
Construction of an Integrated and Extensible Software Architecture
Modelling Environment

John Grundy1

1 Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand,

Phone: +64-9-3737-599 ext 8761, Fax: +64-9-3737-453, Email: john-g@cs.auckland.ac.nz

Abstract

Constructing complex software engineering tools and integrating them with other tools to form an effective
development environment is a very challenging task. Difficulties are exacerbated when the tool under construction
needs to be extensible, flexible and enhanceable by end users. We describe the construction of SoftArch, a novel
software architecture modelling and analysis tool, which needs to support an extensible set of architecture abstractions
and processes, a flexible modelling notation and editing tools, a user-controllable and extensible set of analysis agents
and integration with OOA/D CASE tools and programming environments. We developed solutions to these problems
using an extensible meta-model, user-tailorable notation editors, event-driven analysis agents, and component-based
integration with process support, OOA/D, code generation and reverse engineering tools.

Keywords:  software engineering tools, software architecture, modelling notations, analysis agents, tool integration

1. Introduction

Building complex software development tools and
integrating these tools with existing 3rd party tools is very
challenging [20, 7, 17]. We have been developing a novel
software architecture modelling and analysis tool,
SoftArch, which presents a number of challenges in its
construction. SoftArch needs to support an extensible set
of architecture modelling abstractions, visual notations
and editing tools. It also needs a user-controllable and
extensible collection of model analysis agents to assist
with validating an architectural model. Import of OOA
specifications and export of OOD models and code
fragments is needed, to make use of the tool
organisationally feasible.

These requirements are a challenge to meet with
conventional tool construction approaches, such as those
provided by MetaEDIT+ [12], MOOT [16], KOGGE [3],
JComposer [7], and MetaMOOSE [4].  This is because
such approaches either produce inflexible, difficult to
integrate, configure and extend tools, or provide
inappropriate abstractions for building tools like
SoftArch.

We describe the implementation of SoftArch using
the JComposer meta-CASE toolset and focus on various
adaptations we had to make to JComposer’s tool
development approaches in order to successfully realise
SoftArch. We developed an extensible meta-model with
its own visual programming language, enabling
developers to extend SoftArch’s architecture modelling
abstractions. Editing tools and notational symbols with a
high degree of user-customisability give developers a

degree of freedom when representing model abstractions.
User controllable and extensible analysis agents were
developed using event-driven components, along with a
visual end user programming language. The Serendipity-
II process management environment [5] provides this
event-based end user programming language, plus
process and work co-ordination agent support.
JComposer itself provides OOA and D model
import/export for SoftArch, along with code generation
and reverse-engineering support. These tools are
integrated using a component-based software
architecture. In addition, we have prototyped OOA and D
model interchange between SoftArch and Argo/UML
[17] using UML models encoded in an XML-based data
interchange format. A proposed approach to dynamic
architecture visualisation using SoftArch is briefly
discussed. We briefly compare and contrast the
implementation of SoftArch with other approaches.

2. Overview of SoftArch

There has been a growing need for support for
software architecture modelling and analysis tools as
systems grow more complex and require more complex
architectures [1, 10, 13, 19]. We developed the SoftArch
environment to address this need [10]. SoftArch supports
the modelling and analysis of large, complex system
architectures using primarily multiple views of visual
representations of architectural abstractions. SoftArch
uses a concept of successive refinements of architecture
abstractions, from high-level component characterisations
to detailed architectural implementation strategies.



Software component
meta-model(s)

OOA specification

Successively refined
architectural models

OOD-level classes, API
usage, code fragments

Software
architecture design
process model(s)

Refinement
templates

Analysis agents

High-level
architectural model

Low-level
architectural model

Figure 1. Overview of the SoftArch modelling and analysis approach.

Figure 1 illustrates this concept. An OOA
specification (codified functional and non-functional
requirements) is imported into SoftArch, typically from a
CASE tool. Architects then build an initial high-level
architecture for the system that will satisfy these
specifications. This high-level model captures the essence
of the organisation of the system’s software components.
It includes information about the non-functional
properties of parts of the system, and links architectural
components to parts of the OOA specification they are
derived from. Architects then refine this high-level model
to add more detail, making various architectural design
decisions and trade-offs, and ensure the refined
architectural models meet constraints imposed by the
high-level model. Eventually architects develop OOD-
level classes which will be used to realise the
architecture, and export these to CASE tools and/or
programming environments for further refinement and
implementation.

