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Abstract 
 
A wide range of software tools provide software engineers 
with different views (static and dynamic) of software 
systems. Much recent work has focused on software 
information model exchange. However, most software 
tools lack support for exchange of information about 
visualisation notations (both definitions of notations and 
instances of them). Some basic converters have been 
developed to support the exchange of notation 
information between software tools but almost all are 
custom-built to support specific notations and difficult to 
maintain. We describe the development of several 
notation exchange converters for tools supporting 
software architecture notations. This leads to a unified 
converter generator framework for notation exchange. 
 
Keywords: Static and dynamic software visualization, 
notation converter, converter generation  

1. Introduction 
A vast (and still increasing) number of software 

visualisation notations exist. These include static 
visualisation notations at varying levels of abstraction e.g. 
class diagrams, component diagrams and deployment 
diagrams [2, 15]; dependency graphs [16, 17], software 
architecture structure [4, 7, 17], and for dynamic 
visualisation e.g. call-graphs and control flow [1, 12, 16], 
message sequencing [17, 14, 18, 2]; dynamic architectures 
[6, 14]; and various run-time software characteristics like 
performance and resource utilisation [6, 16]. Many tools 
support variants of these visualisation notations and 
developers would like to exchange notation information 
between the tools from time to time e.g. exchange a UML 
diagram from a CASE tool to MS Visio™ for further 
enhancement; exchange diagram notation descriptions 
between CASE tools so the tools allow viewing and 
possibly editing of the same format notation; and 
exchange notation instance information with other tools to 
support viewing the information in a different platform 
e.g. web interface, 3D virtual reality interface to the 

visualisations etc. In addition to exchanging notation 
information in custom tool formats we may wish to 
convert between low-level display formats e.g. a CASE 
tool diagram into SVG, VRML or GXL exchange formats 
[3, 10, 11]. Currently to support these kinds of software 
visualisation notation exchange a custom converter or 
translator must be developed [9, 8, 11]. These take 
considerable effort to build, test and deploy and are 
difficult to modify if the notation itself or the tool notation 
information formats change. They also typically lose parts 
of the information in one tool when translating to another 
tool’s notation information model.  

We describe our work building several translators for 
different software visualisation notation formats. The 
original notations are those defined and used by our 
Pounamu meta-tool to describe various visualisation 
notation shapes, their properties and their relations. We 
have hand-built several notation converters supporting the 
translation of static and dynamic software architecture 
notation information between Pounamu and an earlier 
software architecture modelling tool (SoftArch), and to 
graph-based formats (GXL) and graphic-based formats 
(SVG, VRML), used by other rendering and editing tools. 
From insights during this work, we describe our new 
approach to generating notation converters from inter-
visual notation mapping specifications. 

2. Motivation 
We have been developing Pounamu, a new meta-tool 

to support the specification of software engineering tools. 
This allows software engineers to define new meta-
models and meta-views for software tools and realise 
tools based on these specifications. Pounamu was 
designed to provide thick client CASE tools to support the 
developer in different parts of software development. 
Pounamu views consist of a wide range of graphical 
shapes and connectors representing information about a 
software system, as well as dialogue-based views. 
Pounamu currently uses its own proprietary representation 
format for its software notations.  

 



(2) 

(4) 

(3) 

(1) 

 
Figure 1: Some examples of software architecture visualization notation exchange between software tools. 

We wish to support import and export of software 
visualisations (both static and dynamic) between 
Pounamu-based environments and other software 
engineering tools. We also want to allow users of 
Pounamu to interact with views using different viewing 
and editing technologies, including web-based thin client 
and 3D virtual reality. For complex dynamic software 
visualisations in particular, we want to make use of 3rd 
party viewing tools like 3D viewers and information 
visualisation tools. To achieve this, Pounamu has to 
support import and export of a wide range of external 
notation formats. This can include formats of applications 
dealing with graphs, view layouts, software information 
(e.g., UML-based models), data visualization tool formats 
or even translating events within a CASE tool into rule 
sets using Programming by Example techniques. 

