating events within a CASE tool into rule
sets using Programming by Example techniques.

An example of the kinds of software visualisation
notation exchange we require is shown in Figure 1. A
Pounamu software architecture view (1) has exchanged
different views with three other viewing tools: the
SoftArch CASE tool (2); the ArgoUML CASE tool (3);
and a VRML 3D visualisation of dynamic architecture
performance measures (4). A range of translators that
support these different kinds of notation information

exchange have been used to export (and some can import)
Pounamu view notation information.

3. Our Approach
We have approached this research in two phases: in

the first we have hand-built several notation converter
tools to enable exchange of software architecture
information between software tools. From our experiences
with this work we have designed a notation converter
generator framework. This includes an inter-notation
mapping specification language and converter generator.
We are currently developing a prototype of this converter
generator. Figure 2 provides a high level overview of the
types of notation converters we have hand developed.
These convert between the XML-based format of
Pounamu and other tools’ formats. Pounamu can import
and export information at two levels: view-based (1),
exchanging information about notations and notation
instances, or model-based (2), exchanging software model
information (schema or instance data). The second
approach is suitable if each tool defines its own
visualisation notation conventions and fully-generates its
own views from the model information. The disadvantage
is that there is no way to exchange information about
appearance, layout and composition of visualisations.

(3)

(5)

(4)Pounamu Tool

Views

Model

XML

XML Model
Converters

Notation
Converters

XMI, X-ADL,
CSV, etc formats

Other software tools
that draw their own
visualisations…

GXL,
GraphML etc

Tools supporting these
exchange formats…

CASE tool view
data e.g. SoftArch

CASE tools

Rendering formats
e.g. SVG, VRML

Rendering
and/or editing

tools

(1)

(2)

Converter
Generators…

Figure 2: High-level architecture of our approach.

We use notation converters to translate Pounamu view
XML save formats and (3) generic visualisation notations
like GXL and GraphML, (4) tool-specific formats e.g.
SoftArch’s view representation or (5) low-level rendering
formats e.g. SVG and VRML. Currently tool developers
develop custom converters using ad-hoc architectures and
implementations. Ideally we want to generate converters
from specifications of mappings between notations.

4. Example Notation Converters
Here we present our experiences developing hand-

coded software visualization notation converters. In these
examples we use simple static and dynamic software
architecture visualization notations to illustrate the kinds
of notation exchanges that we want to support between
software visualization tools. As a common example to
illustrate these we use a software architecture description
for a video store library providing different search
interfaces for customers and staff. This architecture can be
viewed statically and dynamically in various ways [5, 7].

4.1 Pounamu Notation to/from GXL Converter

GXL (Graph eXchange Language) is a simple XML-
based graph exchange format based on relationships
between nodes and edges [10]. Originally it was used for
reverse engineering, where it is supported by a variety of
graph-based software tools, including converters,
visualization tools, graph analysis and transformation
tools, and source code extractors [3, 11, 13, 21].

We have built import and export converters for
moving views to/from Pounamu and GXL. Any
Pounamu-designed view format can be converted to GXL
or imported from GXL into Pounamu’s XML-based view
format description using these converters. These
converters are implemented using the XSLT
transformation scripting language, which converts the
Pounamu view XML format to and from the GXL format.
We chose XSLT to implement these GXL converters as
both notations use XML-based formats for visualisation
notation information description and for the ease with

which we could change these XSLT scripts during
converter development and future extension.

Figure 3 shows a view of the video system
architecture designed with the SoftArch tool (1); this
view’s corresponding Pounamu view XML format (2);
and the result GXL file using the developed converter (3).
This architecture visualisation is a simple static structure
view and one that we may wish to view in a variety of
different software and interface tools e.g. SoftArch,
Pounamu, Argo/UML, an SVG or VRML web browser
plug-in. The GXL and Pounamu XML formats are quite
similar in structure and purpose so implementing these
converters was relatively straightforward. However, when
importing GXL-described views into Pounamu views a
set of graph layout defaults must be added to the newly
generated Pounamu view model as these do not exist in
many GXL descriptions.

This layout generation was implemented using a Java
algorithm using the DOM interface provided by Java’s
XML parser to enable standardized access to the structure
of the imported Pounamu XML-format view documents.
Java was used so that complex computation could be used
and because some information in Pounamu has no direct
relation to GXL but may used by some tools (e.g. shape
design, position or size). To support these tools we
divided the document into different parts (GXL and
properties) and added references in the GXL document to
the corresponding property file. When exporting Pounamu
XML format views to GXL we leave the Pounamu layout
information in the GXL format. As this isn’t used by
some 3rd party GXL-based tools it may be ignored and
lost if the data is re-imported into Pounamu or other tools.