Figure 2 shows an example of SoftArch being used to
model the architecture of an e-commerce application (a
collaborative travel itinerary planner [8]). The travel
planner system is made up of a set of client
applications/applets (shown in view (1) at the top). These
communicate via the internet to a set of servers, in this
example comprising a chat server, itinerary data manager
and RDBMS. View (2) shows a more detailed view of the
itinerary management part of this system. This includes
the itinerary editor client and its connection to the
itinerary management server, a client map visualisation,
and a map visualisation agent, which updates the map to
show a travel path when the itinerary editor client is
updated by the user. Architecture components can be
refined  by creating a subview containing their
refinements, by enclosing their refinements (like for
“server apps” in view (1)), or using explicit refinement
links. OOA and D-level classes and services can also be
modelling in SoftArch, and refined to/from appropriate
architecture abstractions.

View (3) shows an analysis agent reporting dialogue.
A collection of user-controllable analysis agents monitor
the state of the architecture model under development.

They report inconsistencies, problems or suggested
improvements to the user non-obtrusively via this
dialogue, are run on-demand by the developer, or act as
“constraints” that validate modelling operations as they
are performed. SoftArch OOA level abstractions can be
sourced from a CASE tool, and OOD-level classes
exported to a CASE tool or programming environment
(by generating class stubs). Reverse engineering of
existing applications is also supported, with OOD-level
abstractions able to be imported from a CASE tool and
grouped by reverse-refinement into higher-level
architectural abstractions.

SoftArch poses various challenges for the tool
developer:
• Architectural abstractions include components,

associations and component annotations, each which
may have a variety of properties [10]. The
modelling abstractions available needs to be
extensible by the user of SoftArch, to allow them to
capture information about the architectural entities
they deal with in useful ways, and to add additional
components, component properties, etc. as required.

• The modelling notation and editing tools need to be
flexible and preferably extensible, supporting model
abstraction enhancement and tailorability of the
tool. Users should be able to reconfigure the tool to
display architecture abstractions as they prefer.

• Templates, or reusable architectural model
fragments, are required to assist developers in
reusing common architectural styles and patterns.
Thus SoftArch must support abstraction of views to
templates, instantiation of templates, and ideally
support keeping templates and derived model
components consistent when either changes.

• Analysis tools that constrain how a model is built
and/or check model validity on demand must be
user-controllable and extensible. When doing
exploratory modelling, modelling alternatives or
changing a model dramatically, we have found
architects prefer to relax constraints. They then
successively re-activate checks as they need them.



(3)

(1) (2)

Figure 2. Examples of architecture modelling and analysis in SoftArch.

• The architecture development process should be
definable and process management tool support
provided to developers. This should not just guide
development but also support automated analysis
tool activation/deactivation, and configure available
modelling abstractions appropriate to the
development process stage being worked on.

• Import/export support between CASE tools and
SoftArch should leverage existing support within
CASE tools where possible. For example, using a
CASE tool or programming environment API, using
XML-based encoding, or using source code files.

3. SoftArch Architecture and Implementation

The basic architecture of SoftArch is illustrated in
Figure 3. SoftArch maintains a collection of meta-model
entities, specifying available architectural abstractions
and basic syntactic and semantic constraints. A collection
of reusable refinement templates supports reuse of
common architectural styles and patterns. A collection of
analysis agents monitor the changing architectural model
and inform the developer of problems. An architecture
model holds the current system architectural model
(repository, multiple views, refinement links etc.).

We integrated SoftArch with the Serendipity-II
process management environment. Serendipity-II
provides architecture development process models, work

co-ordination agents based on these processes, and user
defined analysis agents used to check the validity of
SoftArch models. SoftArch was also integrated with the
JComposer component engineerint tool. JComposer
provides OOA-level class components for SoftArch and
SoftArch generates OOD-level class components in
JComposer. SoftArch also uses JComposer’s code
generation facilities to generate Java classes based on
OOD-level architectural abstractions and middleware and
database component properties described in SoftArch.
Generated Java classes can be modified in tools like
JBuilder and JDK, and changes reverse-engineered back
in JComposer and then into SoftArch. We have
prototyped simple XML-based import/export tools, which
exchange OOA and D models with Argo/UML.

