
Copyright 2002 IEEE. Published in the Proceedings of 2002 IEEE International Conference Human-Centric Computing, Arlington, VA, Sept3-6 2002. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

A data mapping specification environment using a concrete business form-based

metaphor

Yongqiang Li1, John Grundy1, 2, Robert Amor1 and John Hosking1

1Department of Computer Science and 2Department of Electrical and Electronic Engineering,
University of Auckland, Private Bag 92019, Auckland, New Zealand

{john-g, trebor, john}@cs.auckland.ac.nz

Abstract

Many systems require data transformation – the
conversion of complex data from one format to another.
Most current approaches require programming, scripting
or use abstract visual specifications and are targeted to
programmers, not business analysts or other end users.
We describe a data transformation specification tool that
uses a concrete visual metaphor based on the concept of
copying data from one business form to another. We
describe the visualisation of complex business data in a
form that matches the cognitive needs of non-programmer
business analysts and the specification of data
transformations using our form copying metaphor. A
prototype environment is described along with a cognitive
dimensions evaluation of our end user visual language.

Keywords: end user computing, data integration, data
transformation, business to business E-commerce, form-
based data visualisation

1. Introduction

Organizations need to exchange data in order to

support business-to-business (B2B) E-commerce [1, 6,
17]. For example, suppliers need to receive information
about customers, product orders and invoices from
customers. Very often supplier systems use a different
format to represent this information than do their
customers’ systems and customer systems formats differ
from each other. B2B data can be exchanged via
distributed object APIs (CORBA, DCOM, .NET), EDI
messages, XML documents, SOAP messages and custom
data formats [17, 18, 23]. However, in this paper we
ignore such transport-level issues and focus on the
specification of the transformation needed to convert data
from one business model to another. Quite complex data
transformations are often required: source data model
fields may be copied, split, merged and recalculated.

Source data structure may be transformed into quite a
different target structure (hierarchies flattened or built,
collections merged, split or filtered and so on) [9].

Most current approaches to specification and
implementation of B2B data transformations are
programmer-centric. They include program-based
transformations [21], script-based transformations using
XSLT or similar languages [22, 19], or specifications that
use abstract data representations such as tree or entity-
relationship structures [10, 16]. None of these approaches
are very suitable for non-programmer end users to use.
However, most of the knowledge about what data means
in one business and how it can be converted to another
business’s required data format is held by business
analysts – almost always non-programmers [3].

We describe a prototype data transformation
specification tool that is based on the most common
business model and operation of data transformation:
copying data from one business’s form to another
business’s form, either in hard-copy or on a computer
screen. This business form copying metaphor is realised
by visualising complex data models as concrete
representations mimicking the layout and composition of
real hard-copy or electronic-copy business forms. A
business analyst can modify automatically generated
layouts to more accurately represent their hard copy form
formats. This end user then connects fields and groups of
fields on one form to fields and groups on another,
thereby specifying how data is to be “copied” from the
source data format to the target format.

We describe the motivation for this work in the
following section using a typical B2B example. We
survey related research on data transformation
specification and then describe our approach which allows
business analyst end users to specify such
transformations. We illustrate the use of our prototype
tool in visualising data models as business forms,
allowing modification of form layout, and the
specification of both simple and complex transformations

by form copying operations. We present an evaluation of
our approach using the cognitive dimensions framework
and summarise our contributions and possibilities for
future research.

2. Background

There is an increasing demand for B2B electronic co-

operation [1, 3, 6]. Despite great efforts to develop
standards for representing business data and processes,
most such “E-business” requires data transformation from
one business’s data format to another’s [3, 6, 9, 10].
Business analysts are the people who are responsible for
understanding and developing business processes and
procedures. They have the knowledge of what one
business’s data structure and semantics mean and how
this can be mapped onto another business’s data.
However, currently it is programmers who typically
implement all business-to-business data exchange
mechanisms. Figure 1 illustrates a typical example
scenario. In this example, two businesses are exchanging
various combinations of customer, product, order and
invoice data.

Business System

Database

Business System

Database

3. Data imported in XML, EDI, etc

5. Data exported in
XML, EDI, etc

1. Business analyst specifies product,
customer, order etc
correspondences between business
data

2. Business analyst tells
programmer who constructs
data transformation software

4. Data sourced/sinked
from/to enterprise databases

Figure 1. Data integration for E-business.