Our GXL import/export converters for Pounamu
enable any Pounamu-defined visual notation views to be
converted to and from GXL representations. Thus any
GXL-compliant software or graph-manipulation tool can
consume and/or produce information that can be viewed
and edited within our Pounamu meta-tool environment.
New visualisation notations designed in Pounamu and
view instances of these notations can be exchanged with
these tools via the GXL-based common exchange format.

(2) (3)

(1)

Figure 3: An example of converting a Pounamu XML format architecture visualization into GXL.

4.2 GXL to SVG Converter

SVG (Scalable Vector Graphics) is a recommendation
of the W3C group [22]. The main goal of the SVG format
is to describe two-dimensional graphics in XML. Our
interest in SVG was as a vehicle to provide developers a
thin client interface with limited interaction. Currently
Pounamu provides a thick-client interface to editing views
of software information e.g. the software architecture
diagrams shown previously are all viewed and edited via a
desktop environment. The availability of SVG as a plug-
in for every common browser makes it a very portable
front-end for viewing and/or editing graph-based
information visualisation notations, including those for
software tools. A developer could for example use an
SVG plug-in in a browser to view models designed with
Pounamu without having the Pounamu system being
locally installed.

A very limited converter from GXL to SVG already
exists and we initially attempted to adapt this to allow
Pounamu views, using GXL as intermediate format to be
converted to SVG for viewing in browsers [11]. However
a major drawback of this converter proved to be a lack of
support for hierarchies (graphs inside graphs) and this is
an important issue for a breakdown of a complex systems.
Our example software architecture visualisation notations
all use limited forms of this [7]. In addition, the
implemented layout algorithm in this 3rd party GXL to
SVG converter is only able to arrange all nodes in a
circle, which is extremely unsatisfactory for many
applications such as our software architecture
visualisation notations. Converting model information to
SVG with this converter also loses some information e.g.
directions of the edges and links between nodes.

To overcome these problems we have developed a
new GXL to SVG converter that enables hierarchical
graph-based notations to be converted, uses a more
flexible layout algorithm, and preserves more of the GXL-
described notation characteristics in the SVG format.
Figure 4 shows the result of converting a view of the
video system architecture to SVG and viewing this SVG-
format software architecture diagram in a web browser
with an SVG plug-in. This was a Pounamu view initially
converted into GXL by our Pounamu GXL converter.

Figure 4: Example of an SVG software architecture
view in web browser converted from a GXL format.

A number of further complexities arose when
implementing this notation converter. Since SVG is a
vector format, calculations have to be done to arrange the
shapes appropriately, a quite different approach to the
GXL and Pounamu (and most other graph description
formats). We also had to convert the GXL data format

into SVG data format, rearranging the structure of the
XML data significantly in places. The generated SVG-
format software visualisations can then be viewed in a
web browser using a suitable SVG plug-in. Our converter
from GXL to SVG can be accessed via a URL and runs as
a servlet to enable distributed users to access the
architecture diagrams from their browsers.

We have only implemented a converter from GXL to
SVG, since the plug-ins are view only and Pounamu users
interact with the SVG-format visualisations via browser-
based scripting. We have not investigated converting
SVG into GXL or Pounamu’s own view XML format.

4.3 GXL to VRML Converter

X3D is a XML-based standard notation for defining
interactive web- and broadcast-based 3D content
integrated with multimedia [19]. X3D is the successor of
VRML [20], the original ISO standard for web-based 3D
graphics and extends it with new features, additional data
encoding formats, stricter conformance, and a component
based architecture allowing a more modular approach.
X3D is intended for use on a variety of hardware devices
and in a broad range of application areas such as
engineering, multimedia presentations, and shared virtual
worlds.

Our aim in building a converter from the GXL format
to the X3D format was to provide developers a 3D-based
static and dynamic view of software system information.
This was in contrast to hand-coding into Pounamu its own
3D views e.g. using Java3D graphics libraries, which
would be an enormous effort. In our software architecture
examples, we may wish to view large, complex static
architecture dependencies and other structural
relationships using VRML-style 3D virtual environments.
We may also want to view complex dynamic information
about a software architecture, such as architecture
performance measurements, using a 3D approach (e.g. the
number of calls can be expressed in the size of shapes;
requests across a network link can be expressed by
thickness or colour of links between client and server
nodes and so on). A key advantage of such visualisations
using 3D virtual reality environments is that navigation of
the complex models is more intuitive, via direct
manipulation of the environment, zoom in and zoom out
and three-axis rotations.

