
In Proceedings of 2nd Component Users’ Conference, Munich, July 14-18 1997.

A Visual, Java-based
Componentware Environment

for Constructing Multi-view
Editing Systems

John Grundy

Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

Rick Mugridge and John Hosking

Department of Computer Science
University of Auckland

Private Bag, Auckland, New Zealand
{john, rick}@cs.auckland.ac.nz

Abstract

We describe a collection of tools supporting the
development of multiple view, JavaBeans based
environments. The appearance and interactive
behavious of graphical user interface components
and editors is specified visually using
BuildByWire, which generates JavaBeans
component implementations. Multiple view, view
consistency and cooperative work support is
provided using the JViews toolkit, which provides
specialisable classes for component repository and
inter component consistency relationships.
JComposer allows JViews components and
relationships to be specified visually and combined
with BuildByWire visual components, editors and
third-part Java Beans to generate substantially
complete multiple view environments.

1. Introduction

In recent work we have developed a wide range of
multi-view editing systems, including User
Interface builders [Mugridge et al 1996, Hosking et
al 1995, Grundy et al 1996a], CASE tools
[Grundy and Hosking 1996], Software
Engineering Environments [Grundy et al 1995],
CAD/CAM systems [Amor et al 1995], Groupware
tools [Grundy et al 1996b], and process modelling
environments [Grundy et al 1996b, Grundy and
Hosking 1996]. For example, Figure 1 shows an

example from SPE-Serendipity [Grundy et al,
1996b], which is an integrated software
development and process modelling environment.

To date, we have used an object-oriented toolkit,
MViews, [Grundy and Hosking 1996] to
implement such systems, and have not used
component-based solutions. However, it was
apparent that our systems could make good use of
componentware to improve reuse and integration of
individual editor and repository components,
consistency management techniques, and indeed
the whole editors and tools themselves. Existing
componentware toolkits, such as OpenDoc
[OpenDoc 1996], ActiveX [Active X 1996] and
JavaBeans [JavaBeans 1996], however, lack
sufficiently flexible inter-component consistency
mechanisms and component linkage abstractions
for our purposes [Grundy et al 1996a]. They also
lack suitable development tools for the rapid
construction of such environments. While tools are
available for simple form based component
construction [Borland 1997, Powersoft 1997],
there is little support for the direct manipulation of
visual notations, as used in our environments.

To address this deficiency, we are developing a
Java-based componentware toolkit, with direct-
manipulation interface and repository component
builders, which supports the development of multi-
view applications. This consists of three
components:

Figure 1. An example of our previous work in developing multi-view, multi-user environments.

• BuildByWire, a direct manipulation editor for
specifying the user interface components and
basic layout behaviour for visual notations,
together with editors for constructing and
manipulating diagrams using the notations.

• JViews, a componentware toolkit for designing
and implementing the data, behaviour and inter-
component consistency management aspects of
view and repository components. JViews view
components are interfaced to BuildByWire
components to form a multi-view, distributed
editing system. JViews also provides support
for data persistency, collaborative editing and
version control.

• JComposer is a direct manipulation editor for
specifying and generating JViews components
(itself built with BuildByWire and JViews).
JComposer allows BuildByWire components
and third-party Java Beans to be combined with
JViews components, resulting in multi-view,
multi-user, customisable componentware
solutions for a wide range of editor applications.

Our toolkit is specialised from and extends the
JavaBeans componentware API [JavaBeans 1996],

and hence our multi-view supporting components
are compatible with JavaBeans components. This
means that "third party" JavaBeans components
can be incorporated into JComposer environments,
and JComposer environments can themselves be
used as JavaBeans components. In this paper we
describe our toolkit, together with an example
environment constructed using it.

2. An Example Environment

Figure 2 shows an example environment
constructed using JComposer. This is a simple
Entity-Relationship diagrammer similar to our
earlier MViewsER tool [Grundy and Venable,
1995]. It illustrates a number of features common
to JComposer based environments:

• Interaction is by direct manipulation using a
mouse. Users select an editing mode from the
selection item e.g. Move, Resize, Hide, Add
Entity, etc. They then manipulate the contents of
the editing panel to build an ER model. Users
have a high degree of control over the
appearance of icons, including size, font style,
foreground/background colours, positions of
“handles” (used to resize and connect icons).

