
Copyright 2005 IEEE. Published in the Proceedings of European Conference on Web Services, Vaxjo, Sweden. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

An Architecture for Developing Aspect-Oriented Web Services

Santokh Singh1, John Grundy1, 2, John Hosking1, Jing Sun1
1Department of Computer Science and 2Department of Electrical and Computer Engineering

 University of Auckland, Private Bag 92019, Auckland, New Zealand
{santokh,john-g,john,j.sun}@cs.auckland.ac.nz

Abstract

Current web services approaches have many
limitations, especially with description, discovery and
integration mechanisms. In this paper we present a
novel software architecture called aspect-oriented web
services (AOWS) which addresses these problems.
AOWS uses descriptions of cross-cutting concerns
between web services to give more complete
descriptions of services, supporting richer dynamic
discovery and seamless integration. We describe our
architecture, a formal specification of it and an
implementation using .NET web services technology.

1. Introduction

Web services are software systems identified by
URIs, whose public interfaces and bindings are
defined in Web Services Description Language
(WSDL) documents [1], [3], [7]. A web service’s
interface and bindings can be discovered by other
systems using Universal Description, Discovery and
Integration (UDDI) registries. These systems may then
interact with the web service in a manner prescribed by
its definition, using XML based messages.
Conventional web service design techniques focus on
low level component interface design and
implementation. This can lead to development of
components whose services are difficult to understand
and combine [4], [8].

Aspect Oriented Component Engineering (AOCE)
is a methodology we have developed that uses aspects
to characterize and categorize different systemic cross-
cutting capabilities of components and to reason about
inter-component relationships [21]. Based on this, we
have developed a new approach for describing,
discovering and integrating web services-based
components. This involves extending the WSDL and
UDDI mechanisms to include specifications of web
service “aspects”, characterizing systemic, cross-
cutting concerns impacting a web service. These

aspects provide an enriched description mechanism
improving discovery and dynamic integration [11]
[16]. Our approach contrasts to other approaches to
describing cross-cutting aspects for web services [1],
[5], [4], which focus on supporting interface extension
and weaving or before/after processing code insertion
for invoked services.

We present a motivation for our work and describe
our new aspect-oriented web services (AOWS)
architecture. We then present a formal specification of
AOWS using Alloy [13], and describe our experiences
implementing .NET-based web services with our
approach. We summarize the current strengths and
limitations of our AOWS approach and present some
directions for future research.

2. Motivation

Consider a travel planning application built from
dynamically discovered web services providing travel
item search (flights, cars, hotel rooms etc), booking,
payment, event scheduling and itinerary management
[21]. The application developer wants to allow
dynamic discovery of appropriate services providing
these functions. Multiple, alternative service providers
may be discovered. Services may provide limited or
comprehensive functionality. Some may be free, others
require payment. They may be from “trusted”
providers or unknown 3rd parties. Some may support
business transaction models, respond faster than others
to requests, or support security models that others
don’t. During service discovery validation of a web
service may need to be performed to ensure it actually
meets its advertised characteristics.

While such a travel planning application and
associated web services are often used to illustrate web
services concepts, several problems are present when
trying to engineer such applications with current web
service development approaches and technologies:

• How can appropriate web service components
be modelled, analyzed and verified so that they

can be correctly identified and designed? This
includes specifying both functional and non-
functional behaviour of the services for their
clients.

• How can such web services be appropriately
described and advertised so that clients can
discover and integrate with them? This includes
describing extra behavioural characteristics to
select between web services with compatible
interfaces.

• How can web service descriptions be used to
validate that discovered services meet
advertised characteristics at run-time? This
includes characteristics such as security,
performance and transactional behaviour.

• How can adaptors to components be discovered
or synthesized and initialized, including
supporting composite component aggregation?

Current approaches, such as TopCoderR [23],

OMG’s Model Driven Architecture (MDA) [20],
Select PerspectiveTM [16] and Architecture Based
Component Composition Approach (ABC) [19], try to
combine the best of traditional software development
methodologies with the power of community-based
development, but have not addressed the above
problems. They focus on low level features of
components rather than component requirements and
inter-component relationships, making the components
hard to understand and combine. One of the most
popular is OMG’s MDA, which defines software using
UML models, including base model specifying
business functionality and behaviour in a technology-
neutral way (Platform-Independent Model and an
intermediate model (Platform-Specific Model)
reflecting non-business, computing-related details, e.g.
affecting performance and resource utilization, added
to the Platform-Independent Model by the web
services’ architects. Though it is commendable and can
be applied to large scale web service-based system
development, it has several disadvantages, including
exhaustive and sometimes frustrating editing of
complex designs and implementations for large
systems, and a focus on lower-level system features.