An example of the kinds of software visualisation 
notation exchange we require is shown in Figure 1. A 
Pounamu software architecture view (1) has exchanged 
different views with three other viewing tools: the 
SoftArch CASE tool (2); the ArgoUML CASE tool (3); 
and a VRML 3D visualisation of dynamic architecture 
performance measures (4). A range of translators that 
support these different kinds of notation information 

exchange have been used to export (and some can import) 
Pounamu view notation information. 

3. Our Approach 
We have approached this research in two phases: in 

the first we have hand-built several notation converter 
tools to enable exchange of software architecture 
information between software tools. From our experiences 
with this work we have designed a notation converter 
generator framework. This includes an inter-notation 
mapping specification language and converter generator. 
We are currently developing a prototype of this converter 
generator.  Figure 2 provides a high level overview of the 
types of notation converters we have hand developed. 
These convert between the XML-based format of 
Pounamu and other tools’ formats. Pounamu can import 
and export information at two levels: view-based (1), 
exchanging information about notations and notation 
instances, or model-based (2), exchanging software model 
information (schema or instance data). The second 
approach is suitable if each tool defines its own 
visualisation notation conventions and fully-generates its 
own views from the model information. The disadvantage 
is that there is no way to exchange information about 
appearance, layout and composition of visualisations.  
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Figure 2: High-level architecture of our approach. 

We use notation converters to translate Pounamu view 
XML save formats and (3) generic visualisation notations 
like GXL and GraphML, (4) tool-specific formats e.g. 
SoftArch’s view representation or (5) low-level rendering 
formats e.g. SVG and VRML. Currently tool developers 
develop custom converters using ad-hoc architectures and 
implementations. Ideally we want to generate converters 
from specifications of mappings between notations. 

4. Example Notation Converters 
Here we present our experiences developing hand-

coded software visualization notation converters. In these 
examples we use simple static and dynamic software 
architecture visualization notations to illustrate the kinds 
of notation exchanges that we want to support between 
software visualization tools. As a common example to 
illustrate these we use a software architecture description 
for a video store library providing different search 
interfaces for customers and staff. This architecture can be 
viewed statically and dynamically in various ways [5, 7]. 

4.1 Pounamu Notation to/from GXL Converter 

GXL (Graph eXchange Language) is a simple XML-
based graph exchange format based on relationships 
between nodes and edges [10]. Originally it was used for 
reverse engineering, where it is supported by a variety of 
graph-based software tools, including converters, 
visualization tools, graph analysis and transformation 
tools, and source code extractors [3, 11, 13, 21].  

We have built import and export converters for 
moving views to/from Pounamu and GXL. Any 
Pounamu-designed view format can be converted to GXL 
or imported from GXL into Pounamu’s XML-based view 
format description using these converters. These 
converters are implemented using the XSLT 
transformation scripting language, which converts the 
Pounamu view XML format to and from the GXL format. 
We chose XSLT to implement these GXL converters as 
both notations use XML-based formats for visualisation 
notation information description and for the ease with 

which we could change these XSLT scripts during 
converter development and future extension. 

Figure 3 shows a view of the video system 
architecture designed with the SoftArch tool (1); this 
view’s corresponding Pounamu view XML format (2); 
and the result GXL file using the developed converter (3). 
This architecture visualisation is a simple static structure 
view and one that we may wish to view in a variety of 
different software and interface tools e.g. SoftArch, 
Pounamu, Argo/UML, an SVG or VRML web browser 
plug-in. The GXL and Pounamu XML formats are quite 
similar in structure and purpose so implementing these 
converters was relatively straightforward. However, when 
importing GXL-described views into Pounamu views a 
set of graph layout defaults must be added to the newly 
generated Pounamu view model as these do not exist in 
many GXL descriptions.  