Figure 2. An example JComposer-generated Environment.

• Multiple views are supported, with overlapping
information in each view. For example, the top
left ER view in Figure 2 shows part of an ER
model for a simple accounting system, including
customers and accounts, while the top right
view shows invoicing aspects. These two views
are always kept consistent, so that changes to a
component in one view cause corresponding
changes in other views. Consistency is
maintained via JViews consistency components
connected to shared repository components.
Descriptions of changes which can not be
automatically propagated between views are
shown either inside the view, indicated by
highlighting icons, or can be viewed in an
automatically updated changes dialog, as shown
in the bottom left dialog in Figure 2.

• Runtime visualisation support is provided for all
JViews components. The visualisation view in
the bottom right of Figure 2 shows an entity
icon component, the view layer component
which contains this icon, event “listeners”
which support simple notification of changes to
this icon, and listener components which
implement a simple collaborative editing
mechanism. Environments can be both
debugged and dynamically extended using
visualisation views. These views provide a

visualisation of JViews or BuildByWire
components, which can be augmented with
dynamically created JComposer components to
create complex visual queries on, or event based
extensions to, the environment.

• Collaboration facilities are included, based on
our earlier Serendipity work [Grundy et al 96b]
and provide the ability to transmit descriptions
of changes from one user's environment to
another. The changes can then be merged
asynchronously into the other person's
environment to maintain inter-view consistency.
An example of changes transmitted from another
user are shown in the right-hand dialogue in
Figure 2.

• Support for environment persistency is
provided. This currently uses a text-based
serialisation mechanism, but is implemented as
part of a separate component linked to the base
repository. We are currently developing more
sophisticated persistency mechanisms, using an
extension of the JavaBeans serialisation
capabilities and an object-oriented database.

In the following sections we examine each of the
JComposer tools and illustrate how they can be
used to construct the ER Diagrammer.

Figure 3. Composition of an ERLink Shape in BBW.

3. BuildByWire

BuildByWire (BBW) is a toolkit and direct
manipulation editor for constructing constraint-
based graphical user interface (GUI) components
and editors for visual notations [10]. Direct
manipulation is used to specify the form and
interactions of new GUI components (shapes) by
composing them from simple components, such as
boxes, lines, icons, buttons, handles and click-
regions, and container structures, such as vertical
lists. "Wires" are used to compose element together
by imposing constraints, such as co-location of
handles, or maintenance of horizontal alignment.
Constraints specify how components in a
composite component behave under resizing and
other direct manipulations of the composite; see
[10] for further details.

Figure 3 shows BBW being used to specify a
shape for the link between an entity and a
relationship for the ER modeller application of
Figure 1. This link includes a line, a text field for
the name of the role, and a choice between
0:1,1:1,0:n,1:n for the arity of the entity in that
relationship. �In the final application, the link is
constructed by dragging between a handle of an
entity shape and a handle of a relationship shape; it
is attached at each end to those handles, such that it
resizes to remain attached as the end-point shapes
are moved. The end-user alters the arity by
selecting from the choice and alters the role through
a property sheet for the link.

The form of the link is constructed in two steps
(only the first step is needed for the Entity and
Relationships shapes of ER Diagrammer). In the
first step, a shape is composed from several
existing shapes, as shown in Figure 2. The New
Shape window shows the handles that act as the
framework for the new shape, the TextShape that
has been added and renamed by property sheet to
“Role”, and the ChoiceShape that has been
customised to include the four possible values. In
addition, the handles of these shapes have been
hidden, to signify that they will be hidden also in
the composite. The top-right of the TextShape and
the top-left of the ChoiceShape have been wired to
the centre handle of the framework with a
EqualityMoveConstraint (which means that
resizing of the composite shape results in
movement of the role and arity, rather than resizing
them).