TopCoderR, the most comprehensive and practical,
has four stages to a release of each component:
specification, architecture/design, development/testing,
and certification. If any phase fails an acceptance test,
the phase is restarted. This methodology is tedious and
also focuses on lower-level features of the
component/system. This can make designs hard to
understand at abstract levels or during refactoring.
Higher level systemic component descriptions such as

persistency, user interfaces, security, transaction
processing, performance etc. are all lacking. Such
high-level features are important for understanding and
using systemic components and their functionalities,
especially in complex systems.

Various web services-oriented compositional
methods and techniques have been developed in recent
times [7], [3], [22], [23]. Most of these focus on
discovering or defining component interfaces and
some focus on supporting specification of specific
kinds of cross-cutting concerns. However few as yet
have comprehensive architectural and specification
support for a wide range of aspects impacting web
services. Several aspect-oriented development
approaches for large component-based systems have
been developed [4], [14], but most have not as yet been
applied to web services.

3. Aspect-oriented Web Services

To solve these challenges and overcome current
limitations we have been developing Aspect-Oriented
Web Services (AOWS). This extends our AOCE work
which developed extensions to the object component
model to support component design, de-coupled
implementation and run-time discovery and integration
using component aspects [1], [8], [9], [10]. Component
aspects are cross-cutting concerns impacting on
components, including persistency management,
distribution, security, transaction processing and
resource use. Instead of merely weaving or morphing
[11] aspects into code using joint points, point cuts and
advice mechanisms, AOCE also uses our more
efficient and effective concept of developing highly
characterized and categorized reusable software
components that are enriched with clearly identified
and defined aspects from the beginning of the
development process itself. These components provide
capabilities to others or require services from them
across these different system aspects. Aspect details
capture functional and non-functional properties and
allow design-time reasoning and run-time component
description and adaptation.

AOWS also uses the concept of aspects [15], in this
case aspects that impact on different parts of web
services. Figure 1 shows an example from the travel
planner system. The client discovers various services
from a registry (1). Flight searches are performed via
various providers (2), and bookings made directly or
via agents (3), possibly using a payment system (such
as credit card authorization) (4). Two examples of web

Travel Planner
Client

findFlights()
bookFlights()
payBookings()
cancelBook()

Flights Search
#1

findFlights()
bookFlights()

Flights Search
#2

findFlights()

Agent #1

bookItems()
doPayment()
undoBooking()

Payment

processPayment()

BTP Service

Register()
Commit()
Rollback()

UDDI

Payment Adaptor
doPayment()
creditReversal()

Security
Authenticate
Encrypt
…

Transaction
BeginMark
CommitMark
Timeout
…

2

1

3

4

Figure 1. Examples of web service aspects.

service aspects (dotted boxes) and their impact are
illustrated. Security issues may include a need for user
authentication and data encryption.

In specifying client needs and web services
providing them, we need to specify these security
requirements, and the clients and services requiring
and providing them. Details such as authentication
method also need to be specified. At service discovery
and integration time, such constraints must be used in
searching and validating a discovered service. Another
example is support for a business transaction protocol
e,g a. long-running transaction over several services.
Here, flights may be found and booked, but not
confirmed until paid. They may become unavailable or
change during the long-running transaction, meaning
transactional constraints must be described, services
support them, and at discovery and integration time
support validated.

Key aspects to describe when advertising web
services for others to interact with include those for
security models, transaction management, performance
measures for operations, faults and exception-handling
approaches. In addition, when building web services
we may describe data persistency approach, database
transactional behaviour for operations, resource
utilization, communications infrastructure, monitoring
and logging, etc. During discovery and integration, we
may need to locate adaptors, transaction managers, and
security managers, and compose (or orchestrate)
services [21]. We aim to better support this range of
activities when designing, implementing and deploying
web services using AOWS. We have developed a
model of AOWS-based systems, formal specification

of this model, and proof-of-concept implementation of
the model with .NET web services.

