
A Visual Language for Design Pattern Modelling and Instantiation

David Maplesden, John Hosking and John Grundy
Department of Computer Science, University of Auckland,

Private Bag 92019 Auckland, New Zealand
{dmap001,john,john-g}@cs.auckland.ac.nz

Abstract
We describe the Design Pattern Modelling

Language, a notation supporting the specification of
design pattern solutions and their instantiation into
UML design models.

1. Introduction
Design patterns are a method of encapsulating the

knowledge of experienced software designers in a
human readable and understandable form. We describe
the DPML (Design Pattern Modelling Language), a
visual language for modelling design pattern solutions
and their instantiations in OO designs of software
systems.

2. Previous Work
The proposed UML standard for modelling design

patterns uses parameterised collaborations [1]. However,
as these are constructed using similar concepts to object
models, they are ust prototypical examples of an object
model. A similar problem exists with the work of Florijn
[2]. LePUS [3] uses monadic logic to express design
pattern solutions and includes a visual notation.
However, LePUS’ abstractions are difficult for average
designers to work with. Lauder [[4]] extends UML to
visually specify patterns using a 3-layer model.
However, differentiation between their diagrams is
unclear and it is not obvious why abstractions are made
at one level and not another.

3. Overview of DPML
DPML defines a notation for modelling design

pattern solutions and solution instances within object
models. DPML supports incorporation of patterns at
design-time, rather than program coding, assuming that
if patterns can be effectively incorporated into a UML
class model then conversion to code is straightforward.

The core concept of DPML is a design pattern
specification diagram, the basic notation for which is
shown in Fig. 1. DPML models design pattern solutions
as a collection of participants; dimensions associated
with the participants and constraints on the participants.
A participant represents a structurally significant feature

of a design pattern (eg class, method). When
instantiated, this will be linked to objects from the object
model.

Interface

Implementation

Operation

Method

Attribute

Binary Directed Relation

Interface with Dimensions

{A constraint
imposed on
an element}

A Simple Constraint

Name
instanceName

Name
inst anceName

Name
instanceName

Name
instanceName

Name
instanceName

Name
instanceName

Name

Fig. 1: Basic DPML notation

Dimensions specify that a participant can have a set
of objects playing a role. The same dimension can be
associated with different participants in a pattern and
this specifies not only that these participants can have
some multiple number of objects associated with them
but that this number of objects is the same for both
participants.

concreteCreateOps

concreteFactories

Implements

createOps

Declared_In

Defined InRealises

Products concreteProducts

Implements

Creates

AbstractFactory

Return Type

factoriesDimension

productsDimension

Dimension Key

Fig. 2: Example specification of Abstract Factory.

Consider the Abstract Factory design pattern (Fig.
2). There are 6 main participants. The AbstractFactory
interface declares the set of abstract create operations
createOps that the concreteFactories will implement.
The createOps operation represents a set of operations
so has a dimension (productsDimension). A
Declared_In relation between createOps and
AbstractFactory implies that all methods linked to the
createOps operation in an instantiation of the pattern
must be declared in the object that is linked to the
AbstractFactory interface.

The concreteFactories implementation has
dimension, factoriesDimension, to indicate it represents
a number of concrete classes. The concreteCreateOps
method represents all methods from the set of
concreteFactories that implement one of the sets of
createOps so is associated with dimensions
factoriesDimension and productsDimension.

The Products interface has productsDimension
associated with it to imply there are the same number of
abstract product interfaces as there are abstract
createOps operations. The Return_Type relation implies
each of the createOps operations has exactly one of the
Products as its return type. The concreteProducts
implementation has both productsDimension and
factoriesDimension associated with it, as there is exactly
one concreteProduct for each abstract product and
concrete factory.

4. Design Pattern Instantiation
A DPML Instantiation Diagram models design

pattern instances and their realisation within object
models. Instantiation diagrams are similar to
specification diagrams; the basic symbols are the same
shape, but the ‘proxy’ elements, representing the
instantiated participants, have a dashed (or coloured)
outline.

Fig 3 shows an instantiation of Abstract Factory in a
design for a GUI toolkit that allows programmers to
create a GUI with windows, menus, icons, buttons etc.

DPML was designed specifically to facilitate the
provision of tool support. We have successfully

implemented a prototype DPML CASE tool. A screen
dump showing the tool in use is shown in Fig. 4.

concreteCreateOps

concreteFactories

Implements

createOps

Declared_In

Defined In
Realises

Products concreteProducts

Implements

Creates

AbstractFactory

factoriesDimension

productsDimension

Dimension Key

MetalFactory
SpaceFactorycreateMenu

createScrollBar
createButton

6 bound elements

6 bound elements
Menu

ScrollBar
Button

GUIFactory

Return Type

Fig. 3: Instantiation of the AbstractFactory pattern.

Acknowledgments
The New Zealand PGSF, and the University of

Auckland Research Committee supported this research.

References
[1] Sunyé, G, Le Guennec, A, Jézéquel, J-M, “Design

patterns application in UML”, ECOOP 2000 -
Proceedings of the 14th European conference on Object
Oriented programming, LNCS 1850, pg 44-62, (2000).

[2] Florijn, G Meijers, M van Winsen, P, “Tool support for
object-oriented patterns”, ECOOP ‘97 – Proceedings of
the 11th European conference on Object Oriented
programming, LNCS 1241, pg 472-495, (1997).

[3] Eden, AH, Hirshfeld, Y, Yehudai, A “LePUS – A
declarative pattern specification language”, Technical
report 326/98, department of Computer Science, Tel Aviv
University, (1998).

[4] Lauder, A, Kent, S “Precise Visual Specification of
Design Patterns”, ECOOP’98 Workshop reader on OO
technology, LNCS 1445, pg114-134, 1998.

Figure 4: A UML Class Diagram; a Design Pattern Specification Diagram; a Design Pattern Instantiation Diagram.