Once the TextShape and ChoiceShape shapes have
been added and their properties modified, it is time
to specify which of their properties are to be
“exported” to the composite (ie, available as
properties of the composite shape). The two
“export Properties..” windows of Figure 2 are
used to do this. One property of each is exported,

with the “selectedItem” property of the
ChoiceShape exported as the property “arity”
(properties which are not exported to the composite
become constant values of the composite). All
properties of the composite are shown in the
bottom-left hand window of Figure 3, where they
may be reordered; this order determines the order
of properties displayed in the property sheet of an
instance of the composite shape in the application.
In addition to the properties from the element
shapes, the designer may add so-called invisible
properties: properties which have no visual form in
the notational elements, but which may be changed
through a property sheet.

When the composite shape has been defined, the
user clicks the Generate button. BBW serialises
the shapes that make up the composite and
generates the source of a new class corresponding
to the composite, with appropriate properties (and
methods and events) and with code to make use of
the serialised form of the composite elements. The
source of the new class is compiled automatically,
making the new shape immediately available for
use.

In the second step, a new connector is constructed
from the new shape, simply by selecting the shape
that is to be created and attached between the two
handles that have been selected by the end-user.
This is based on a standard Connector class, so
requires no further code generation.

To generate a new application, such as the ER
Diagrammer, the designer first constructs any new
shapes and connectors of the visual notation (such
as the connector for ERLink and the shape for
entity). Then a selection is made from the available
shapes and connectors of those that are to be
available for use in the new application. BBW
generates Java code to automatically provide the
GUI for the new application as a JavaBeans Panel.

MonoConnectors in BBW are used to define
attribute icons for the ERDiagrammer. The end-
user clicks on a handle of an entity and drags into
open space; An attribute shape is created at the
release position, with an arc connecting the
attribute to the entity. A MonoConnector is defined
as two shapes: the one that acts as the arc (such as
a line) and the shape that is created at the mouse-
release point.

Arbitrary beans may be dropped into a BeanShape.
Event wires may then be used to route events from
a bean, such as a button, to the exported methods
of other shapes, such as to add an element to a
vertical list container (as is used in one of the
notational elements of JComposer itself). Hence
BBW enables the user to define the visual form of
their notation, as well as some of the control of the
elements of the notation when they’re being used
by the end-user.

4. JViews

JViews is a toolkit for constructing view and
repository components for multi-view systems. It
includes abstractions for view and repository
components, as well as inter-component
relationships which are used to describe data
structures, aggregate components and maintain
inter- and intra-component consistency.
Componentware development is supported via: a
specialised form of event model to describe
component state changes and general events of
interest; collections of related view components
being linked to one “view layer” component;
related repository components being aggregated
into different kinds of hierarchical repository
components; and all repository components linked
to one “base layer” component.

The JViews event model is similar to, but more
powerful than, the JavaBeans event-listener
mechanism. It utilises a “discrete change
propagation and response” mechanism to provide
inter- and intra-component consistency
management mechanisms [Grundy and Hosking
1996a, Grundy et al 1995]. When a view or
repository component is modified (i.e. its state
changes) or the component generates an event of
interest outside the component, a “change
description” completely describing the event or
state change is generated. This is propagated to the
relationships the component participates in.
Relationships are specialised components which
can provide generic or specific event processing
capabilities.They respond to received events by
either: updating related components appropriately;
passing the change descriptions onto related
components; or ignoring them. Event receivers can
be specified to "listen" before or after a change has
been made to the generating component. In the
before case, the receiver is notified that a change is
imminent, allowing it to abort or modify the
change. The after case acts similarly to the
JavaBeans listener model.

This mechanism provides a homogeneous
approach to the development of a wide range of
consistency management mechanisms for
componentware. These include:

• abstract, reusable inter-component relationships,
such as. aggregation, “view-of”, and constraint
relationships;

• persistency, by using “persistent” forms of base
layer and view layer components;

• distributed component usage, by propagating
change descriptions to other users’ base and
view layer components for actioning;

• “adaptor” components to link JViews
components to systems developed using other
technologies, in particular to the JavaBeans
components generated by BuildByWire;

• storing component state and event histories, to
support undo/redo, version control, work
coordination, etc.

The behaviour of JViews components may be
modified while they are in use by specifying
additional relationships and event handlers, on the
fly.