Figure 5 shows a visualization of a software
architecture in a VRML web browser plug-in. This uses
colour to show the frequency of function calls related to
various architecture components of the video system. The
designer can rotate the models in 3 dimensions; can zoom
in and out click on nodes/links to request detailed
information about the performance measures and the
architecture components to be shown. In previous work,
we tried to show such information using 2 dimensional

views in SoftArch, and user feedback indicated difficulty
in navigating and interpreting the information [6].

Figure 5: Example of a software architecture
diagram converted to VRML from GXL.

We implemented the GXL to VRML conversion by
building a Java-implemented converter that translates
GXL nodes and links into VRML 3D scene description
elements. This converter also performs some simple
layout to ensure that the resulting scene elements are
separated using some basic heuristics, but uses the
Pounamu-added layout information added to the GXL by
our Pounamu-to-GXL converter. For simple architecture
visualisations based on the GXL representation the same
layout algorithms as for two dimensions can be utilised.
For very complex visualisations, use of the extra
dimension in VRML needs to be made to improve the
complexity of the view. We have only made very basic
use of this third dimension in our converter to date.
Another feature of VRML and X3D we could make
further use of is control of viewing and navigation via
proximity sensors and scene interaction event-handling.
The scripting extension of X3D allows a wide range of
interactions to be defined for the visualisation, and can be
used in a similar manner to SVG scripting to allow
interaction with Pounamu from the X3D views. This
interaction can include manipulating the underlying
visualisation data and requesting other views to be shown.

5. Notation Converter Generation
Motivated by the similarities in many converters and

the effort involved in developing them, we are currently
developing a general approach for modelling the
conversion between different notations. Our approach is
being realised as a Java-based converter-generator
framework that will enable developers to describe inter-
notation mappings and have suitable visualisation
notation converters generated for them. The architecture
consists of two tools. A Unified Notation Mapping
(UNM) specification language provides a notation format

specification facility along with a notation mapping
specification syntax, allowing developers to describe a
mapping from one notation to another. An Automatic
LAnguage MApper TOol (ALAMATO) is used to
translate UNM inter-notation mapping specifications into
specific notation-to-notation converter implementations.

5.1 A Unified Notation Mapping Language

Figure 6 shows the basic structure of UNM. It
supports the description of a visualisation notation (1), in
terms of fundamental notation elements and their inter-
relationships. UNM supports text-based file formats (we
assume each visual notation has a textual “save” format)
and generates, with the interactive help of the developer, a
dictionary (2) which specifies the syntactic structure of
the notation. This dictionary is used by ALAMATO to
generate a converter between two different visualisation
notations. The dictionary structure can be annotated by
editors (3) to specify additional behaviours, with the
resulting structures represented as Java code (4). UNM is
also used to create a mapping table (5), to provide
ALAMATO with the required mapping information for
each notation.

(1) (4)

(5)

(2)

(3)

Mapping
table

Java
compiler

UNM

New notation
External
editorsDictionary

Figure 6: UNM and its components.

Storing the mapping information separate from the
dictionary has the advantage of more freedom of
mapping. Different users may want different mappings for
specific languages, e.g. one user wants to have a GXL
node to SVG mapped as a rectangle and another user
prefers another shape. The user has only to change the
mapping table, not the more complex dictionary which
contains the implementation part of the notation and how
each element in the notation is textually or non-textually
represented. External editors extend the existing
functionality, for example doing boundary checking or
setting special dynamic behaviours (in the simplest form
adding date or time to an output notation), and can be
used for more complex functions such as layout
generation. External editors can also be used for including
notations not viewable directly in UNM, such as graphic
formats (GIF, JPEG) or text document formats (PDF, MS
Word documents). For this, UNM generates a skeleton
and the functionality implemented using an editor tool.

Figure 7 shows a sample dictionary containing several
notations. The user designs this hierarchy in UNM and
UNM automatically assigns the corresponding tags used

for this node. These tags can be used to both find the node
in input files and also later to create the output file.

PureGraph
Formats

General

Graphical
Formats

GraphXML
<GraphXML>…
</GraphXML>

SVG
<svg>…</svg>

VRML GXL
<gxl>…</gxl>

Graph
<graph>…</graph>

Edge
<edge>…</edge>

Edge
<edge>…</edge>

Node
<node>…</node>

Graph
<graph>…</graph>

Source TargetName ToFromIdId

Node
<node>…</node>

Figure 7: Part of a UNM dictionary.