Figure 2 shows key architectural abstractions of our
approach. A web service client,
AOWebServiceRequester, uses an AOConnector (1) to
communicate with service providers and services.
These include an AOUDDI repository, a set of
AOWebService Providers, AOComposites, Runtime
Testing Agents and a set of AOAdaptors.

Set of AOWebService
Providers

Web Repository

AOUDDI

Set of AOWSDL

AOComposite
AOWebService

Providers

AO
Runtime
Testing
Agent

910

AOConnectors

Set of
AOAdaptors

AOWebService
Requester

7

8

6

4
32

1 5

Figure 2. An overview of our Aspect-oriented Web

Services architecture.

If an AOWebServiceRequester needs a set of

services that are only available by composing multiple
providers, an AOComposite is used (2). This selects

from the set of the relevant providers and present itself
as a provider of those services (3). For example, a user
may wish to search for holiday resorts, inter-
connecting flights, other transport arrangements and
make a single payment for the whole trip. The client
needs multiple providers to achieve this myriad of
tasks. The relevant providers are selected and bundled
by an AOComposite and made available as a
composite service to the requester’s AOConnector.

AOWebServiceProviders must publish their
services by registering and depositing their unique
AOWSDL [21] documents with the AOUDDI (9).
AOWSDL interfaces include aspect specifications of
service capabilities and requirements for operation, as
used in AOCE. Our AOWSDL document is very
different from other aspect-oriented service documents
like AO4BPEL [4] which employs more traditional
point-cut specification mechanisms over services..
Using our AOWSDL is richer and more structured,
providing more details about both functional and non-
functional properties of web service interfaces via
aspect details and detail property constraints. This
allows us to configure and adapt to whole components
which cannot be done using AO4BPEL. We use two
sets of descriptors in our AOWSDL, one more verbose
for humans to read and another crisp one for robots to
decipher and dynamically locate, integrate and
consume useful discovered web services. These enable
rich queries of the repository for services and
deployment-time testing of discovered services to
ensure they meet requester requirements and
advertised capabilities.

AOConnectors communicate with the services (5)
to service AOWebService Requester requests. For
example, the travel planner client
(AOWebServiceRequester) may request Flight
Booking services that, in addition to standard UDDI
query terms, provide BTP long transactions, and
require pre-authentication of the client’s user and a
Travel Agent payment service. An AOConnector
queries the AOUDDI for all such services and then
services client requests via their
AOWebServiceProviders.

AOConnectors may use adaptors to communicate
with a web service (4), obtained via the AOUDDI
registry. Extended UDDI queries are used to locate
appropriate adaptors (8). The AO Adapter checks if the
AOWSDL documents are in the proper protocol, and if
not, the adaptor converts it to the proper format.
AORunTimeTestingAgents can validate a discovered
web service (6), from its AOWSDL description by
mimicking the requester and using AOConnectors as
conduits to test the providers. This ensures that the

responses and results received are in conformity with
the services promised in the AOWSDL.

4. Specification of AOWS using Alloy

We have formally modelled, analyzed and verified
the various AOWS subsystems and their relationships
in Alloy [13]. In this section we overview Alloy and
show how we used it to formally specify the structure
and behaviour of AOWS-based systems.

4.1. Alloy Overview

Alloy is a first-order logic based structural
modelling language for expressing complex structural
constraints and behaviors. It treats relations as first
class objects and uses relational composition operators
to combine structured entities. Essential constructs are:

• A signature (sig) is a paragraph that introduces
a basic type, a collection of relations (called
field), and a set of constraints on their values
that can be defined in our AOWS. A signature
may inherit fields and constraints from another
signature.

• A function (fun) evaluates the first order
expressions into a value. It is a parameterized
function that can be used in other expressions.

• A predicate (pred) captures Boolean behavior
constraints in AOWS and evaluates them. It is a
parameterized formula that can be further
applied in other constraints.

• A fact (fact) imposes global constraints on
relations and objects. A fact is a formula that
takes no arguments and need not be invoked
explicitly. It acts as a model axiom.

• An assertion (assert) specifies an intended
property in the AOWS system. It is a formula
which needs to be checked for correctness,
assuming the facts in the model.