Figure 4 shows part of the JViews component
graph for the ER modeller in a graphical form
(using the JComposer notation discussed in the
next section). This describes the repository-level
information for the ER modeller, including entities,
roles, relationships and the repository (“base
layer”) component itself.

Figure 4. A JViews component structure.

5. JComposer

While it is straightforward to reuse JViews toolkit
classes and link them to GUI components
generated by BuildByWire, there is much repetitive
housekeeping code required to do this. Figure 5,
for example, shows the EREntityIcon.java class
code, where BBW shape data, JViews view data
and JViews repository data needs to be kept
consistent. It was apparent to us that the bulk of
this code could be automatically generated from a
higher level description of JViews components and
their interactions, leaving the developer to
concentrate on less straightforward code, such as
complex event handling.

import java.util.*;
import java.awt.*;
import bbw.*;
import java.beans.*;
import erTool.*;

public abstract class EREntityIconG extends MVViewComp
 {

 public EREntityIconG() {
 super();
 establishListeners();
 }

 public String kindName() {
 return "Entity Icon";
 }

 public abstract String userName();

 public String getText() {
 return getStringValue("text");
 }

 public void setText(String value) {
 setValue("text",value);
 }

 public EREntityIconToBase getprEntityIconToBase() {
 return (EREntityIconToBase) getOneRelated("MVViewRel",MVParents);
 }

 public void establishEREntityIconToBase(ERBaseEntity comp) {
 comp.establishEREntityIconToBase((EREntityIcon) this);
 }

 public void dissolveEREntityIconToBase(ERBaseEntity comp) {
 comp.dissolveEREntityIconToBase((EREntityIcon) this);
 }

 public ERBaseEntity getpEntityIconToBase() {
 return (ERBaseEntity) getOneRelated("MVViewRel",MVParentRelComps);
 }

 public void establishListeners() {
 }

 public MVChangeDescr beforeChange(MVChangeDescr c,
 MVComponent from, String rel_name) {
 return super.beforeChange(c,from,rel_name);
 }

 public MVChangeDescr afterChange(MVChangeDescr c,
 MVComponent from, String rel_name) {

 if(c instanceof MVSetValue) {
 if(((MVSetValue) c).getPropertyName().equals("text"))
 getEREntity().setText((getText()));
 }

 return super.afterChange(c,from,rel_name);
 }

 public MVViewRel newViewRel() {
 return new EREntityIconToBase();
 }

 public String viewRelKind() {
 return "EREntityIconToBase";
 }

 public EREntity getEREntity() {
 return (EREntity) getBBWShape();
 }

 public void propertyChange(PropertyChangeEvent evt) {
 if(hasView() && !view().processingBBWEvents &&
 view().processingBBWChange) {
 super.propertyChange(evt);
 return;
 }

 if(evt.getPropertyName().equals("text"))
 setText((getEREntity().getText()));
 super.propertyChange(evt);
 }

 public void addedBBWShape(PropertyChangeSupport2 shape) {
 super.addedBBWShape(shape);
 setText((getEREntity().getText()));
 }

 public void addedViewComp(PropertyChangeSupport2 shape) {
 super.addedViewComp(shape);
 if(getAttribute("text").equals(""))
 setText((getEREntity().getText()));
 else
 getEREntity().setText((getText()));
 }

}

Figure 5. An example of JViews code which can now be generated automatically.

For this reason, we developed JComposer, which
allows JViews components to be specified,
aggregated and related via direct manipulation of a
visual notation. In a similar fashion to
BuildByWire, JComposer generates appropriate
specialisations of JViews toolkit classes to
implement the components.

Component specification uses an object-oriented-
analysis-style visual notation, specifying
component specialisation, attributes, methods, and
events. Figure 6 shows an example of the ER
modeller structure defined using JComposer. The
left-hand side components encapsulate repository
data and its related behaviour. The right-hand side
components represent view-layer components,
which are linked to BBW shapes. The user
specifies a BBW shape name in a dialogue box and
the Java Beans introspection facilities are used to
copy the BBW shape’s properties to the JViews
component. The oval icons are relationships, in
this example mapping between repository and view
layer components. Simple property mappings are
specified for each relationship using mapping
components. JComposer generates the Java
classes, properties and methods to implement this
ER modeller, and also generates the code to
interface between BBW shapes and JViews view
layer items. Third-party Java Beans can also be
interfaced to JViews components, with code
generated to allow JViews and the Java Beans to
exhange events. Various annotations to links and

relationships betwen components exist to allow
JComposer users to request components be created
automatically when components they are linked to
are created, to specify how events from other
linked components are handled, etc.