We implemented SoftArch with the JViews multi-
view, multi-user software tool framework, using the
JComposer meta-CASE and component engineering
toolset [7]. Our JComposer tool also provides a
component engineering environment for JViews.

We encountered a number of challenges when using
JViews and JComposer to engineer SoftArch. JComposer
does not directly support extensible meta-models for
CASE tools, however, and its notation tailoring tool
enables users to inappropriately modify notation-
implementing editors and icons.



Figure 3. Basic architecture of SoftArch.

Flexible and extensible analysis tools can be built, but
no direct abstractions are provided by JViews, and some
Java programming is required to achieve these. Tool
integration is supported directly via component interface-
based mechanisms, but indirectly via components
implementing 3rd party tool communication protocols and
data exchange format parsing and generation.

The following sections examine the construction of
various SoftArch facilities in further detail, focusing on
the approaches we used to satisfy some of these more
challenging requirements of the tool. As JViews and
JComposer did not directly support many of these
capabilities, we discuss how we overcame these short-
comings. We then discuss the various lessons we learned
from developing SoftArch, and summarise some
directions for future software tool construction
approaches we have been exploring because of this work.

4. Architecture Modelling

5.1. Meta-model Support

SoftArch uses a basic model of architecture
components, inter-component associations and
component and association annotation to describe
architectural models [10]. Each of these architectural
entities has a set of properties associated with it. Property
values can be simple numbers or strings, or a collection
of value ranges. JComposer, like most meta-CASE tools,
assumes a tool developer would have a fixed set of tool
repository component and relationship types e.g. process
stages, in/out ports, filters and actions in Serendipity-II,
and components, association, generalisation, aspects etc.
in JComposer itself [5, 7]. Thus with SoftArch there

might be a fixed set of different architecture component,
association and annotation types, each with a fixed set of
properties, which could each be modelling as appropriate
JViews repository component specialisations.

However, in order to support user-extension of
SoftArch’s software architecture modelling capabilities,
we had to develop a meta-model for SoftArch in
JComposer, as well as the component/association/
annotation architecture model repository representation.
Figure 4 (a) illustrates the basic components of this meta-
model. SoftArch components, associations and
annotations must each have a type, with the meta-model
allowing the specification of valid component
associations and annotations. Each different type has a set
of properties, which have property type and value
constraints. For example, component types include “SA
Entity”, “OOA class”, “Process”, “Server”, “Client
Process”, “RDBMS” etc. Association types include
“dependency”, “data usage”, “event subscribe/notify”,
“message passing” etc. Annotations include “cached
data”, “data exchanged”, “events exchanged”, “replicated
data”, “process synchronisation”, etc.

Component (and association and annotation) types
also specify valid refinements allowed. For example, the
most general “SA Entity” component can be refined to
any other kind of architecture component when
modelling. The “Client Process” type cannot, however,
be refined to “Server Process” or “RDBMS” components,
as such a refinement does not make any sense.

Unlike most CASE tools, SoftArch does not
inherently enforce constraints like valid
associations/annotations, valid refinements or valid
properties/property values for components. A set of



analysis agents does this, and selected agents can be
turned on and off to allow architects greater or lesser
flexibility to model and change architectures (see Section
6). We found this facility to be very useful when
architects dramatically change an architecture, or are
doing alternative or exploratory modelling of parts of an
architecture. Relaxing some constraints makes it easier
for architects to morph or revise parts of the model
through partially inconsistent states, than if meta-model
typing constraints are always rigidly enforced.

We allow users of SoftArch to open JViews projects,
which contain partial meta-model specifications. Meta-

model components in different projects build upon one
another to construct a complete set of component and
other types available when modelling architectures with
SoftArch. Users can extend the meta-model using a
simple visual specification tool, illustrated in Figure 4
(b). Using multiple meta-model projects allows architects
to package domain-specific meta-models e.g. “basic
abstractions”, “real-time systems”, “e-commerce
systems” etc., each with specialised architecture
modelling abstractions.