The Alloy Analyzer is a tool for analyzing models

written in Alloy [6]. Given a finite scope for a
specification, Alloy Analyzer translates it into a
propositional formula and uses a solver to generate
instances that can satisfy the facts and properties
expressed in the specification. I.e., given a formula and
a scope and a bound on the number of atoms in the
universe, it determines whether there exists a model of
the formula (i.e., an assignment of values to the sets
and relations that makes the formula true) that uses no
more atoms than the scope permits. The Analyzer
provides two kinds of risk analysis for our AOWS
specification. The first is to check whether constraints

given are too weak. Flaws of this kind are found by
checking assertions, in which a consequence of the
specification is tested by attempting to generate a
counterexample. The second risk is that the constraints
given are too strong; in the worst case, the constraints
contradict one another and all possible states are ruled
out. Flaws of this kind are found by simulation where
consistency of a fact or function is demonstrated by
generating a snapshot showing its invocation.

4.2. Alloy Specification of AOWS

Using the constructs in Alloy we formally modelled
AOWS based on the component inter-relationships
outlined earlier. Here we define some of the signatures
used to construct our Alloy model. The full list and
description of all the signatures used for our model is
too large to include completely in this paper. Figure 3
shows the signature of the AOConnector, central to our
architecture, which acts as a conduit between the
various other subsystems that make up AOWS. Each
client connects to only one connector and vice versa.
For both dynamic and static functional systemic
purposes, the connector needs to know about any
updated, useful and current information about all the
relevant and available AOWeb services through their
respective AOWSDLs, the composite and any web
service that is consumed by the client, as shown in the
fields of the connector.

Figure 3 also specifies signatures for AOWS
requesters and providers. Requesters connect to all
other AOWS objects through a connector making
requests and getting responses through it. The most
important feature of a provider for any client is the
AOWSDL document exposing its services. We model
each AOWSDL as a set of AO Components modeling
the collection of aspect-oriented components the
service provides. Each component contains a unique
name for its provider, a set of AOComponent(s), an
AODocumentation, and AOWSDescription.
AOComponents contain sets of Functional Aspects and
NonFunctionalAspects. Each component also has a
name, used as an identity, and an
AOComponentDescription. FunctionalAspects is a
collection of aspects related to specific aspectual
functions, for instance persistency aspects having
aspect details catering for search, update, delete and
insert operations, whereas the set of
NonFunctionalAspects are not specific to core
functionality, e.g. performance aspects.

sig AOConnector{
 aocomposite : lone AOComposite,
 directlyConnectedAOWS : set AOWSDL,
 newlyAdvertisedAOWSDL : lone AOWSDL,
 chosenAOWSDL : lone AOWSDL,
 oldAOWSDL : lone directlyConnectedAOWS
}

sig AOWebServiceRequester{
 aoconnector : AOConnector,
 newlyAdvertisedAOWSDL : lone AOWSDL
}
sig AOWebServiceProvider{
 aowsdl : set AOWSDL
}
sig AOWSDL{
 aoComponents : AOComponents
}
sig AOComponents{
 name : String,
 aoComponent : set AOComponent,
 aoDocumentation : AODocumentation,
 aoWSDescription : AOWSDescription
}
sig AOComponent{
 name : String,
 aoComponentDescription :
AOComponentDescription,
 functionalAspect : set FunctionalAspect,
 nonFunctionalAspect :
 set NonFunctionalAspect
}
sig FunctionalAspect {
 type : String,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : FunctionalAspectDetail,
 userOperation : String,
 returnType : String,
 parameter : Parameter
}

Figure 3. AOConnector, AOWebServiceRequester,
AOWebServiceProvider, AOWSDL and related

aspectual signatures used to model AOWS.

fact { no aowsProvider1,
 aowsProvider2 : AOWebServiceProvider |
 aowsProvider1.aowsdl =
aowsProvider2.aowsdl }
fact { all myAOWSDL : AOWSDL |
 (one aowsProvider : AOWebServiceProvider |
 myAOWSDL in aowsProvider.aowsdl)
}
pred DirectConnectionToNewAOWS (
myAOConnector' : AOConnector, myAOConnector :
AOConnector) {
 --precondition
 myAOConnector.newlyAdvertisedAOWSDL
 !in myAOConnector.aowsdl
 -- update the aoconnector
 myAOConnector'.aowsdl =
 myAOConnector.aowsdl +
 myAOConnector.newlyAdvertisedAOWSDL
}