This layout generation was implemented using a Java 
algorithm using the DOM interface provided by Java’s 
XML parser to enable standardized access to the structure 
of the imported Pounamu XML-format view documents. 
Java was used so that complex computation could be used 
and because some information in Pounamu has no direct 
relation to GXL but may used by some tools (e.g. shape 
design, position or size). To support these tools we 
divided the document into different parts (GXL and 
properties) and added references in the GXL document to 
the corresponding property file. When exporting Pounamu 
XML format views to GXL we leave the Pounamu layout 
information in the GXL format. As this isn’t used by 
some 3rd party GXL-based tools it may be ignored and 
lost if the data is re-imported into Pounamu or other tools.  

Our GXL import/export converters for Pounamu 
enable any Pounamu-defined visual notation views to be 
converted to and from GXL representations. Thus any 
GXL-compliant software or graph-manipulation tool can 
consume and/or produce information that can be viewed 
and edited within our Pounamu meta-tool environment. 
New visualisation notations designed in Pounamu and 
view instances of these notations can be exchanged with 
these tools via the GXL-based common exchange format. 
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Figure 3: An example of converting a Pounamu XML format architecture visualization into GXL. 

4.2 GXL to SVG Converter 

SVG (Scalable Vector Graphics) is a recommendation 
of the W3C group [22]. The main goal of the SVG format 
is to describe two-dimensional graphics in XML. Our 
interest in SVG was as a vehicle to provide developers a 
thin client interface with limited interaction. Currently 
Pounamu provides a thick-client interface to editing views 
of software information e.g. the software architecture 
diagrams shown previously are all viewed and edited via a 
desktop environment. The availability of SVG as a plug-
in for every common browser makes it a very portable 
front-end for viewing and/or editing graph-based 
information visualisation notations, including those for 
software tools. A developer could for example use an 
SVG plug-in in a browser to view models designed with 
Pounamu without having the Pounamu system being 
locally installed.  

A very limited converter from GXL to SVG already 
exists and we initially attempted to adapt this to allow 
Pounamu views, using GXL as intermediate format to be 
converted to SVG for viewing in browsers [11]. However 
a major drawback of this converter proved to be a lack of 
support for hierarchies (graphs inside graphs) and this is 
an important issue for a breakdown of a complex systems. 
Our example software architecture visualisation notations 
all use limited forms of this [7]. In addition, the 
implemented layout algorithm in this 3rd party GXL to 
SVG converter is only able to arrange all nodes in a 
circle, which is extremely unsatisfactory for many 
applications such as our software architecture 
visualisation notations. Converting model information to 
SVG with this converter also loses some information e.g. 
directions of the edges and links between nodes.  

To overcome these problems we have developed a 
new GXL to SVG converter that enables hierarchical 
graph-based notations to be converted, uses a more 
flexible layout algorithm, and preserves more of the GXL-
described notation characteristics in the SVG format. 
Figure 4 shows the result of converting a view of the 
video system architecture to SVG and viewing this SVG-
format software architecture diagram in a web browser 
with an SVG plug-in. This was a Pounamu view initially 
converted into GXL by our Pounamu GXL converter.  

 

 
Figure 4: Example of an SVG software architecture 
view in web browser converted from a GXL format. 

A number of further complexities arose when 
implementing this notation converter. Since SVG is a 
vector format, calculations have to be done to arrange the 
shapes appropriately, a quite different approach to the 
GXL and Pounamu (and most other graph description 
formats). We also had to convert the GXL data format 



into SVG data format, rearranging the structure of the 
XML data significantly in places. The generated SVG-
format software visualisations can then be viewed in a 
web browser using a suitable SVG plug-in. Our converter 
from GXL to SVG can be accessed via a URL and runs as 
a servlet to enable distributed users to access the 
architecture diagrams from their browsers.  