Inter-component event passing and handling
behaviour is specified using a visual filter/action
language, based on our Serendipity work [Grundy
et al 1996b]. JViews components can “listen” to
events sent to them via the relationships they have
to other components. Events can be listened to not
only after they have been generated by a
component (e.g. after a property change) (the same
as the Java Beans “listen after” approach), but also
before the event has been actioned (“listen
before”), before a component has received an event
from another component (“handle before”), and
after a component has received an event from
another component (“handle after”). The later two
approaches allow JViews components to intercept
events being sent to other components, as well as
monitor events generated by other components.
JViews components may even modify the event
they receive before it is passed onto other listening
components, enabling very flexible event-handling
schemes to be devised, and supporting the tool-
based abstraction design and implementation
approach for systems [Garlan et al 1992]. We have
used this approach to good effect in the ViTABaL
tool abstraction environment previously developed
with MViews [Grundy and Hosking 1995].

Figure 6. An example of JComposer being used to define the ER Modeller repository and views.

Any JViews component can listen to another
component’s events and carry out actions when
these are received. Additionally, JViews uses a
notion of reusable filter and action components,
which unlike other components do not represent
any data. Filter and action components listen to
events from other components and either filter
events received before passing them onto other
filter/actions, or carry out some action based on the
event received.

Complex filters and actions can be specified
hierachically, using this visual notation, or
textually, with an iconic component representation
of the textual event-handling code. In the latter
case, stub classes for the behaviour are generated
and extended by the developer using inheritance.
Subsequent regeneration recreates the stub classes,
but retains the extensions, thus avoiding the
information loss common in environment
generation approaches. Textual extensions are
currently done using a conventional text editor or
Java IDE. We plan to add textual editing support to
our toolkit to permit textual notation editing to be
included in JComposer environments, and in
particular to extend JComposer itself to support
textual editing of filter/action behaviours. Figure 7

shows an example of JComposer event handling
code defined heirarchically (left-hand view) and a
filter defined textually (bottom text window). The
hierarchical EnsureUniqueValues action listens to
any relationship (in this case, the BaseEntities
relationship, a hashtable), and if an entity with a
name the same as an existing entity is attempted to
be added, reports an error and undoes the invalid
editing operation.

6. Run-time Support

Environments generated by JComposer optionally
include visualisation support. This permits the state
of any JViews or BuildByWire component to be
observed dyamically in a visualisation view. Figure
8 shows an example of this. The Visualisation
view shows a visualisation of one of the entity
icons in the ER Diagram #1 view in the same
figure. This extends the OOA-like notation used by
JComposer to include property values for the
running JViews environment. Users can expand
the diagram to include other associated components
and relationships, and observe their dynamic
behaviour. This has obvious use when debugging
environments.

Figure 7. An example of graphical and textual event-handling behaviour specification.

Figure 8. Example run-time visualisation and user-customisation of the JComposer ER Modeller.

In addition, JComposer specified components and
relationships can be added to such diagrams. For
example, a filter component and an action
component have been added to the visualisation
view. This causes an instance of the filter and the

action to be created and relationships established
between the entity icon component, the filter and
the action. Changes to the entity icon component
are now additionally routed to this filter/action, in
this case to notify the user if the entity is renamed.

Using this process, the generated environment can
have its behaviour dynamically extended. This can
be used for: debugging, using the filters and
actions to define visual queries; testing the addition
of experimental components to the environment;
end-user customisation of the environment; and
with remote specification of filter/actions, for
facilitating work coordination. JComposer
components added in this way are limited to ones
already specified and generated by JComposer.
New components cannnot be generated in these
views; JComposer must be used to generate them.
This dynamic extension capability relies heavily on
the componentware approach taken. JavaBeans
reflective capabilities are used to obtain property
and event handling capabilities of JComposer
components. These capabilities are then used to
determine appropriate ways in which the
component can be dynamically related to other
components.