0..*

1

AssociationType Annotat ionType

ComponentType

TypeName : String

0..*

2

0..*

2

from/to

0..*

1

0..*

1

associations

0..* 0..*0..* 0.. *

refineable-to

PropertyType

PropTypeName : String
PropType : String

ValueConstraint

AllowedValue : String

0..*11 0..*

0..*

1

property types

Figure 4. (a) SoftArch meta-model; (b) visually viewing and programming the meta-model.

Figure 5. Examples of SoftArch Notation Usage.



5.2. Flexible Modelling Notation

JComposer provides a notation icon editor,
BuildByWire, which can be used by tool users to
reconfigure their icon appearance in certain ways [7].
With SoftArch, we decided to take an alternative
approach and provide users with a range of icon
appearances that they could tailor as they required via the
same dialogue used to specify and view architecture
component properties. For example, Figure 5 shows two
examples of modelling the same information in SoftArch,
the top view using bus-style associations between client
and server components and the bottom node-style
connectors and enclosure of clients running on the same
host. The dialogue shown provides configuration
capabilities allowing users to tailor the appearance of
component, association and annotation icons as they
require. Automated tailoring can be achieved using
Serendipity-II task automation agents (see Section 6).

We adopted the customisable icon appearance
approach over having end users use BuildByWire directly
as it is much easier and quicker for them to tailor icons,
and they do not need to learn to use the meta-CASE tool.
They also can not make errors and cause SoftArch to fail,
which is possible using BuildByWire directly. Users can,
however, use the BuildByWire meta-CASE tool to extend
the possible icon appearances if no pre-defined ones suit
their needs.

5.3. Refinement Templates

In order to support reuse of common architectural
styles and patterns, we developed reusable refinement
templates for SoftArch. A view in SoftArch which

specifies the refinement of one (or more) architectural
components into more detailed architectural model
components can be copied and packaged for reuse. For
example, Figure 6 (a) shows a packaged refinement
template commonly used in simple e-commerce
applications. The high-level component “simple e-com
server” encloses (and thus is refined to) several parts: an
http server with html and other files, an application
server, and an RDBMS server with tables. Figure 6 (b)
shows how the user of SoftArch has reused this
refinement template when developing part of the travel
itinerary system’s architecture. SoftArch allows users to
reuse refinement templates by creating subviews for a
specified component or by automatically copying the
template components into their model (as in this
example).

JViews does not explicitly support the concept of
templates. When developing Serendipity-II’s process
templates we built a complex mechanism for copying and
instantiating template process models [5].

When developing SoftArch refinement templates we
instead extended the versioning and import/export
mechanisms JViews supports. A template is created by
exporting a view to a file then importing it and using
JViews’ component identifier (ID) mapping mechanism
to create a template. When instantiating a template, we
export the template to a file then import it, using the same
ID mapping mechanism to create new components with
unique IDs in the software architecture model.
Refinement links are created automatically by SoftArch
for subviews, and are created automatically for imported
enclosed components and explicit refinement links.

Figure 6. (a) Example of SoftArch template; (b) reused template.



This approach proved to be a much simpler solution
than that used for Serendipity-II, but provides almost
identical template support. JViews’ version merging
abstractions [7] can even be used to reconcile changes
made to the template or components copied from the
template into the architecture model.

5. Process and Analysis Support

6.1. Process Management

We wanted to provide SoftArch users with integrated
process management support to allow them to use
enacted process models to both guide and track their
work. It would also automate tedious tasks like
enabling/disabling analysis agents and configuring
allowable component types and notation appearance
during different stages of architecture model
development. Rather than building process support into
SoftArch, as done in Argo/UML [17], using CAME tools
like MetaEdit+ with very limited automation support
[12], or forcing developers to configure the tool
themselves, as in Rational Rose [15], we reused the
Serendipity-II process management environment.

Figure 7 shows a simple architecture development
process in Serendipity-II, along with a task automation
agent which enables and disables groups of analysis

agents when a particular process stage is enacted or
finished. Serendipity-II detects changes made to SoftArch
models and records these against process stages, allowing
developers to track work associated with different process
tasks/subtasks. The task automation agent illustrated here
detects process activation/deactivation (the left-hand
square icons, or “filters), then uses two actions (shaded
ovals) to enable and disable named SoftArch analysis
agents (right-hand side rectangles). The actions send
events to the SoftArch analysis agent manager to enable
or disable the named SoftArch analysis agents. The filters
and actions used here are reused from a library of such
event-driven components. Others can be implemented
using JComposer and Java and added to this library as
required.

