
Information Visualisation Utilising
3D Computer Game Engines

Case Study: A source code comprehension tool
Blazej Kot

bkot002@ec.auckland.ac.nz
Burkhard Wuensche

burkhard@cs.auckland.ac.nz
John Grundy

john-g@cs.auckland.ac.nz
John Hosking

john@cs.auckland.ac.nz

Department of Computer Science
The University of Auckland

ABSTRACT

Information visualisation applications have been facing ever-
increasing demands as the amount of available information has
increased exponentially. With this, the number and complexity of
visualisation tools for analysing and exploring data has also
increased dramatically, making development and evolution of
these systems difficult. We describe an investigation into reusing
technology developed for computer games to create collaborative
information visualisation tools. A framework for using game
engines for information visualisation is presented together with an
analysis of how the capabilities and constraints of a game engine
influence the mapping of data into graphical representations and
the interaction with it. Based on this research a source code
comprehension tool was implemented using the Quake 3
computer game engine. It was found that game engines can be a
good basis for an information visualisation tool, provided that the
visualisations and interactions required meet certain criteria,
mainly that the visualisation can be represented in terms of a
limited number of discrete, interactive, and physical entities
placed in a static 3-dimensional world of limited size.

Categories and Subject Descriptors
H.1.2 [User/Machine System]: Human factors; H.5.2 [User
Interfaces] Graphical User Interfaces (GUI), Interaction styles;
H.5.3 [Group and Organization Interfaces] Collaborative
Computing; I.3.6 [Methodology and Techniques] Interaction
Techniques; I.3.8 [Computer Graphics] Applications; K.8.0
[General] Games.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHINZ '05, July 6-8, 2005 Auckland, NZ

Copyright 2005 ACM 1-59593-036-1/04/10"

General Terms
Algorithms, Human Factors.

Keywords

Information visualisation, human-computer interaction, game
engines, collaborative visualisation, software visualisation.

1. INTRODUCTION
Modern computer games make use of technologies from almost
all areas of computer science: graphics, artificial intelligence,
network programming, operating systems, languages and
algorithms. A modern computer game engine, such as Doom 3
[13] or Unreal Tournament 2004 [15] contains efficient, very
well-tested implementations of a wide range of powerful
information visualisation and interaction techniques. These are
generally focused on rendering realistic 3D “worlds” and
supporting navigation within and interaction with elements in the
visualisation. Given the power, flexibility and maturity of these
game engines, we wanted to investigate possible ways of reusing
these implementations for other information visualisation tasks,
thus potentially saving large amounts of development time.

Computer game implementations have been successfully applied
by other researchers to tasks they were not originally designed
for, such as architectural design critique [1], military simulations
[2], landscape planning [3], and as an interface for Unix process
management [4]. In these applications game engines were utilised
to render very domain-specific information spaces which were
then navigated and interacted with by users.

Our research focuses on utilising computer game implementations
for more general information visualisation tasks. This seems to be
a relatively unexplored area, as we could only find a few
examples of work related to this topic [4,5]. We present a
framework for information visualisation using game engines and
we apply it in practice by developing a source code
comprehension tool based on the Quake 3 engine. This example
was chosen because code comprehension requires the user to
explore a structure, and to remember the locations of various
items in it. Hence this information can be mapped into a 3D
environment, where the spatial memory of the user can be
engaged to remember the layout of the code structure.

We provide a motivation for this research and survey game
engine technologies and related research. We then introduce an
architectural approach to information visualisation using games
engines. We illustrate the application of this architecture to the
code comprehension information visualisation domain, describe a
proof-of-concept prototype we developed to illustrate its
feasibility, and describe an evaluation of this prototype. Further
details of the research presented in this paper are available in [11].