Figure 4. Facts and predicates, relating providers,
requesters and aoconnectors.

sig SearchForHotel {
 type : Persistency,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : SearchForHotelDetail,
 userOperation : String,
 returnType : String,
 parameter : SearchForHotelParameter}
sig SearchForHotelRoom {
 type : Persistency,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : SearchForHotelRoomDetail,
 userOperation : String,
 returnType : String,
 parameter : SearchForHotelRoomParameter}
sig SearchForHotelDetail {
 type : SearchForHotelDataRetrieval,
 detail : SelectHotel,
 provided : Boolean}
sig SearchForHotelRoomDetail {
 type : SearchForHotelRoomDataRetrieval,
 detail : SelectHotelRoom,
 provided : Boolean}
fact { all searchHotel : SearchForHotel |
 (one searchHotelDetail :
 SearchForHotelDetail |
 searchHotelDetail in
 searchHotel.aspectDetail) }
fact { all searchHotelRoom :
 SearchForHotelRoom |
 (one searchHotelRoomDetail :
 SearchForHotelRoomDetail |
 searchHotelRoomDetail in
 searchHotelRoom.aspectDetail)}

Figure 5. Alloy code snippet from a formal model of the
Travel Planner application.

The AODocumentation is human readable and

contains summarized information about advertised
services including aspect-oriented components that are
exposed but resident in the service provider.
AOWSDescription, is a machine readable element. It is
for robots to decipher and as such contains less
descriptive language, and is used for dynamic

discovery and integration. In addition, AOWSDL also
contains elements describing completely the service’s
definitions, types, messages, operations, port types and
bindings, including those for importing further service
description documents.

The signatures for all the elements of an AOWS
system together specify all the parts of AOWS in our
Alloy model. In Figure 4 are 2 of the many facts that
define the structure of an aspect oriented web service
provider. Together they state that an AOWSDL is
unique to a particular web service provider, as no two
AOWSDL can be the same as they have at least a
different URL, and each AOWSDL must originate
from an AOWebService Provider, so requesters can
integrate and consume the services. The predicate
captures the behavior of the AOCconnector as it
dynamically integrates with a service provider found to
be useful to the requester by making a direct
connection (not via an AOComposite).

We also simulated an AO web service based
collaborative Travel Planner system based on the
concept of our AOWS architecture. This can be used
to make comprehensive travel arrangements e.g.
searching/booking for flights, hotels, trains etc., and
making payments for those services. Figure 5 is a
snippet of the Alloy code to formally model this
application. It shows the aspects identified together
with their respective aspect details, aspect type, its
provided/required properties etc. to be used to perform
aspectual searches for hotels and rooms in the
application by consuming multiple relevant web
services.

Figure 6. Model generated from Alloy showing the relationship between the aspect-oriented web service provider and

requester through an AOConnector.

5. AOWS Dynamic Behaviour

Alloy Analyzer allows us to generate simulations of
relationships between objects under consideration in
the AOWS system. Simulations were created by first
generating the main objects in the system based on
their signatures. Each signature is also associated with
facts, assertions and predicates permitting simulation
of relationships or functions within the system
described and discussed in-depth here. We simulated
the behavior of various sub-systems of AOWS based
on relationships and functions of its subparts. The
model illustrated in Figure 6 shows the main objects
involved in the dynamic interaction between a
requester and provider. These are service provider,
requester, AOWSDL, AOComponents,
AOComponent, AOConnector, AOComposite,
NonFunctionalAspects and FunctionalAspects.
Correctness was tested by checking for errors or
counter-examples. We then verified the model and its
constraints were feasible and viable by testing
assertions for scenarios relevant to AOWS behavior,
for example a requester dynamically discovering and
connecting to a provider through an AOConnector.
When a provider with required services is found, the
AOConnector is simulated to directly connect to the
provider (without need for an AOComposite). The
sequence of events as shown in Figure 5 is: (1)
requester creates a new request (usingCreate
Request()) relaying it to the AOConnector (Send
RequestToAOConnector()); (2) the connector passes
this request to the AOUDDI (Send
RequestToAOUDDI()) which processes the request
and transmit result(s) to the connector
(ComputeResultAndTransmit()); (3) the AOConnector
selects the best AO web service provider
(SelectBestAOWS()) based on matching