In today’s business world, this process is inefficient

and typically bottlenecks on the programmers – analysts
continually want to have their business systems integrate
with new systems or have new data integration and
transformations supported, but these often take
considerable time to describe to programmers and the
software developed and tested. Communication with the
programmers can also be problematic as they often don’t
fully understand the business context, meaning and use of
data from both source and target systems.

Ideally business analysts themselves could specify
data transformations and have required software
generated. Programmers need to be involved developing
particular technology interfaces for sourcing and sinking
business data, but most new systems are architected to do
this. What is required is flexible, end-user data

transformation specification and generation support. Key
requirements of such a system include:
• Support for importing and then visualising data

formats from available business system meta-data.
• A representation for business data that is easy for

business analysts to understand and use and which
closely matches their own model of business data.

• A mechanism for specifying inter-business data
correspondences that again matches analysts’ current
model of business data exchange. This should support
complex data correspondence specification.

• Automatic generation of data transformation
implementations with no end user involvement.

Current data transformation specification techniques

are programmer-centric. Many systems use custom-coded
transformation modules or components that take
considerable design, implementation and testing by expert
programmers [6, 21]. Many systems have moved to
scripted solutions which support easier evolution of
transformations [16, 10, 22]. Spreadsheet-style metaphors
are used by some systems where target data is expressed
in terms of source data formulae. These approaches don’t
leverage visual data transformation specification and
don’t generate transformation implementations that use
common technology solutions. A common transformation
script implementation solution is the XML Stylesheet
Layout Transformation (XSLT) technology [4, 14, 19,
22]. A number of XSLT generators use visual data
representation and transformation specification techniques
[22, 10]. Many database and message passing systems
also provide similar visual data transformation tools [11,
6]. These are almost always based on entity-relationship
or tree hierarchy renderings of data. These are not a
representation many business analysts use, especially
when designing and documenting required business data
exchange.

Programming-by-demonstration (PBD) systems utilise

user interactions to deduce task specifications which are
then automated or partially automated [5]. Many
examples of such systems exist and have been applied to a
wide range of problem domains. Examples include
MetaMouse [13] supporting learned and repeatable CAD
and word processing tasks, Masuishi's report generator
[12] supporting production of reports from relational
tables, and Sugiura's Internet Scrapbook [20] which
automates the assembly of web pages. A key to the
success of many PBD systems is the use of real-world
metaphors by which users demonstrate actions and
computer applications reflect learned operations to users.

3. Our Approach

We have developed an approach to providing business
analysts with a data transformation specification tool by

using a common concrete metaphor.

Business System

1a. User copies data
from screen to a
hard copy form

1b. System prints
hard copy form

Business System

Screen Screen

2. Form sent by
post, fax, email

3. Data entry operator
enters data into system,
“transforming” into this
system’s screen form
data format

Figure 2. Business form copying metaphor.

How do businesses currently exchange data using non-
computer means? They use business forms – one
organization generates a form e.g. an order, and sends it to
another (via post or fax, but also possible by email or
other data communication technology e.g. HTML, EDI,
CORBA or XML messaging). The receiving organization
copies data from the form into its own form-based format,
usually realised by a computer program screen. Usually
this is done by data entry personnel (if the source business
form is received in hard-copy form or email). If received
electronically, data transformation programs written by
programmers do this transformation. Figure 2 illustrates
the hard-copy business form-based data exchange process.

Meta-data e.g.
XML DTDs

1. Analyst imports meta-
data from source and target

enterprise systems

2. Default business
form layouts

generated. Analyst can
rearrange layout to
better-reflect actual

business forms.

3. Analyst specifies 1:1, 1:n, m:1
group and field correspondences
i.e. specifies how to “copy” data

from one form to the other

<xsl…>
 <xsl:apply-templates…>
…
</xsl:…>

4. Data transformation
implementation
generated from
specification

Figure 3. Form-based data integration process.

Our approach to supporting end-user data

transformation specification is to adopt this “business
form copying” metaphor, as outlined in Figure 3.
Essentially business analysts demonstrate how data is to
be copied from elements in a source form to elements in a

target form, generating executable data transformations.
Meta-data is extracted from enterprise systems (1) that
describes source and target data models. A default
“business form” visualisation is generated for each data
model (2) which the business analyst can modify to
better-conform to the physical business forms (whether in
hard-copy or computer screens) they use. The analyst then
specifies correspondences between fields and groups of
fields on the source and target forms using direct
manipulation (3). These correspondences and associated
formulae are used to generate a data transformation
implementation such as XSLT scripts, Java programs or
3rd party data mapping tool code (4).