We have only implemented a converter from GXL to 
SVG, since the plug-ins are view only and Pounamu users 
interact with the SVG-format visualisations via browser-
based scripting. We have not investigated converting 
SVG into GXL or Pounamu’s own view XML format. 

4.3 GXL to VRML Converter 

X3D is a XML-based standard notation for defining 
interactive web- and broadcast-based 3D content 
integrated with multimedia [19]. X3D is the successor of 
VRML [20], the original ISO standard for web-based 3D 
graphics and extends it with new features, additional data 
encoding formats, stricter conformance, and a component 
based architecture allowing a more modular approach. 
X3D is intended for use on a variety of hardware devices 
and in a broad range of application areas such as 
engineering, multimedia presentations, and shared virtual 
worlds.  

Our aim in building a converter from the GXL format 
to the X3D format was to provide developers a 3D-based 
static and dynamic view of software system information. 
This was in contrast to hand-coding into Pounamu its own 
3D views e.g. using Java3D graphics libraries, which 
would be an enormous effort. In our software architecture 
examples, we may wish to view large, complex static 
architecture dependencies and other structural 
relationships using VRML-style 3D virtual environments. 
We may also want to view complex dynamic information 
about a software architecture, such as architecture 
performance measurements, using a 3D approach (e.g. the 
number of calls can be expressed in the size of shapes; 
requests across a network link can be expressed by 
thickness or colour of links between client and server 
nodes and so on). A key advantage of such visualisations 
using 3D virtual reality environments is that navigation of 
the complex models is more intuitive, via direct 
manipulation of the environment, zoom in and zoom out 
and three-axis rotations.  

Figure 5 shows a visualization of a software 
architecture in a VRML web browser plug-in. This uses 
colour to show the frequency of function calls related to 
various architecture components of the video system. The 
designer can rotate the models in 3 dimensions; can zoom 
in and out click on nodes/links to request detailed 
information about the performance measures and the 
architecture components to be shown. In previous work, 
we tried to show such information using 2 dimensional 

views in SoftArch, and user feedback indicated difficulty 
in navigating and interpreting the information [6]. 

 

 
Figure 5: Example of a software architecture 
diagram converted to VRML from GXL. 

We implemented the GXL to VRML conversion by 
building a Java-implemented converter that translates 
GXL nodes and links into VRML 3D scene description 
elements. This converter also performs some simple 
layout to ensure that the resulting scene elements are 
separated using some basic heuristics, but uses the 
Pounamu-added layout information added to the GXL by 
our Pounamu-to-GXL converter. For simple architecture 
visualisations based on the GXL representation the same 
layout algorithms as for two dimensions can be utilised. 
For very complex visualisations, use of the extra 
dimension in VRML needs to be made to improve the 
complexity of the view. We have only made very basic 
use of this third dimension in our converter to date. 
Another feature of VRML and X3D we could make 
further use of is control of viewing and navigation via 
proximity sensors and scene interaction event-handling. 
The scripting extension of X3D allows a wide range of 
interactions to be defined for the visualisation, and can be 
used in a similar manner to SVG scripting to allow 
interaction with Pounamu from the X3D views. This 
interaction can include manipulating the underlying 
visualisation data and requesting other views to be shown. 

5. Notation Converter Generation 
Motivated by the similarities in many converters and 

the effort involved in developing them, we are currently 
developing a general approach for modelling the 
conversion between different notations. Our approach is 
being realised as a Java-based converter-generator 
framework that will enable developers to describe inter-
notation mappings and have suitable visualisation 
notation converters generated for them. The architecture 
consists of two tools. A Unified Notation Mapping 
(UNM) specification language provides a notation format 



specification facility along with a notation mapping 
specification syntax, allowing developers to describe a 
mapping from one notation to another. An Automatic 
LAnguage MApper TOol (ALAMATO) is used to 
translate UNM inter-notation mapping specifications into 
specific notation-to-notation converter implementations. 