The dictionary consists of two types of nodes,
structure nodes and content nodes. Structure nodes
provide dictionary structure and categorize branches. For
example, in Figure 7 the nodes PureGraphFormats and
GraphicalFormats. Content nodes have a value attribute,
which contains the corresponding value from a tag.
External editors can be used to annotate each node. A
node can also contain a list of nodes, for example to
support structures similar to a number of rectangles
embedded in a canvas. Node Id in Figure 7 with bold
border indicates a required flag. If this information cannot
obtained (either by mapping or calculated) the parent
node will not be mapped into the output format. This is
sometimes reasonable e.g. when a node without
identification cannot be referred to elsewhere.

An example of using UNM is shown in Figure 8. This
is a small part of a mapping table for GraphXML, GXL,
SVG and VRML, being specified in our prototype UMN
tool. Mappings can be designed using UNM or by editing
the generated mapping table code. This table gives
ALAMATO information about how the nodes are to be
mapped between notations. Virtual nodes can be used,
which provide no output but categorize the mappings, for
example the node Shape (1). Another type of node
enables links between branches and guarantees only a
single child node in another branch. For example, it is not
possible to assign another child node to the link node
NodeShape based in the Shape branch (2). With this
construct it is explicitly defined that Nodes from GXL or
GraphXML have to be mapped to SVG or VRML as
rectangles. Each node in this mapping table is derived
either from MultipleValuesNode or PrimitiveValueNode
(3). Both are derived from a GeneralNode which provides
basic functionality required by every node like analysing
the textual form of the nodes, set and get values, set a
required flag and so on. PrimitiveValueNode extends the
general functionality by adding behaviour required to
create the textual structure of primitive nodes. In contrast
to PrimitiveValueNode the MultipleValuesNode includes
more complex operations on nested nodes.

(2)

(1)

(3)

(4)
(5)

(6)

Figure 8: Example of a mapping table in our UNM specification tool.

In the constructor of each node the textual
representation is specified (4) which is used by
GeneralNode to construct its textual form and identify the
parameters of a node. In Figure 8 it is also shown how to
specify in the framework more information about each
node (5). For example with SetStartNumberForMultiple
Values the position is explicitly defined, where (in the
textual representation) additional nodes have to be
inserted. Another example of functionality provided by
the UNM framework is to specify the unique name of
nodes, which is specified by setNumberForName
OfObject, where the number again is related to the
position in the textual form. Using this, UNM has similar
navigation facilities as DOM to retrieve documents for
specific type of nodes or (object) nodes. Additionally the
developer can extend the node implementation as in
Figure 8 - setId and getId are used to improve the
readability (6).

Mapping
table

ALAMATO

Converter
Dictionary

Input Notation
Format

Output Notation
Format

Figure 9: ALAMTO converter generator approach.

5.2 ALAMATO

The architecture of our ALAMATO (Automatic
LAnguage MApper TOol) is shown in Figure 9. This tool
generates a custom inter-notation mapping converter to

translate one visualisation notation format into another. It
uses the class hierarchy and mapping table generated by
UNM to produce a parser that reads a source visualisation
notation format and builds up a tree structure for the input
notation. It then uses the UNM-specified mapping scheme
to generate the structure and element conversion from the
input notation to the output notation. The output
visualisation notation information is then formatted into
the output format for consumption by another tool.

6. Discussion
Over many years of research into software

visualization and the development of a wide variety of
software visualization-supporting tools we have identified
the need to support inter-notation translation i.e. the
exchange of view (or visualization)-level information
between tools, not just model-based information
exchange. This is harder in some respects to pure model-
based tool integration [9, 17] which focuses on translating
between descriptions of software information formats.
Translating between notations requires the mapping of
descriptions of complex views, which make use of a very
wide variety of boxes, lines, colour, positioning, text
characteristics, annotations and possibly 3D structures. A
variety of graph-based converters have been developed [3,
11, 13, 21]. Unfortunately we found that many of these
conversion tools to only partially implement visual
notation mappings. Many of these converters are “lossy”
and remove source notation information that can not be
represented in the target notation format e.g. layout when
translating into GXL. We also found that modifying them
was usually very difficult due to the low-level

programming required. In addition, in some instances a
tool developer will need to provide default information
between notations e.g. layout, icon appearance that isn’t
in the source notation information. Often existing
converters don’t support this or use inappropriate defaults.