4. Visualising Data as Business Forms

In this and the following section we illustrate our data

transformation specification technique using a prototype
tool and a business-to-business data exchange example.
The business analyst first imports meta-data from a data
source enterprise system and from a data target enterprise
system. Such meta-data can be extracted from APIs (e.g.
CORBA or COM APIs), XML DTDs or Schema,
component meta-data, or system-specific means. Our
prototype tool currently uses XML DTDs (Document
Type Definitions), which specify the detailed structure of
XML-encoded business data. In the example we use here,
a business analyst is defining data mapping
transformations to support one business exporting a
customer order for books (Customer, Order, OrderLine
and Book product data) to another system that needs the
same information but represents it in quite a different
way.

Firstly the analyst imports the structure of the encoded
source and target system data, from either XML DTD
files (specifying source and target document structure) or
from example data encoded in XML files. Figure 4 (a)
shows part of the source DTD file used in this example.

Note the business analyst doesn’t look directly at this,
programmers supply these or the data is extracted from an

enterprise system’s meta-data API.

<?xml encoding="UTF-8"?>

<!ELEMENT person
 (name,email*,url*,
 orders)>
<!ATTLIST person id ID #REQUIRED>

<!ELEMENT name ((family,given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT email (#PCDATA)>

<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA 'http://'>

<!ELEMENT orders (order+)>

<!ELEMENT order (date,item+)>
<!ELEMENT date (#PCDATA)>

<!ELEMENT item (book,qty,price)>

…

Figure 4. (a) XML data structure and (b) visualising imported meta-data as business forms.

Default business form visualisations of these source
and target data models are generated. The form generation
process uses information about the grouping of records in
the data model to organise fields into groups. Repeating
groups in the XML DTDs are realised as tables or multi-
form groups. Field and group labels are drawn from the
XML field tags. If extracting data from an XML Schema
(richer than a DTD), field datatype and possible field size
can be estimated. Figure 4 (b) shows the source and target
structures as trees on the left, and on the right two default
business form layouts generated by the tool.

In this example, the source is an XML message
containing customer information, under which is grouped
a number of order records and then book order items. The
target is another XML message which is a list of order
records, containing order information, customer
information and book order item information. Some fields
in the target require source fields to be merged,
reformatted, recalculated, or split.

The default grouping of fields, field labels, field data
types, field width, field alignment, and field placement
may not match the layout the business analyst wants to
work with. Similarly, the generated form will not have
any annotations (lines, boxes, images) the actual hard
copy or computer-based forms the analyst works with
have. The analyst can interactively modify the generated
form layout to move fields, re-label fields, change field
data types, width and height, and re-group combinations

of fields. This allows a closer approximation of the real
business forms to be realised and for the analyst to use in
the form field correspondence specification process.

Figure 5. Rearranged source business form example.

Figure 5 shows some modifications made to the generated
source business form visualisation by the analyst. These
changes include moving fields (e.g. first and last name
fields), resizing fields (e.g. email, last name), re-grouping
fields e.g. id and resizing groups (orders, order items). In
this example we have also asked the mapping tool to
display example data from an XML data file in the fields
of our business form visualisation. These can be used by
analysts to help them determine appropriate field
correspondences and formulae when specifying
mappings.

5. Specifying Data Mappings

5.1. Demonstrating Mappings

We use a real-world programming-by-demonstration

metaphor to support the specification of source and target
data structure correspondences. The business analyst
interactively drags and drops connections between one or
more fields or field groups in the source business form to
one or more fields or field groups in the target form to
specify data transformation mappings. This mimics the
“copying of data from one business form to another”
approach to data integration utilised in many business
systems and organizations. Data mappings range from
simple one-to-one copying of field values and applying of
formulae to field values to complex iteration over
structures, filtering structure elements, and applying
transformations to each item in the structure to produce a
target data set. The complexities of such mappings are
discussed in detail in [9]. Here we illustrate how our
form-based mapping tool allows business analysts to
specify such data mappings interactively using the form
field copying visual metaphor.