This integration is achieved by Serendipity-II using
JViews’ component event propagation mechanism to
listen to SoftArch component events and to record these.
The task automation agents, like the one shown here,
send events to SoftArch which configure analysis agents,
configure display of notational symbols and configure
available meta-model abstractions. This produces what
seems to the developer to be a more or less seamlessly
integrated process management and task automation tool
support for SoftArch.

Figure 7. (a) Simple software process; (b) simple analysis co-ordination agent.



5.2. Design Constraints, Critics and Analysis Agents

SoftArch’s meta-models have a set of analysis agents
(implemented by event-driven JViews components)
which monitor the state of the architecture model being
developed. Agents may be fired immediate an invalid
action is made e.g. incorrect association type specified
between two architecture components, and the editing
operation reversed and an error dialogue shown.
Alternatively, they can monitor changes and
unobtrusively add messages to an analysis report dialogue
(like the one shown in Figure 2), or can be run on-
demand by developers and their error messages displayed
as a group. Users can control the way an analysis agent
behaves using a control panel dialogue e.g. change an
agent from running as a constraint to a critic, enable or
disable agents etc. As show in Figure 7, Serendipity-II
visually-specified task automation agents can also be
used to control analysis agents.

Users can also extend the set of analysis agents being
applied to a SoftArch model by using Serendipity-II’s
task automation agent specification tool. Figure 8 shows
a user-defined analysis agent that checks to see if a
component has associations (either from it to other
components, or to it from other components). The top
“guard” filters are fired when a component has been
changed, and then following filters determine if the
component has associations to/from it. If neither, an
action (bottom oval icon) generates an error event which
the analysis agent manager displays in an error dialogue
(if this agent is run as a constraint) or displays in an
analysis agent report.

Figure 8. Simple visual analysis agent specification.

6. Tool Integration

7.1. OOA/D Import & Export

Many tools exist which provide object-oriented
analysis and design capabilities. Our own JComposer is
one such example, but others include CASE tools like
Rational Rose [15] and Argo/UML [17]. We originally
planned SoftArch as an extension to JComposer, but
decided it would be more useful as a stand-alone tool,
that could ultimately be used in conjunction with other,
3rd party CASE tools.

SoftArch requires constraints from an OOA model,
particularly non-functional constraints like performance
parameters, robustness requirements, data integrity and
security needs and so on. These constrain the software
architecture model properties that needs to be developed
in order to realise the specification. These also influence
the particular architecture-related design decisions and
trade-offs software architects need to make. Similarly, a
SoftArch architectural model is little use on its own, but
needs to be exported to a CASE tool and/or programming
environment for further refinement and implementation.
Some code generation can even be done based on a
SoftArch model description e.g. appropriate middleware
and data management code generated. When reverse
engineering an application, an OOD model will need to
be imported into SoftArch and a higher-level system
architecture model derived from it. Ultimately an OOA
specification may be exported from SoftArch to a CASE
tool. Thus SoftArch must support OOA and D model
exchange with other tools, and ideally some code
generation support.

We initially used a JComposer component model as
the source for SoftArch OOA-level specification
information. JComposer allows not only functional
requirements to be captured, but has the additional benefit
of requirements and design-level component “aspects”,
which are used to capture various non-functional
requirements [9]. We developed a component that
supports basic component and aspect import into
SoftArch from a JComposer model, using JViews’ inter-
component communication facilities to link SoftArch and
JComposer.

Rather than add OOD and code generation support to
SoftArch itself, we leveraged existing support for these in
JComposer. SoftArch uses JComposer’s component API
to create OOD-level components (classes) in JComposer,
and instructs JComposer to generate code for these to
produce .java files. JComposer supports a concept of
code fragments, which SoftArch uses to generate some
basic Java component configuration, communications and
data access code for generated classes. Figure 9 illustrates
the interaction of JComposer and SoftArch to achieve
OOA import and OOD/P export for SoftArch.