2. MOTIVATION AND BACKGROUND
2.1 Source Code Comprehension Tools
Source code comprehension involves taking a complex data set
(program source code), translating this into a data model with
relationships between source code items represented (which might
include type dependency, operation invocation, data flow, thread
synchronisation, resource utilisation and so on), and visualising
this data model. Users (typically designers and programmers)
often want to visualise the data model in various ways, navigate
the model from high-level to low-level relationships and vice-
versa, and perform tasks on selected data model items e.g.
viewing a file [29]. Most existing source code comprehension
tools use textual or 2D diagrammatic renderings, with associated
navigation and interaction paradigms. A few examples, like
Shrimp [30] and Bloom [31], use 3D, zoomable renderings.
However, these tools are built with bespoke techniques and
require ad-hoc design and implementation techniques to realise
their 3D user interfaces. Most existing tools provide very limited
support for multi-user source code comprehension tasks.
We wanted to develop a source code comprehension tool that
used 3D, virtual environment metaphors to both present source
code relationships and support end user browsing and interaction
with information items. We also wanted to support multiple users
working together to comprehend code, including code walk-
throughs, code annotation and communication. To avoid building
our own support for these features from scratch we wanted to
leverage game engine technologies. Thus our tool needed to use a
visualisation metaphor that maps simply and naturally into a static
3D world occupied by dynamic, interactive entities, as found in
most current game engines. Key functional requirements of the
tool included: rendering source code files as 3D entities in a
suitable 3D world; relationship rendering and hyperlinks between
dependencies; support for multiple user interaction, including
identifying places of current interest of other users, guided tours
of code, and on-line communication in the virtual world.

2.2 Game Genres
Out of the computer game genres which use graphics (as opposed
to text-based games) the main ones are First Person Shooter
(FPS), Real Time Strategy (RTS) and Role Playing Game (RPG).
Computer games can be classified further into single player
(wherein other players are simulated using artificial intelligence),
multi-player (where several players can interact in the same
virtual world via a computer network), or both.
In a FPS game, the player travels around in a three dimensional
world, shooting enemies. In a RTS game, the player views a two
dimensional map with many units (for example, of an army) on it.
Players control their own units and use them to attack and defeat
their opponents. A RPG is similar, except the player controls only
one unit, their “character”, via which they explore a 2D (e.g. Age
of Empires II [6]) or 3D (e.g. World of Warcraft [7]) world.

2.3 Game Architecture
Most modern computer games can be split into three parts: the
game engine, the game logic and the game art. The game engine
is the main executable file which runs on the computer. It
provides an environment within which the game logic runs, as
well as basic mathematics, graphics, audio, user input and
network functions. The game logic may take the form of scripts,

bytecode for a virtual machine, or a library (a DLL for example).
The game logic's task is to control the game play, and to use the
engine to display the game art as appropriate. The game art
consists of things such as pictures (textures in game parlance),
maps (layouts of virtual worlds), models (3D representations of
things inhabiting the world, for example players, weapons or
flowerpots) and sounds.

2.4 Available Game Engines
Game engines can be divided into two categories: open source
and closed source.
Open-source game engines are either ones written by amateurs, or
older commercial engines which the developer decided to open-
source. In the former category, some of the more popular engines
are: OGRE [8], Crystal Space [9], Irrlicht [10], and The Nebula
Device 2 [12]. In addition to these, there are the Doom, Doom 2,
Quake and Quake 2 engines which have been open sourced by id
Software [13]. These use the OpenGL library for rendering, and
since they are from a commercial game they include support for
all the gaming features such as physics, audio, network, 2D and
GUI. None of the four amateur engines mentioned above have as
much functionality as the id Software engines built-in, however
they may be combined with external libraries to provide the
missing functions. The id Software engines suffer from being
older, providing poorer rendering quality than the newer open
source engines.
There are currently three main closed-source game engine
families in the FPS genre, each from a different developer: Doom
3 and Quake 3 engines from id Software, Half Life and Half Life
2 engines from Valve Software [14] and Unreal Tournament (UT)
and Unreal Tournament 2004 (UT2004) engines by Epic Games
[15]. Doom 3, Half Life 2 and UT2004 represent the latest
generation from each developer, and are the best game engines
available.
All of these closed-source engines are fully-featured, and there
exist one or more complete games based on each of these engines.
This is in contrast to most of the amateur engines mentioned
above, which provide more basic functionality. The amateur
engines often need to be combined with other libraries and
toolkits to create a playable game, while the six closed-source
engines listed here have all of the required functions built-in. Out
of these six, Quake 3 deserves special mention as id Software
plans to open source it in the near future [16]. This would mean
that, unlike the other engines here, extensive modifications to the
game engine would be possible. (Mods for the other ones are
restricted to altering the game logic and art.)