(a)

(b)

(c)

Figure 6. The form field copying metaphor.

Figure 6 shows how the field copying metaphor is
realised. A business analyst identifies one or more source
form fields or groups of fields that correspond to one or
more target form fields or groups of fields. The analyst
interactively selects source fields, dragging the mouse to
corresponding target fields (a). Multiple source or target
fields can be selected and linked, supporting one to many,
many to one and many to many correspondence
specification. Groups of fields can be linked, indicating
sub-structure correspondences. Fields from one or more
source form groups can be linked to fields in one or more
different target form groups. Repeating fields or groups
can be linked, with selection over source fields supporting
filtering of data to target fields and groups. Once
connected, a correspondence visualisation between the
fields is displayed (b). In addition, the analyst can specify
formulae that translate source field(s) into target field(s)
values (c).

5.2. Specifying Simple Data Mappings

Initially a business analyst wanting to specify data

mappings between the book order messages illustrated in
Figure 4 will specify basic field copying and merging
formulae, along with simple 1-to-1 group
correspondences. Again, when doing this, the idea is that
the analyst is demonstrating how to “copy” data in one (or
more) fields from the source business form to a
corresponding field or fields in the target business form.

The complexity of mappings that can exist form a
continuum over several axes from extremely basic
through to uncomputable. Examples of basic mappings

are one-to-one copies where field types, names, and data
constraints are identical. Mappings of this form are not
common and can be specified automatically. Of slightly
greater complexity are mappings where field names or the
base type differs. In many cases these types of mappings
can be specified simply by equivalences between fields.

In Figure 7(a) examples of this can be seen in the
mappings from source order item ‘qty’ and ‘price’ to the
target item quantity and total_cost fields. With these fields
the business analyst has simply selected the source field
and dragged the mouse to the target field, indicating a
one-to-one copy. In a similar manner the ‘person’ record

(group of fields) has been connected to the
‘customer_info’ target record. This indicates that
whenever a customer_info record and its constituent field
values are required in the target data structure, its values
are copied from the corresponding person fields in the
source structure.

The types of fields in a one-to-one mapping can of
course take differing forms and require some formulae to
ensure a correct mapping. In Figure 7 (a) the mapping
from ‘date’ shows such a type conversion requiring
reformatting of the data type.

Figure 7. Some examples of (a) one-to-one field and group copying and (b) one-to-many and many-to-many

copying.

The business analyst has connected the order date
fields in the source and target business forms, but the
target requires a different date format. A date conversion
function is used to implement this type conversion. Such
functions are provided by our tool to support data
conversions and data extraction from single field values.

5.3. Complex Mappings

As a mapping moves from one-to-one to higher arities

the complexity of the transform usually increases. Several
fields may be required to determine the value of one field
(m:1 mapping) as shown in Figure 7 (b) where the
‘family’ and ‘given’ fields of the ‘name’ entity are
required to calculate the ‘name’ field in the target form.
The business analyst has selected the two source fields
and then dragged to the target field, creating a 2 to 1
linkage. A formula is provided by the analyst to indicate
how the target value is arrived at with the two source field

values as inputs. In this example, the two name fields are
merged with a separator.

These m:1 mappings are usually of a simpler form that
their inverse (1:n mapping). In the previous name
example one can see that some form of pattern matching
or parsing would be required to ensure the inverse
mapping, and there are many simple 1:n mappings which
can not be fully determined (e.g. from an area value to
width and depth values).
These examples show field-based mappings, but there are
many other complexities to consider. One common
complex mapping form is that between a field and a
structure or vice-versa. Further complexity is usually
encountered when considering structure to structure
mappings of various arities. When considering n:m
mappings, of any combination of fields and structures,
there are usually conditional constraints which help
determine which objects take part in the mapping
specifications.

In Figure 7 (b), an order record (group of fields) in
the source form maps onto a whole target form (group).
This implies a single customer with multiple orders in the
source form will generate multiple target “forms” (target
order data records). In this example, multiple source order
items map onto the same number of target order items. In
many domains, more complex structural mappings exist
e.g. selection from source group to form target, m:1 or
1:m structural transformations, and so on. In our mapper
the business analyst specifies correspondences between

one or more source fields or groups and one or more
target fields or groups. They then may need to qualify the
correspondence indicating selection from source repeated
groups by indexing or filtering. They may need to qualify
the target by specifying collection indexing or
construction. In our tool the analyst currently makes use
of provided functions acting on source field(s) or group(s)
to produce result values for target field(s) or group(s).