JComposer was reasonably straightforward to
integrate with SoftArch as JComposer provides a JViews-
implemented, component-based API. Other CASE tools
and programming environments do not generally provide



such open, flexible integration mechanisms. Generated
.java class source code files can be used in tools like JDK
and JBuilder, and changes reverse engineered back into
JComposer and then into SoftArch. We have prototyped a
data interchange mechanism to enable SoftArch to
exchange OOA and D models with Argo/UML using an

XML-based encoding of UML models. This is a less
tightly integrated mechanism than that used by SoftArch
and JComposer, but allows other tools using the XML
exchange format for UML models to be integrated with
SoftArch in the future.

OOA-level Components
in JComposer

JComposer
Import/export agents

in SoftArch
OOA-level Classes

in SoftArch

Refinement to software
architecture abstractions…

Further refinements…

Refinement OOD-level
abstractions in SoftArch

OOD-level Components
in JComposer

.java class file
generation by
JComposer…

UML Classes
in Argo/UML

XML-based
Import/export agents

in SoftArch

XML encodings of
UML classes

…

Figure 9. Import/export approaches in SoftArch.

JComposer
Import/export agents

in SoftArch

Refinement OOD-level
abstractions in SoftArch

OOD-level Components
in JComposer

.java class file
generation by
JComposer…

…

JVisualise run-time
component monitor

& controller

Components monitored
by JVisualise

SoftArch
Visualisation

Agents

Mapping of comps -> high level
architectural abstractions via
refinement links in SoftArch

SoftArch Views copied &
animated/annotated…

Run system

Figure 10. Planned dynamic architecture visualisation using SoftArch views.

7.2. Runtime Architecture Visualisation

So far we have discussed static architecture
modelling, analysis and OOD/code generation support
with SoftArch. Ultimately we would like to extend
SoftArch’s support for architecture modelling to include
dynamic architecture visualisation and configuration i.e.
run-time visualisation and manipulation of software
architecture abstractions using SoftArch-style views. We
are beginning work to achieve this by making use of our
JVisualise component monitoring and configuration tool
[7]. JVisualise allows running JViews-based systems to
be viewed using JComposer-style visual languages. Users
can also manipulate visualised components – changing
their properties, adding or removing inter-component

relationships, and creating new component instances. We
intend to enhance JVisualise to enable any JavaBean-
based application to be thus monitored and controlled.

Figure 10 illustrates how SoftArch will be used to
visualise and configure running software architectures.
JVisualise will request running components send it
messages when they generate events, and will create
proxies to enable it to intercept operation invocations on
components. SoftArch will instruct JVisualise to send it
these low-level component monitoring events, which will
be mapped onto SoftArch OOD components using the
JComposer-generated Java class names. SoftArch will
then allow users to view information about running
components using higher-level SoftArch views, as OOD-
level components will have refinement relationships to



higher-level architecture components in these views. For
example, when components implementing a server are
created and the server initialised, SoftArch can show a
single server component has started in a high-level
SoftArch view. Similarly, when the server component
receives a message from a client, SoftArch can annotate a
high-level association link to indicate this. The user may
add a client component to this dynamic visualisation view
and connect it to the server. SoftArch can instruct
JVisualise to create appropriate components which
implement the client and initialise them.

JComposer-generated OOD models and code may be
extended if necessary to include additional monitoring
components and wrappers to intercept data and
communication messages. JVisualise would use these to
provide improved event and message monitoring and
control support.

7. Discussion

A wide variety of tools and approaches exist with
which to build a system like SoftArch. General-purpose
programming languages and frameworks, such as Java
and JFC, Borland Delphi, Smalltalk, or similar, can be
used to implement such a tool “from scratch”. However,
many tool facilities required by SoftArch, including
multiple views with consistency management, multi-user
support, version control, persistency and distribution, and
so on, are time-consuming to build using such
approaches. In addition, building tools with extensible
meta-models, visual languages and tool integration
mechanisms with these low-level abstractions is
extremely difficult.

General purpose drawing editor frameworks, such as
Unidraw [21] and Hotdraw [2], could be used to provide
editing support, and middleware architectures like
CORBA [14], DCOM [18] and Xanth [11] used to
support distribution and transparent persistency. Again,
these technologies assist tool developers but still lack
appropriately focused software tool building abstractions.
An existing CASE tool, such as JComposer [7], MOOSE
[4] or Argo/UML [17] could be extended to add
SoftArch-style support. However, such an approach
would make an already very complex tool more
monolithic, the existing CASE tool infrastructure may not
support some desired characteristics of SoftArch, and the
resultant tool may not be usable with other 3rd party tools.