3. RELATED WORK
3.1 Using Game Engines for Visualisation
PSDoom [4] is a utility for process visualisation and management,
implemented as a modification of the Doom computer game. It
provides the functionality of the Unix ps command via a 3D user
interface. Running processes are represented as monsters
(enemies), which can be shot and killed, thereby terminating the
associated process. Monsters can fight back, and more important
processes are represented by bigger monsters (which are more
difficult to kill), thereby reducing the chance that they will be
terminated. Interestingly, when many processes are running, and
the 3D space becomes crowded with monsters, the monsters start

attacking each other (a normal Doom behaviour). This provides a
natural control mechanism for processes in a heavily loaded
system - less important monsters will be killed first, since the
important monsters are represented by stronger monsters.
Heckenberg et al. [5] implement a visualisation of a simplified
financial market (“The Minority Game”) using a modification of
the Unreal Tournament 2003 computer game. The Minority Game
consists of two teams of agents. These agents are represented as
3D players in the game. The Minority Game centres on the agents
making decisions so as to end up on the winning team (which is
defined as the team with the least agents). Future work is
suggested to make use of other game features, such as players
being able to throw stocks and money at each other, to perform
trading.
Computer games can also be used to visualise less abstract
concepts, such as 3D battlefields in military simulations [2],
landscape design and planning [3], and architectural designs [1].

3.2 Software Visualisation
A substantial amount of research has been done in the area of
software visualisation using 3D graphics. The tool sv3D [22]
represents one source file as a group of cuboids, one for each line
of code. The colour of the cuboid may represents various
attributes of the corresponding line, such as the control structure
type to which this line belongs, while the height can represent the
nesting level of the line. The sv3D implementation allows the user
to arbitrarily map other attributes of the code lines to various
graphical attributes, such as transparency.
Another interesting 3D visualisation is ArchView [23]. Here,
individual source code modules are represented by “LEGO
blocks” floating in a 3D space. Import relationships between
modules are shown by arrows, while the type of module (a user-
specified categorisation) is represented by the colour and shape of
the bricks.
Panas et al. [24] use a 3D city metaphor to represent a software
project. Java classes are represented by individual buildings,
whose size represents the number of source code lines in that
class. The spacing of buildings shows the amount of coupling
between the classes, and the type of building indicates the quality
of the code - old and collapsed buildings represent code which
needs to be refactored. Cars travelling within this city show the
dynamic execution path of the visualised program. Since the cars
leave traces, places of heavy traffic can be identified, and these
correspond to heavy communication between classes. Various
aspects related to software project management are then
superimposed on top of this view, such as surrounding often
executed classes by flames and colouring parts of the code which
are not used brown.

4. INFORMATION VISUALISATION
USING A GAME ENGINE
4.1 The Visualisation Pipeline
The visualisation process can be represented by a pipeline which
performs a data encoding and a data decoding step as shown in
figure 1. The first stage of the data encoding step is the data
transformation stage that converts information into a form more
suitable for visualisation. This can involve the creation of new
quantities and subsets, data type changes, and modelling
operations (e.g. model a directory structure as a tree). The

subsequent visualisation mapping converts the transformed data
into graphical representations which the rendering stage then
displays on a screen or by printing.
For information visualisation applications some authors [27,28]
prefer to subdivide the mapping stage further into visual
transformation (or data modelling) and visual mapping. However,
in many applications these two stages are combined: the available
models are fixed and the parameters of a model (shape, size,
colour, texture) represent the encoded information. The data
decoding step describes how visual information is perceived and
processed and consists of visual perception and cognition.

Figure 1: The Visualisation Pipeline.
The encoding and decoding are connected via visual attributes
such as shape, position, and colour, and textual attributes such as
text and symbols which themselves are represented by simple
visual attributes. A visualisation is effective if the decoding can
be performed efficiently and correctly. “Correctly” means that
perceived data quantities and relationships between data reflect
the actual data. “Efficiently” means that a maximum amount of
information is perceived in a minimal time.

4.2 Integrating a Game Engine into an
Information Visualisation Framework
There are two main ways in which a FPS game engine can be
used for information visualisation. One way is to modify an
existing game which is implemented on top of the engine, and
only add the features necessary for the visualisation, leaving the
basic style of interaction with the 3D world intact. The other way
is to write totally new code for the game logic, and only make use
of the graphics, audio and networking functionality provided by
the engine itself. This approach is more flexible with regards to
what visualisations can be created, however it requires a lot more
work on the part of the developer. In fact, this approach is similar
to using a visualisation toolkit or engine, such as OpenSG[25]. In
this paper, only the former approach is considered, as this is the
option that allows maximal reuse of the computer game
implementation.