Customer Form Order Form

Orders Subform

Name ID

Address

OrderDate

OrderItems
Book Qty TotalCost

DateTime

Created

TotalCost

CustomerInfo

Items
BookInfo Qty

Order:
1

2

3

4

<xsl:template match="/">
 <Order>
 <Number>…</Number>
 <DateTime><xsl:value-of select="/Order[1]/Order/Date"/>
 </DateTime>
 <Created>
 <xsl:value-of select="date:to-string(date:new())"/>
 </Created>
 <TotalCost><xsl:value-of
 select="sum(//OrderItem/TotalCost)"/> </TotalCost>
 <xsl:variable name="customer_id" select=
 "/Order/OrderItem[1]/CustomerSID"/>
 <CustomerInfo>
 <xsl:apply-templates select="//Customer [@id =
 $customer_id]"/>
 </CustomerInfo>
 <Items>
 <xsl:apply-templates select="//OrderItem"/>
 </Items>
 </Order>
</xsl:template>
…

Figure 8. Examples of (a) form element correspondences and (b) generated XSLT transformation script.

Mappings which are complex to describe are often

associated with differing notions of identity. Where a
source schema has differing criteria for an object's
uniqueness versus that found in a target schema then the
specification of the required mapping often becomes
cumbersome. For example, in CAD (Computer-Aided
Design) systems point objects are used to identify
geometric parameters of higher-order objects. In some
systems the combination of an object and a point is the
key, whereas in other systems a point's location is itself
the key. This means that some CAD systems can have
multiple point objects existing at the same co-ordinates
and others may not. Describing a mapping between point
objects of these differing systems is currently difficult.
While the mapping between point objects is simple to
describe, the conditions under which a point is created is
not as easy to describe with a visual notation.

6. Design and Implementation

We have built our proof-of-concept form-based data

mapping tool using Java’s Swing GUI API and JAX XML
parsing API. Our tool allows users to import meta-data
from XML-encoded data files or from XML Document
Type Definition files. It is expected that these would be
provided via Enterprise system meta-data APIs or
message APIs in a fully realised data mapping system.
This meta-data is used to generate a basic form layout
with simple heuristics used to generate form elements and

element groupings using Java Swing components. These
include generating labels and text fields for simple-valued
leaf nodes in the XML DOM to generating form groups
for complex XML record nodes. The user can move
components within and between form groups and can add
or delete groups to modify the form layout. The use of
Swing layout managers constrains the degree of form
layout that can be achieved in our prototype tool, but use
of Swing allowed us to build and maintain a prototype
tool with minimum effort. Layout support could be
augmented in the future with absolute-position layout if
necessary.

Analysts link fields using drag-and-drop between form
components. We used the Java Swing component event-
passing mechanism and transparent panel overlays to
intercept user interaction with the generated form
components, to implement drag-and-drop between native
Swing form components. We use the form component
setText() etc functions to put data from XML data files
into displayed form components to support mapping-by-
example data for users.

The algorithm for generating data transformation
implementations traverses the target form data structure,
constructing translation code based on the links into the
target form elements. This is illustrated in Figure 8 (a).
We used this approach as we have adopted an XSLT-
based transformation script as the data mapping
implementation for the prototype. This is stream-based
and needs to build the target data set (an XML data file)
using in-order traversal. Part of a generated XSLT

transformation script resulting from this process is shown
in Figure 8 (b). The first part of this script extracts the
OrderDate from the source, then generates a creation
date/time for the target order. It then sums the total cost
for the source order items to produce a target order total
cost. Customer information is extracted from the source,
and then for each source order item record a
corresponding target item record generated.

7. Discussion

The cognitive dimensions framework [7] provides a
way to assess a wide variety of visual language properties.
We have carried out a cognitive dimensions assessment of
a visual form-based mapping tool. We summarise our
results below.

Abstraction Gradient. The key abstraction used in our
system is the business form, a concrete visual metaphor
comprising primitive form elements (labels, text fields,
check boxes, etc) and groups of primitives. These
abstractions map onto meta-data elements, though the
user can create further abstraction groups if required.
Links between fields represent formulae converting
source data item(s) and group(s) to target data item(s) and
group(s).