Some of the complexities that need to be handled in
inter-tool visual notation conversions include supporting
translation between quite different notation description
structures (e.g. between GXL and SVG), the defaulting of
values particularly relating to layout (2D or 3D) of
visualizations (e.g. Pounamu to VRML), and the
translation of simple editing/hyper-linking support into
scripting languages or other semantic editing/viewing
control (e.g. GXL to SVG and VRML). Our Universal
Notation Mapping language aims to capture these notation
mapping complexities so that software tool developers
can specify inter-notation mappings at high levels of
abstraction. Our ALAMATO converter generator
framework processes these mapping specifications to
automate the conversion of notation encodings. Where
appropriate we aim to add generation of editing action
conversions (i.e. view editing and navigation interactions)
between different software tools. This would allow
developers to readily exchange software visualization
notations (appearance – view syntax) as well as
interaction behaviour (editing – view semantics) between
software tools and 3rd party visualization products.

7. Summary
We have developed a number of software

visualization converters that support the translation of
notation instance descriptions between a range of formats
e.g. our custom Pounamu XML format and the general
GXL format; GXL and SVG; GXL and VRML; and have
investigated translation between GXL and Excel chart,
Visio diagram and GXL and GIF/image map renderings.
From our experiences building these visual notation
converters we have designed a converter generator
framework that allows tool developers to specify inter-
notation mappings and to have custom visualization
notation converters generated from these mapping
specifications. We have developed a Universal Notation
Mapping language and prototype notation specification
tool and are developing an automatic converter generator
from these specifications.

References
1. Beaumont, M. and Jackson, D. Visualising Complex

Control Flow. In 1998 IEEE Symposium on Visual
Languages, Halifax, Canada, September 1998, IEEE.

2. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modelling Language User Guide, Addison-Wesley, 1999.

3. GCF – a GXL Converter Framework. http://www2.
informatik.unibw-muenchen.de/GXL/triebsees/.

4. Egyed, A. and Kruchten, P., Rose/Architect: a tool to
visualize architecture, In Proceedings of the 32nd Hawaii
International Conference on System Sciences, January
1999, IEEE CS Press.

5. Grundy, J.C. Software Architecture Modelling, Analysis
and Implementation with SoftArch, In Proceedings of the
34th Hawaii International Conference on System Sciences
(Software Architecture Mini-track), Maui, Hawaii, IEEE
CS Press.

6. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Description, In Proceedings of the 16th International
Conference on Automated Software Engineering, San
Diego, IEEE CS Press, pp. 192-200.

7. Grundy, J.C. and Hosking, J.G. High-level Static and
Dynamic Visualisation of Software Architectures, In
Proceedings of the 2000 IEEE Symposium on Visual
Languages, Seattle, Washington, Sept. 2000.

8. Grundy, J.C., Mugridge, W.B., Hosking J.G. and Kendal,
P. Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 16th International
Conference on Automated Software Engineering, San
Diego, IEEE CS Press, pp 35-42.

9. Grundy, J.C. and Hosking, J.G. Software Tools, Wiley
Encycolpedia of Software Engineering, 2nd Edition, Wiley,
December 2001.

10. GXL (1.0) Tools. http://www.gupro.de/GXL/tools
/tools.html.

11. GXL2SVG. Example of the JGraph project.
http://jgraph.sourceforge.net/downloads.html.

12. Hill, T., Noble, J. Visualizing Implicit Structure in Java
Object Graphs, In Proceedings of SoftVis’99, Sydney,
Australia, Dec 5-6 1999.

13. Hold, R.C., Winter, A., and Schürr, A. GXL: Toward a
Standard Exchange Format, In 7th Working Conference on
Reverse Engineering, IEEE CS Press, 2000.

14. Liu, A. Dynamic Distributed Software Architecture Design
with PARSE-DAT, In Proceedings of Software – Methods
and Tools, Wollongong, Australia, November 2000, IEEE
CS Press.

15. Quantrani, T. Visual Modeling With Rational Rose and
UML, Addison-Wesley, 1998.

16. Reiss, S.P. A framework for abstract 3-D visualization, In
Proceedings of the 1993 IEEE Symposium on Visual
Languages, IEEE CS Press.

17. Robbins, J. and Hilbert, D.F. Extending design
environments to software architecture design, Automated
Software Engineering, Vol. 5, No. 3, July 1998, pp. 261-
390.

18. Stankovic, N. and Zhang, K. Towards Visual Development
of Message-Passing Programs, In Proceedings of 1997
IEEE Symposium on Visual Languages, IEEE CS Press.

19. The Web3D Consortium. Extensible 3d (x3d) graphics.
http://www.web3d.org/x3d.html.

20. The Web3D Consortium. The virtual reality modeling
language. http://www.web3d.org/Specifications/VRML97/.

21. Winter, A. Exchanging Graphs with GXL, Graph Drawing
– 9th International Symposium, GD 2001, Vienna
22. World Wide Web Consortium (W3C). Scalable Vector
Graphics (SVG) 1.0 Specification. http://www.w3.org/
TR/SVG/.