5.1 A Unified Notation Mapping Language 

Figure 6 shows the basic structure of UNM. It 
supports the description of a visualisation notation (1), in 
terms of fundamental notation elements and their inter-
relationships. UNM supports text-based file formats (we 
assume each visual notation has a textual “save” format) 
and generates, with the interactive help of the developer, a 
dictionary (2) which specifies the syntactic structure of 
the notation. This dictionary is used by ALAMATO to 
generate a converter between two different visualisation 
notations. The dictionary structure can be annotated by 
editors (3) to specify additional behaviours, with the 
resulting structures represented as Java code (4). UNM is 
also used to create a mapping table (5), to provide 
ALAMATO with the required mapping information for 
each notation. 
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Figure 6: UNM and its components. 

Storing the mapping information separate from the 
dictionary has the advantage of more freedom of 
mapping. Different users may want different mappings for 
specific languages, e.g. one user wants to have a GXL 
node to SVG mapped as a rectangle and another user 
prefers another shape. The user has only to change the 
mapping table, not the more complex dictionary which 
contains the implementation part of the notation and how 
each element in the notation is textually or non-textually 
represented. External editors extend the existing 
functionality, for example doing boundary checking or 
setting special dynamic behaviours (in the simplest form 
adding date or time to an output notation), and can be 
used for more complex functions such as layout 
generation. External editors can also be used for including 
notations not viewable directly in UNM, such as graphic 
formats (GIF, JPEG) or text document formats (PDF, MS 
Word documents). For this, UNM generates a skeleton 
and the functionality implemented using an editor tool.  

Figure 7 shows a sample dictionary containing several 
notations. The user designs this hierarchy in UNM and 
UNM automatically assigns the corresponding tags used 

for this node. These tags can be used to both find the node 
in input files and also later to create the output file.  
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Figure 7: Part of a UNM dictionary. 

The dictionary consists of two types of nodes, 
structure nodes and content nodes. Structure nodes 
provide dictionary structure and categorize branches. For 
example, in Figure 7 the nodes PureGraphFormats and 
GraphicalFormats. Content nodes have a value attribute, 
which contains the corresponding value from a tag. 
External editors can be used to annotate each node. A 
node can also contain a list of nodes, for example to 
support structures similar to a number of rectangles 
embedded in a canvas. Node Id in Figure 7 with bold 
border indicates a required flag. If this information cannot 
obtained (either by mapping or calculated) the parent 
node will not be mapped into the output format. This is 
sometimes reasonable e.g. when a node without 
identification cannot be referred to elsewhere. 

An example of using UNM is shown in Figure 8. This 
is a small part of a mapping table for GraphXML, GXL, 
SVG and VRML, being specified in our prototype UMN 
tool. Mappings can be designed using UNM or by editing 
the generated mapping table code. This table gives 
ALAMATO information about how the nodes are to be 
mapped between notations. Virtual nodes can be used, 
which provide no output but categorize the mappings, for 
example the node Shape (1). Another type of node 
enables links between branches and guarantees only a 
single child node in another branch. For example, it is not 
possible to assign another child node to the link node 
NodeShape based in the Shape branch (2). With this 
construct it is explicitly defined that Nodes from GXL or 
GraphXML have to be mapped to SVG or VRML as 
rectangles. Each node in this mapping table is derived 
either from MultipleValuesNode or PrimitiveValueNode 
(3). Both are derived from a GeneralNode which provides 
basic functionality required by every node like analysing 
the textual form of the nodes, set and get values, set a 
required flag and so on. PrimitiveValueNode extends the 
general functionality by adding behaviour required to 
create the textual structure of primitive nodes. In contrast 
to PrimitiveValueNode the MultipleValuesNode includes 
more complex operations on nested nodes. 
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Figure 8: Example of a mapping table in our UNM specification tool. 