Closeness of mapping. Our form-based data
transformation tool uses a concrete metaphor – the
business form – to support data mapping specification. Its
visual representation thus maps directly onto business
analyst’s (the end users) cognitive model of their problem
domain. The purpose of allowing generated form layout
modification is to support even closer mapping allowing
analysts to tailor the generated layout to be closer to the
actual screen and hard-copy business form layouts they
are familiar with.

Consistency. Both source and target form
representations use the same visual form elements. All
inter-form element links are rendered the same way. The
latter presents a potential problem in that discriminating
between simple and complex mappings may be desirable.

Diffuseness/Terseness. Compared to more abstract
approaches to representing data transformation, our form-
based data mapping tool employs a more verbose visual
language that can include elements not directly used in the
mapping process e.g. business form layout groups, labels,
lines and boxes and images. In contrast, mapping
specifications using meta-data renderings such as trees
and entity-relationship diagrams seldom include elements
not directly used in the meta-data mapping specification.
The use of a concrete form-based metaphor in our
approach necessitates a less terse notation to support the
desired visual metaphor.

Hard Mental Operations. For end users, hard mental
operations are greatly reduced by having a visualisation
close to their cognitive model of inter-business data
exchange.

Hidden Dependencies. All inter-form dependencies
are explicitly represented as form element and group
links. Within forms, element groupings are all explicitly
represented. The mapping formulae associated with inter-
form links hide the detail of dependencies between the
source and target fields.

Role-Expressivenes. Concrete representations are used
for all form elements that denote their role. Enclosure of
elements by groups provides an additional role
specification, that of the elements’ relationship to others
in the group.

Secondary Notation and Escape from Formalism. The
business analyst can reorganise automatically generated
form layouts, creating their own cognitively meaningful
business form representation using form element layout,
appearance and grouping. Our tool supports the use of this
secondary notation relating to form element layout as it is
cognitively important to the user and has meaning in
terms of the grouping of form elements. The form layout
and appearance has no effect on generated mapping code
but regrouping or retyping form elements does. No
unstructured form annotations are currently supported
though this may be a useful addition allowing end users to
make notes against forms and form element links.

Visibility and Juxtaposability. The form-based mapper
has explicit inter-form element links providing good
visibility, but the links between form elements and
element groups to the underlying meta-model is hidden.
When the user modifies form layout e.g. by adding or
rearranging grouping, this linkage is blurred and is not
visible in the visual form-based visualisation nor tree-
based structure views. Two views are supported in our
tool: a concrete form-based visualisation and tree-based
structure visualisation, which are viewed side-by-side.
Sub-views are currently supported using the tree-based
view to select a portion of the form for display, but
multiple views displayed simultaneously are not currently
supported

8. Future Work

We are planning an empirical assessment of our tool

using several experienced business analysts and business-
to-business data transformation implementers. This will
assess the suitability of our proposed approach for both
the target end user community and programmers involved
in the implementation of data exchange solutions. We
plan to extend our mapping tool to support more complex
structural mappings and their visualisation , to assist users
in understanding many-to-many repeating field mappings.
As we utilise a business form paradigm there may already
exist a mapping from the underlying data representation
through to the presented form. We will be considering the
impact these existing mappings have in terms of the
business mappings that can be supported. Semi-automated
field copying, using example data elements in the source

and target fields to identify same-valued copies, will be
added together with a spreadsheet language to replace the
formulae used to express field-level value copying,
splitting and merging. This will provide analysts with a
familiar visual metaphor to express these (sometimes
complex) formulae. We are also planning to experiment
with extracting field parsing formulae from a query-by-
example interface, allowing field splitting 1-to-many
mappings to be deduced from these example data
manipulations. We are planning to implement code
generators for Java-based, Rimu-based [9] and other data
mapping technology implementations from our form-
based mapping specifications. We also plan to investigate
the use of MS Access™ and Internet Explorer™-
implemented forms and scanned business forms to
provide concrete form layout for connecting. This will
allow analysts to import form data from these “concrete”
form implementation technologies and specify data
mappings using these actual layouts, linking concrete
form elements to imported meta-data elements.