7. Implementation

We have implemented BuildByWire and JViews in
Java and using the JavaBeans API. The basic
visual components and constraints in the
BuildByWire editor are JavaBeans; BuildByWire
generates classes for composites that are
instantiated as JavaBeans. These are interfaced via
adaptors to appropriate JViews view components,
which are in turn related to JViews repository
components via view-of relationship components.
The visual filter/action specifications generate
specialised forms of JViews relationships which
can be established between JViews view or
repository components even while in use, to add
additional inter-component constraints or to handle
events in different ways. JComposer allows
developers to visually design and generate JViews
components and inter-component relationships.
The JComposer editors are themselves
implemented by using BuildByWire to specify and
generate the notational components and their
behaviour and JViews components to provide the
multiple view support. We are currently working
on a specification of the JComposer system using
its own notation, to allow JComposer to be
incrementally extended using itself.

8. Related Work

Related work falls into two categories: systems
which support component construction and
systems which assist in construction or generation
of multiple view environments. In the former
category are tools such such as Delphi, JBuilder
(for JavaBeans), and Optima (for ActiveX)
[Borland 1997, Powersoft 1997]. These tools
typically provide support for composition of
comparatively static components, such as dialog
boxes, with integrated support for textually

defining event handling code. They have limited or
no support for defining iconic style interaction,
such as is typically required in visual notation
editors, and thus have limited use in visual
environment specification. Clockworks [Graham et
al, 1996] supports visual programming of
components, with more emphasis on specification
of event handling than do the previously mentioned
tools, but is still limited in the scope of tool
interaction it is possible to specify. The MET++
visual environment [Wagner et al 1996] supports
the composition of object-oriented framework
components for multimedia applications. The
MET++ environment only supports simple
component connectivity using mappings between
wrapped MET++ framework instances, and does
not support the range of structural and event-
handling mechanisms of JComposer. While
MET++ components can be combined with this
environment, new iconic representations of the
style supported by BuildByWire can not be directly
produced.

In the latter category is Escalante and its associated
GrandView generation tool [McWhirter and Nutt
1994], which provides very good assistance for
visual notation and environment specification,
together with support for multiple views. The latter
is, however, limited in comparison to JViews and
the JComposer visual filter/action language. More
importantly, Escalante does not take a
componentware approach, thus making it difficult
to incorporate third party components, or to embed
generated environments as components in other
applications.

9. Summary and Future Work

We have been developing componentware
solutions for the construction of multi-view,
component-based software. BuildByWire provides
a direct manipulation approach to the development
of reusable UI components and entire
componentware editors. JViews provides a toolkit
for the development of view and repository
components, including flexible inter- and intra-
consistency management mechanisms. JComposer
allows developers to better design, generate and
inter-relate (“wire”) JViews multiview components
than would be possible with a tool based purely on
JavaBeans. We have built a multi-view, multi-user
Entity-Relationship modeller using JComposer.

We are currently refining and extending
JComposer. An initial goal is to complete the
JComposer self specification, to allow JComposer
to be extended using itself. In addition, we are
working on extensions to provide textual view
support, and textual-visual consistency, as we
developed in our MViews work [ref]. This
involves issues of the most appropriate way to
specify textual components and textual editing.

In parallel, we also plan to use JComposer to
generate new environments. Initially this will
replicate some of our MViews-based
environments, although using a componentware.
For example, we plan to generate an object-
oriented programming environment, similar to SPE
[Grundy et al 1995], but based on the Unified
Modelling Language [ref] OO analysis notation for
visual aspects. Other environments planned include
CSCW tools, programming environments, and
HCI and SE modelling tools.

More into the future, we have an interest in the
generation of event based environments using
alternative types of user interface components,
such as VRML nodes [ref] wrapped as Java beans
[ref to VRML beans proposal].

References
[Active X 1996]

“ActiveX”, by Microsoft,
http://www.microsoft.com/activex/.