A variety of meta-CASE and CAME tools exist which
might be usefully employed. Examples include KOGGE
[3], MetaEDIT+ [12], MetaMOOSE [4], MOOT [16],
and JComposer [7]. Tools like MetaEDIT+ and KOGGE
provide a range of abstractions and tools enabling quick
development of conventional CASE tools. Unfortunately
they do not support well the need for users of SoftArch to
extend architecture model abstractions and notations, do
not provide adequate model analysis tool building
support. MOOT and MetaMOOSE provide better support
for extensible meta-models for software tools, and
reasonably tailorable notations. However, they do not

support template reuse well, and their analysis tool and
tool integration capabilities are limited.

We found our JComposer tool to be of relatively
limited usefulness in developing SoftArch. JComposer
and its underlying framework, JViews, do not directly
support the concept of an extensible tool meta-model,
user-configurable icons for visual languages, patterns and
templates, model analysis and process co-ordination, and
flexible tool integration support. Process co-ordination
and tool integration are provided by additional plug-in
components (for example, the Serendipity-II process
management tool for processes, and various components
for database, remote server and XML data encoding use).
This support could be improved to make build
environments like SoftArch easier.

Allowing users to dynamically extend the meta-model
of their enviroments, the visual languages they model
with, the analysis tools and incorporate integration
mechanisms with third-party tools are all very difficult in
general. Our approach with SoftArch has been to build a
JViews meta-model that has its own visual programming
language, and have SoftArch use this model to validate
architecture models. This proved challenging to realise,
as JViews components designed for building software
tools weren't built with a meta-model in mind, but rather
a fixed, JComposer-generated model. Re-architecting
both JViews and JComposer is required to provide
suitable abstractions that make it easier to build such
facilities. Similarly, while we developed the
BuildByWire visual tool for iconic specification, this was
not intended for use by tool users directly, but for tool
developers. We need to modify the architecture of this to
better-support end user configuration of iconic
appearance, while retaining tool editing semantics.

We have built some reusable components in JViews
which can be deployed for use in other environments to
support analysis agent specification. We have also
developed some basic agents in Serendipity-II that can be
deployed by end users to extend the constraint and
analysis checking of their tools while in use. However,
these require further development to become easier to use
by both tool developers and users. Similarly, our tool
integration components built for SoftArch could be
usefully generalised to make building file and XML-
based tool integration easier. We are extending JViews'
support for patterns and templates, and also extending
JViews and JComposer to provide higher-level dynamic
monitoring to better support visualisation of running
SoftArch-modelled systems.

Alternative approaches to building SoftArch might
have used a meta-CASE tool which allows end users to
extend a meta-model and/or visual notation. However,
most meta-CASE tools, like JViews, assume tool
developers specify such meta-level constructs, rather than
tool users. Another approach would be to use tools
designed for end user computing, somewhat like
Serendipity-II's process modelling and agent specification
tools. In fact, we originally explored building most of



SoftArch using Serendipity-II in this fashion.
Unfortunately the abstractions supported by such an
approach for SoftArch-style notations, architecture
models and analysis are very difficult to express in such
end user computing tools, and the efficiency and
extensibility of the resulting solution likely to be poor.

8. Summary

We have described the construction of the SoftArch
software architecture modelling and analysis tool.
SoftArch requires a number of facilities that are
challenging to build using conventional tool development
approaches. We achieved the aim of an extensible set of
modelling abstractions and notations by using a user-
extensible meta-model and set of user-customisable
icons. Reusable refinement templates are supported by
SoftArch, leveraging component import/export and
version merging capabilities of our tool implementation
framework. Process support, including work co-
ordination and user-defined analysis agents, are supported
by integrating SoftArch with the Serendipity-II process
management environment. OOA/D import/export and
code generation and reverse engineering support are
provided by integrating SoftArch with the JComposer
component engineering/meta-CASE environment and the
Argo/UML CASE tool.