AOComponents, aspects, aspect details and properties
required; (4) it then dynamically connects and
integrates the requester with selected provider through
the connector object
(DirectConnectionToRequestedAOWS ()).

assert TestDirectConnectionToRequestedAOWS {
 all myRequest : Request,
 aowsRequester : AOWebServiceRequester,
 myAOConnector : AOConnector,
 myAOUDDI : AOUDDI,
 myResult : Result,
 myAOWSDL : AOWSDL,
 myAOUDDI' : AOUDDI,
 myAOConnector' : AOConnector |
 {
 CreateRequest (myRequest,
 aowsRequester)
 SendRequestToAOConnector (aowsRequester,
 myAOConnector)
 SendRequestToAOUDDI (myAOUDDI',
 myAOConnector, myAOUDDI)
 ComputeResultAndTransmit (myResult,
 myAOUDDI, myAOConnector)
 SelectBestAOWS (myAOConnector,
 myAOWSDL)
 DirectConnectionToRequestedAOWS(
 myAOConnector', myAOConnector)
 }
} check
 TestDirectConnectionToRequestedAOWS for 2

Figure 7. Alloy assertion for dynamic service discovery
via an AOConnector.

Figure 8 shows a sequence diagram of this dynamic
service discovery process via an AOConnector
simulated formally using Alloy. It shows dynamic
discovery of the best matched web service provider
selected by the connector based on the aspect-enriched
request to the AOUDDI. This simulated assertion
proved successful as no counter examples were found.
A succession of other scenario-based assertions was
then applied. No counter-examples were found by the
Analyzer in its check runs for any scenario we tested,
giving us confidence that our AOWS approach is
formally feasible and logically correct [13].

AOWSRequester AOUDDIAOConnector

DirectConnectionToRequestedAOWS()

SendRequestToAOUDDI

SelectBestAOWS()
ComputeResults()

AOWSProvider

Return()

DirectConnectionToRequestedAOWS()

Return()

CreateRequest()

Figure 8. Sequence diagram depicting the dynamic service discovery via an AOConnector that was simulated using Alloy
assertions.

Figure 9. The travel planner's AOWS-based architecture.

6. Implementation
To demonstrate our Alloy-modelled approach is

realizable, we designed and developed a prototype
collaborative Travel Planner that can dynamically
discover and locate relevant aspect-oriented web
service providers through our AOConnector
mechanism so that users can use it to plan and make
bookings for various itinerary items of their travel.
Figure 9 shows the architecture of the collaborative
Travel Planner using abstractions from our Alloy
AOWS model. The AOUDDI, AOWeb Service
requesters (clients), AOWeb Service providers,
AOAdaptors, AOComposite and
AORuntimeTestingAgents are inter-connected through
the AOConnector sub-system. The AOWS system is
completely componentized and aspectized. The XML
messages flowing through the connector are enriched
with aspects and aspectual properties. These aspectual
features together with the connector provide more
efficient and effective dynamic description, discovery
and integration of web services, irrespective of
language/platform.

Figure 9 shows some aspects of components in the
Travel Planner subsystems (in format <<Aspect
name>>). Aspect-details for each aspect are listed
below its name. These details have a “+” (detail
provided) or “-” (detail required) symbol preceding
them. Components making up each
subsystem/application expose interfaces that relay
information about these aspect-oriented functions.
Interfaces are implemented within the component
containing them and are used by other aspect-oriented
components assembling them together to build the
application in accordance with the AOCE
methodology.

We then implemented the .NET [2], [18] aspect-
oriented web services system based on the Alloy
model that is composed of components that:

• are self-describing not only in terms of their
interfaces but include aspect characterizations
for richer run-time understanding and
configuration;

• at run-time are able to dynamically locate web
service components providing required services

specified by their aspect characterizations
queried through AOConnectors;

• may make use of “standardised” aspect-based
adaptors to interact with discovered web
services in a de-coupled manner without hard-
coding type or behavioural information about
the component.