In the constructor of each node the textual 
representation is specified (4) which is used by 
GeneralNode to construct its textual form and identify the 
parameters of a node. In Figure 8 it is also shown how to 
specify in the framework more information about each 
node (5). For example with SetStartNumberForMultiple 
Values the position is explicitly defined, where (in the 
textual representation) additional nodes have to be 
inserted. Another example of functionality provided by 
the UNM framework is to specify the unique name of 
nodes, which is specified by setNumberForName 
OfObject, where the number again is related to the 
position in the textual form. Using this, UNM has similar 
navigation facilities as DOM to retrieve documents for 
specific type of nodes or (object) nodes. Additionally the 
developer can extend the node implementation as in 
Figure 8 - setId and getId are used to improve the 
readability (6). 
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5.2 ALAMATO 

The architecture of our ALAMATO (Automatic 
LAnguage MApper TOol) is shown in Figure 9. This tool 
generates a custom inter-notation mapping converter to 

translate one visualisation notation format into another. It 
uses the class hierarchy and mapping table generated by 
UNM to produce a parser that reads a source visualisation 
notation format and builds up a tree structure for the input 
notation. It then uses the UNM-specified mapping scheme 
to generate the structure and element conversion from the 
input notation to the output notation. The output 
visualisation notation information is then formatted into 
the output format for consumption by another tool. 

6. Discussion 
Over many years of research into software 

visualization and the development of a wide variety of 
software visualization-supporting tools we have identified 
the need to support inter-notation translation i.e. the 
exchange of view (or visualization)-level information 
between tools, not just model-based information 
exchange. This is harder in some respects to pure model-
based tool integration [9, 17] which focuses on translating 
between descriptions of software information formats. 
Translating between notations requires the mapping of 
descriptions of complex views, which make use of a very 
wide variety of boxes, lines, colour, positioning, text 
characteristics, annotations and possibly 3D structures. A 
variety of graph-based converters have been developed [3, 
11, 13, 21]. Unfortunately we found that many of these 
conversion tools to only partially implement visual 
notation mappings. Many of these converters are “lossy” 
and remove source notation information that can not be 
represented in the target notation format e.g. layout when 
translating into GXL. We also found that modifying them 
was usually very difficult due to the low-level 



programming required. In addition, in some instances a 
tool developer will need to provide default information 
between notations e.g. layout, icon appearance that isn’t 
in the source notation information. Often existing 
converters don’t support this or use inappropriate defaults. 

Some of the complexities that need to be handled in 
inter-tool visual notation conversions include supporting 
translation between quite different notation description 
structures (e.g. between GXL and SVG), the defaulting of 
values particularly relating to layout (2D or 3D) of 
visualizations (e.g. Pounamu to VRML), and the 
translation of simple editing/hyper-linking support into 
scripting languages or other semantic editing/viewing 
control (e.g. GXL to SVG and VRML). Our Universal 
Notation Mapping language aims to capture these notation 
mapping complexities so that software tool developers 
can specify inter-notation mappings at high levels of 
abstraction. Our ALAMATO converter generator 
framework processes these mapping specifications to 
automate the conversion of notation encodings. Where 
appropriate we aim to add generation of editing action 
conversions (i.e. view editing and navigation interactions) 
between different software tools. This would allow 
developers to readily exchange software visualization 
notations (appearance – view syntax) as well as 
interaction behaviour (editing – view semantics) between 
software tools and 3rd party visualization products. 

7. Summary 
We have developed a number of software 

visualization converters that support the translation of 
notation instance descriptions between a range of formats 
e.g. our custom Pounamu XML format and the general 
GXL format; GXL and SVG; GXL and VRML; and have 
investigated translation between GXL and Excel chart, 
Visio diagram and GXL and GIF/image map renderings. 
From our experiences building these visual notation 
converters we have designed a converter generator 
framework that allows tool developers to specify inter-
notation mappings and to have custom visualization 
notation converters generated from these mapping 
specifications. We have developed a Universal Notation 
Mapping language and prototype notation specification 
tool and are developing an automatic converter generator 
from these specifications. 
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