We are investigating extending our JComposer meta-
CASE toolset to better support meta-models for software
development tools, and to provide abstractions for
template and pattern reuse. In addition, we are
investigating other process management tool integration
approaches, such as the workflow management
coalition’s process interchange format. We are also
investigating other interchange formats for CASE tools
and programming environments, allowing more OOA
specification information, especially non-functional
requirements codification, to be exchanged, along with
improved OOD and code generation facilities. We are
beginning to develop an exploratory dynamic architecture
visualisation and configuration facility, using SoftArch
and the JVisualise component monitoring tool.

References

1. Bass, L., Clements,  P. and Kazman, R. Software
Architecture in Practice, Addison-Wesley, 1998.

2. Beck, K. and Johnson, R. Patterns generate architectures.
Proceedings ECOOP’94, Bologna, Italy, 1994.

3. Ebert, J. and Suttenbach, R. and Uhe, I. Meta-CASE in
practice: A Case for KOGGE, Proceedings of CaiSE*97,
Barcelona, Spain, June 10-12 1997, LNCS 1250, Springer-
Verlage, pp. 203-216.

4. Furguson, R.I., Parrington, N.F., Dunne, P., Archibald,
J.M. and Thompson, J.B. MetaMOOSE – an Object-
oriented Framework for the Construction of CASE Tools,
Proceedings of CoSET’99, Los Angeles, 17-18 May 1999,
University of South Australia, pp. 19-32.

5. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process

modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

6. Grundy, J.C. and Hosking, J.G. Directions in modelling
large-scale software architectures, In Proceedings of the 2nd

Australasian Workshop on Software Architectures,
Melbourne 23rd Nov 1999, Monash University Press, pp.
25-40.

7. Grundy, J.C., Hosking, J.G. and Mugridge, W.B.
Constructing component-based software engineering
environments: issues and experiences, Journal of
Information and Software Technology: Special Issue on
Constructing Software Engineering Tools, Vol. 42, No. 2,
January 2000, pp. 117-128.

8. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific '98,
Melbourne, Australia, 24-26 November, IEEE CS Press.

9. Grundy, J.C. Aspect-oriented Requirements Engineering
for Component-based Software Systems, In Proceedings of
the 4th IEEE Symposium on Requirements Engineering,
Limerick, Ireland, June 1999, IEEE CS Press, pp. 84-91.

10. Grundy, J.C. Software Architecture Modelling, Analysis
and Implementation with SoftArch, Technical Report,
Department of Computer Science, University of Auckland,
December 1999.

11. Kaiser, G.E. and Dossick, S. Workgroup middleware for
distributed projects, Proceedings of IEEE WETICE’98,
Stanford, June 17-19 1998, IEEE CS Press, pp. 63-68.

12. Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A
Fully configurable Multi-User and Multi-Tool CASE
Environment,” In Proceedings of CAiSE’96, Lecture Notes
in Computer Science 1080, Springer-Verlag, Heraklion,
Crete, Greece, May 1996, pp. 1-21.

13. Leo, J. OO Enterprise Architecture approach using UML,
In Proceedings of the 2nd Australasian Workshop on
Software Architectures, Melbourne 23rd Nov 1999, Monash
University Press, pp. 25-40.

14. Mowbray, T.J., Ruh, W.A. Inside Corba: Distributed
Object Standards and Applications, Addison-Wesley,
1997.

15. Quatrani, T. Visual Modelling With Rational Rose and
UML, Addison-Wesley, 1998.

16. Phillips, C.E. , Adams, S., Page, D. and Mehandjiska, D.,
Designing the client user interface for a methodology
independent OO CASE tool, Proceedings of TOOLS
Pacific’98, Melbourne, Nov 24-26, IEEE CS Press.

17. Robbins, J.E. and Redmiles, D.F. Cognitive Support, UML
Adherence, and XMI Interchange in Argo/UML,
Proceedings of CoSET’99, Los Angeles, 17-18 May 1999,
University of South Australia, pp. 61-70.

18. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

19. Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

20. Thomas, I. and Nejmeh, B. Definitions of tool integration
for environments, IEEE Software, vol. 9, no. 3, March
1992, 29-35.

21. Vlissides, J.M. and Linton, M.A. Unidraw: a framework
for building domain-specific graphical editors, ACM
Transactions on Information Systems, vol. 8, no. 3, July
1990, 237-268.