Figure 10 shows a section of the GUI of the Travel

Planner built using AOWS techniques. It shows the
web form of an application used to search and
subsequently book and make payments for trains to
particular destinations. On the right is a sample C#
code snippet. It depicts implementation of aspects
identified in the program. The aspects were captured in
the systemic components and are identified and
described to make the components better characterized
and categorized. The Solution Explorer to the right of
the program listing portrays the aspect-oriented
components of the software. These can be expanded to
show their interfaces and implementing classes.

7. Discussion

The use of Alloy to formally model, analyse and
verify the AOWS architecture allowed us invaluable
insight into the various subsystems, AO components
and objects that constitute the web-based system and
their detailed aspect-oriented operations that make it
work. We were able to identify possible problems in
our models, isolate and rectify them in our designs

before any implementations were done. This was
particularly useful in the connector object as initially
we were not exactly sure how many operations it
should support to be optimal. Through the use of Alloy
we were able to analyze, modify and mould it into its
present state as described in this paper.

The AOConnector is of essence in our architecture
as it allows for the separation and retention in the
client of the core client functionalities of the requester
from other ancillary and collaborative operations like
making dynamic linkages and connections, relaying
requests to the correct AOWeb services, obtaining
responses, and processing information e.g. choosing
the best web service provider. The connector is not
modelled along existing models e.g. the façade patterns
etc., because besides the above inclusion of
functionalities into it, our connector object needs to
possess, albeit a minimal knowledge of the particular
client using it so that it can have a one to one
relationship with the client but a one to many
relationship with the web services. When a connection
is terminated with the client, the connector be reused
with other clients by resetting it and clearing its
memory first. The connector also acts as a buffer-
cum-conduit for the flow of information between the
requester and the outside world. Clients can thus be
engineered as lightweight systems as they need less
code and fewer components and can concentrate on
their main functional activities. This makes them easier
to design and implement.

Figure 10. (a) Travel planner GUI and (b) example C# code implementing aspects.

Also, being lightweight, clients are more
understandable and easier to refactor, thus making the
system as a whole more maintainable and scalable. The
downside of using an AOConnector is that it
constitutes another subsystem to be designed and
implemented. Furthermore clients have to rely heavily
on the AOConnectors for communication meaning
more transactions are required to complete each
request/ response operation. These are easily
outweighed by the numerous advantages described
above. Furthermore developers just need to link a
client to the AOConnector object. Also the
AOConnector can be reused or replicated for use with
other clients and AOWS subsystems thus making any
future AOWS development easier and more
streamlined.

Based on the AOWS architecture, we developed
our travel planner prototype system using Visual C#
web service components and .NET. The web service
clients were implemented without hard-coding any
remote service information but instead use our
extended AOConnector, AO-UDDI mechanism and
AOWSDL documents to locate components satisfying
required services. Web services were implemented so
that they are dynamically located by the AOConnector
and integrated with clients. Web service components
can be run-time tested by dynamic validation agents to
ensure that they meet their aspect characterized
performance and other constraints in actual
deployment. Several adaptors were implemented to
allow a web service client to interact with discovered
web services without direct knowledge of their SOAP
protocols and behaviour, instead using standardised,
aspect-categorized adaptor messages for indirect
interaction.

Our novel AOWS architecture enabled us to
achieve a higher level of characterization and
modularization in our travel planner system than other
conventional approaches [22], [23]. The use of the
AOCE methodology to build our web services-based
travel planner system resulted in increased
understanding of the interrelationships between the
various subsystems and components concerned [4],
[10], [22]. Capturing cross-cutting concerns using
AOCE for the travel planner services we found that the
development process was considerably simplified. The
aspect-enhanced designs and implementations were
found to be more easily understood, making this
AOWS-based system more maintainable and scalable.
Others working with aspect-oriented development and
components have found similar results [4], [14].

8. Summary

We have presented a novel methodology and
software architecture called aspect-oriented web
services which addresses identified problems with
current web services approaches, notably in the areas
of description, dynamic discovery and integration
mechanisms. We presented a formal specification,
analysis and verification of AOWS using Alloy, a
formal modelling language. Aspect-oriented
Component Engineering or AOCE was used to provide
the new development framework for describing and
reasoning about the AOWS component/systemic
capabilities from multiple aspect-oriented perspectives.
We further used .NET web services technology and
successfully implemented a prototype of the
formalized AOWS in the form of a collaborative
Travel Planner application to serve as proof that
AOWS is also practical and realizable.