9. Summary

Business analysts are the domain experts in business-

to-business data mapping domains. They know the
meaning of complex data sets to each business and the
required data transformations (or “copying”) required to
support inter-business data exchange. We have developed
a proof-of-concept data mapping prototype that uses a
concrete “business form copying” metaphor to support
data transformation specification. Business analysts, who
are not programmers, import meta-data into our tool,
which constructs user-modifiable business form layout
from this data. Users connect form fields to specify how
data is “copied from one business’s form to another’s”.
This data copying-based specification is used to generate,
with no user intervention, a complex data mapping
transformation implementation.

References

1. Aleksy M, Schader M, Tapper C. Interoperability and

interchangeability of middleware components in a
three-tier CORBA-environment-state of the art.
Proceedings Third International Enterprise Distributed
Object Computing. Conference, IEEE CS Press. 1999,
pp.204-13. Piscataway, NJ, USA.

2. Alonso G, Fiedler U, Hagen C, Lazcano A, Schuldt H,
Weiler N. WISE: business to business e-commerce.
Proceedings Ninth International Workshop on Research
Issues on Data Engineering: Information Technology for
Virtual Enterprises. RIDE-VE'99. IEEE CS Press, 1999,
pp.132-9. Los Alamitos, CA, USA.

3. Blackham, J., Grundeman, P., Grundy, J.C., Hosking, J.G.
and Mugridge, W.B., Supporting Pervasive Business via
Virtual Database Aggregation, In Proceedings of

Evolve’2001 – Pervasive Business, Sydney, Australia,
March 15-16 2001, DSTC Press.

4. Cheung, D., Lee, S.D., Lee, T., Song, W., Tan, C.J.
Distributed and scalable XML document processing
architecture for E-commerce systems. In Proceedings of the
Second International Workshop on Advanced Issues of E-
Commerce and Web-Based Information Systems. IEEE,
2000, pp.152-157.

5. Cypher, A, (ed) Watch what I do: Programming by
demonstration, Cambridge, Mass, MIT Press.

6. eXcelon Corp, eXcelon B2B Integration Server White
Paper, www.exceloncorp.com.

7. Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies & Solutions, Sept.
1999, pp.10-14.

8. Green, T.R.G and Petre, M, Usability analysis of visual
programming environments: a ‘cognitive dimensions’
framework, Journal of Visual Languages and Computing
1996 (7), pp.131-174.

9. Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall,
P. Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 2001 IEEE Automated
Software Engineering Conference, San Diego, CA, 26-28
Nov 2001, IEEE CS Press.

10. Huemer, C. and Tjoa, A.M. Meta Messages in Electronic
Data Interchange (EDI), In Proceedings of the Third IEEE
meta-data conference, April 1999.

11. IBM Corp, MQ Series Integrator, www.ibm.com.
12. Masuishi, T., Takahashi, N., A Reporting Tool Using

Programming by Example for Format Designation, in
Liebermann H (ed) Your Wish is my Command, Morgan
Kaufman, 2000.

13. Maulsby D, and Witten, I H, MetaMouse: an instructable
agent for programming by demonstration, in Cypher A (ed)
Watch what I do, MIT Press, 1993.

14. Morgenthal, J.P. XML: The New Integration Frontier, EAI
Journal, Feb. 2001, www.eaijournal.com.

15. OnDisplay Corp, www.ondisplay.com.
16. Seeburger Corp, www.seeburger.de/xml/.
17. Senn JA. The evolution of business-to-business commerce

models: the influence of new information technology
models. Proceedings of International Workshop on Advance
Issues of E-Commerce and Web-Based Information
Systems. IEEE CS Press, 1999, pp.153-8. Piscataway, NJ,
USA.

18. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

19. Spencer, H. XML standards for data interchange. Imaging &
Document Solutions, vol.9, no.9, Sept. 2000, pp.15-17.

20. Sugiura, A, Web Browsing by Example, in Liebermann H
(ed) Your Wish is my Command, Morgan Kaufman, 2000.

21. Swatman, P.M.C., Swatman, P.A., Fowler, D.C. A model of
EDI integration and strategic business reengineering.
Journal of Strategic Information Systems, vol.3, no.1,
March, 1994, pp.41-60.

22. XML.org, XML and XSLT, www.xml.org.
23. Wu, E. A CORBA-based architecture for integrating

distributed and heterogeneous databases. Proceedings
Fifth IEEE International Conference on Engineering
of Complex Computer Systems, IEEE CS Press, 1999,
pp.143-52. Los Alamitos, CA, USA.