[Amor et al 1995]
Amor, R., Augenbroe, G., Hosking, J.G.,
Rombouts, W., Grundy, J.C., Directions in
Modelling Environments, Automation in
Construction, Vol. 4 , Elsevier Science
Publishers, 1995, 173-187.

[Borland 1997]
JBuilder Java application development
environment, Borland International Inc, 1997.

[Garlan et al 1992]
Garlan, D., Kaiser, G.E., and Notkin, D.,
“Using Tool Abstraction to Compose
Systems,” COMPUTER, vol. 25, no. 6, 30-
38, June 1992.

[Graham et al 1996]
Graham, T.C.N., Morton, C.A., and Urnes,
T., “ClockWorks: Visual Programming of
Component-Based Software Architecture,”
Journal of Visual Languages and Computing,
175-19, July 1996

[Grundy and Hosking 1995]
Grundy, J.C. and Hosking, J.G. ViTABaL: A
Visual Language Supporting Design by Tool
Abstraction, In Proceedings of the 1995 IEEE
Symposium on Visual Languages, Germany,
1995, IEEE CS Press, pp. 53-60.

[Grundy and Hosking 1996]
Grundy, J.C., and Hosking, J.G.,
Constructing Integrated Software
Development Environments with MViews,
International Journal of Applied Software
Technology, International Academic
Publishing Company, Vol. 2, No. 3/4, 1996.

[Grundy et al 1995]
Grundy, J.C., Hosking, J.G., Fenwick, S. ,
Mugridge, W.B., Connecting the pieces,
Chapter 11 in Visual Object-oriented
Programming, M. Burnett, A. Goldberg, T.
Lewis Eds, Manning/Prentice-Hall, 1994.

[Grundy et al 1996a]
Grundy, J.C., and Hosking, J.G., Mugridge,
W.B., Supporting flexible consistency
management via discrete change description
propagation, Software - Practice and
Experience, Vol. 26, No. 9, September 1996,
Wiley, 1053-1083.

[Grundy et al 1996b]
Grundy, J.C., Hosking, J.G., Mugridge,
W.B. Low-level and High-level CSCW
support in the Serendipity process modelling
environment, In Procedings of OZCHI’96,
Hamilton, New Zealand, November 24-27,
1996, IEEE CS Press, pp.69-76.

[Grundy and Venable 1995]
Grundy, J.C., Venable, J. Providing
Integrated Support for Multiple Development
Notations, in Proceedings of CAiSE ‘95,
Finland, June 1995, Lecture Notes in
Computer Science 932, Springer-Verlag, pp.
255-268.

[Hosking et al 95]
Hosking, J.G., Fenwick, S., Mugridge,
W.B., Grundy, J.C., Cover yourself with
Skin, in Proceedings of OZCHI’95,
Wollongon, Australia, Nov 28-30, 1995, pp.
101-106.

[JavaBeans 1996]
“JAVABEANS™ API”, by JavaSoft,
http://www.javasoft.com:80/products/apiOv
erview.html

[McWhirter and Nutt 1994]
McWhirter, J.D. and Nutt, G.J., “Escalante:
An Environment for the Rapid Construction of
Visual Language Applications,” in
Proceedings of the 1994 IEEE Symposium on
Visual Languages, IEEE CS Press, 1994.

[Mugridge et al 1996]
Mugridge, W.B., Hosking, J.C., Grundy,
J.C. Towards a Constructor Kit for Visual
Notations, In Proceedings of OZCHI’96,
Hamilton, New Zealand, November 24-27,
1996, pp. 169-176.

[Opendoc 1996]
"OpenDoc Programmer's Guide", by Apple
Computer, Inc, Addison-Wesley, 1996.

[Powersoft 1997]
Optima++ RAD tool, Powersoft Business
Group, Sybase Inc, Canada, 1997.

[Wagner et al 1996]
Wagner, B., Sluijmers, I., Eichelberg, D. and
Ackerman, P. Black-box Reuse within
Frameworks based on Visual Programming,
In Proceedings of The First Component Users
Conference, Munich, July 15-19 1996.