Acknowledgements

The many helpful comments of the anonymous
referees on an earlier draft of this paper are gratefully
acknowledged. This work has been supported in part
by the New Zealand Foundation for Research, Science
and Technology and the University of Auckland
Research Committee.

References

[1] Adams, C., Boeyen, S. UDDI and WSDL extensions
for Web service: a security framework, In Proc. 2002 ACM
workshop on XML security, Fairfax, VA , 2002.
[2] Ballinger, K., .NET Web Services: Architecture and
Implementation, Addison-Wesley, 2003.
[3] Cerami, E. Web Services Essentials - Distributed
Applications with XML-RPC, SOAP, UDDI & WSDL, Feb
2002, O'Reilly.
[4] Charfi A., Mezini M., Aspect-oriented Web service
composition with AO4BPEL, ECOWS 2004, Springer-
Verlag. 2004, Berlin, Germany.
[5] Colyer A., Clement, A., Large-scale AOSD for
Middleware, AOSD 04, ACM.
[6] Dong, J.S., Sun, J., and Wang, H., Checking and
Reasoning about Semantic Web through Alloy, FME 2003,
LNCS 2805.
[7] Gannod, C., Bhatia, S. Facilitating Automated Search
for Web Services, In Proc. IEEE International Conference on
Web Services, ICWS’04, IEEE.
[8] Grundy, J.C. and Hosking, J.G., In Engineering plug-
in software components to support collaborative work, S-
P&E, 2002; vol. 32, pp. 983-1013.
[9] Grundy, J. Multi Perspective Specification, Design and
Implementation of Software Components using Aspects, In
Int. J. Soft. Eng. and Knowledge Eng. Vol. 10, No. 6 (2000),
pp. 713-734, World Scientific.

[10] Grundy, J. and Ding, G. Automatic Validation of
Deployed J2EE Components Using Aspects, In Proc. 2002
IEEE International Conference on Automated Software
Engineering, Edinburgh, UK, IEEE CS Press.
[11] Hanenberg, S., Hirschfeld, R., Unland, R.. Morphing
Aspects: Incompletely Woven Aspects and Continuous
Weaving, AOSD 04, Lancaster, UK, ACM 2004
[12] Heisel, M., Santen, T., and Souqui`eres, J., Towards a
Formal Model of Software Components, In Formal Methods
and Software Engineering - Proc. 4th Int. Conf. on Formal
Engineering Methods.
[13] Jackson, D. Alloy: a lightweight object modeling
notation. ACM Trans. on Software Engineering and
Methodology, 2002.
[14] Katara, M., Katz, S., Architectural Views of Aspects,
In Proc. AOSD 2003, Boston, MA USA, ACM 2003.
[15] Kiczales et al, Aspect-oriented Programming, In Proc.
the 1997 European Conf. on Object-Oriented Programming,
Finland (June 1997), Springer-Verlag, LNCS 124.
[16] Latchem S. Patterns for Internet development.
Providing a component based technical architecture for
Internet solutions. SIGS 2000, Newdigate, UK.

[17] Lieberherr, K. Connections between Demeter/Adaptive
Programming and Aspect-Oriented Programming (AOP),
http://www.ccs.neu.edu/home/lieber/, 1999.
[18] Microsoft, Visual Studio and .NET,
http://www.microsoft.com/net/, 2003, Microsoft..
[19] Mei, H,, ABC: Supporting Software Architectures in
the Whole Lifecycle, Proceedings of the Second
International Conference on Software Engineering and
Formal Methods (SEFM’04), IEEE.
[20] Siegel, J. Using OMG’s Model Driven Architecture
(MDA) to Integrate Web Services, http://www.omg.org/.
[21] Singh, S., Grundy, J., Hosking, J.,. Developing .NET
Web Service-based Applications with Aspect-Oriented
Component Engineering, AWSA’04, Australia.
[22] Stearns, M., Piccinelli, G., Managing Interaction
Concerns in Web-Service Systems, Proc. 22nd Int. Conf. on
Distributed Computing Systems Workshops, pp. 424
[23] TopCoderR, 2005, http://www.topcoder.com/.
[24] Vitharana, P., Mariam, F., and Jain, H., Design,
Retrieval, And Assembly in Component-based Software
Development, CACM, vol. 46, no. 11, Nov. 2003.