4.3 Information Mapping
The main challenge met when using a game engine for
information visualisation is that the set of available visual
attributes, textual attributes and interaction techniques is limited
as explained below. Hence it is imperative to take these
limitations into account when transforming and mapping the raw
data into graphical representations.
In an FPS game, there are two primary types of elements: a static,
or almost static, map (3D layout of rooms) and dynamic,
interactive entities occupying positions in this map.
There are many different ways to represent parts of an
information visualisation by game elements. The particular

mapping chosen depends on the particular visualisation. For
example, in a visualisation of a file hierarchy, the layout of
directories could be represented by the layout of the rooms (that
is, the map), while files are entities occupying positions within
these rooms.
Limitations imposed by game engines must be taken into
consideration when designing this mapping. One example is that
in most current FPS games (specifically, Quake 3), the map can
not be altered during a game session. This could be partly
worked-around, as players can be moved between maps relatively
easily, so that one map could be altered while the players are in
another map, creating the illusion of a dynamic world. This has
the disadvantage that the game will pause while switching maps.
Additionally, Quake 3 maps are limited in size. A solution is to
split a large map into several smaller maps, but with the same
problem of the game pausing between map changes.
Another limitation of FPS games is that they are designed for a
relatively low number of entities; Quake 3 only allows a
maximum of 1024 entities in a map. With access to the game
engine source code, this limitation may be removed, but this may
introduce a performance hit. Thus, in some cases it may make
more sense to represent parts of the visualisation as dynamically
generated textures (e.g. a diagram of a graph structure) rather than
as separate entities. Again, this could be worked around by using
multiple maps, or by spending some time extending the engine.
Yet another peculiarity of game engines is that they are designed
to only support one style of interaction, that defined by the game
logic. For example, in Quake 3 each entity usually has a fixed
appearance, and a fixed behaviour throughout a game session. (It
is actually possible to alter these programmatically during a game
session in the game logic, if desired.) The problem is that the
engine does not provide any "multiple view types" support. So, if
the visualisation to be implemented relies on multiple view types
(e.g. seeing files first as parts of a pie chart of disk usage, and
then as entities inhibiting 3D rooms), one must be prepared to
code a framework on top of the engine which will keep track of
what view is being currently used, and tell the game logic which
representations and behaviours to use for which entity.

5. A SOFTWARE COMPREHENSION
TOOL BASED ON A GAME ENGINE
5.1 General Requirements
The initial choice we faced was how to map important features of
code visualisation to a 3D game engine metaphor. The metaphor
we chose is to represent source code files as entities that can be
interacted with (viewed, moved, arranged) in an otherwise static
3D world. Although we have chosen source files as the principal
entity, we could easily have chosen class definitionsor any other
primary modularisation mechanism to similar effect. File entities
can be moved around at will, to arrange them in logical
groupings. They can be viewed by walking up to them. The
source files are cross-referenced using hyperlinks, so that clicking
on a symbol in the source code takes the user to a definition of
that symbol. Also, back and forward buttons exist so that users
can walk through their histories. The metaphor used by the tool is
essentially just a 3D version of a web browser, using cross-
referenced source files as the web pages. The advantages of using
a game engine instead of a normal browser are mainly: multi-user
support either via a LAN or the internet, so one user can guide

another user via the code; and utilisation of the user's spatial
memory, since closely-related files can be placed together in the
3D world - hopefully making it easier for the user to comprehend
the structure of the source code.
It is important to note that care must be taken when using 3D
interfaces for information visualisation applications. Results of
Cockburn et al. [21] suggest that users often find a 3D user
interface confusing and cluttered. However, the authors also
mention that adding semantic labels to elements in a 3D space
may improve user performance to above that of a standard 2D
interface. The tool implemented in the present project places the
elements in virtual rooms and hallways in a 3D world, unlike the
experiment by Cockburn et al. where the items were all floating in
space. The implementation hence provides a type of semantic
label and utilises the users’ spatial memory abilities [19,20].
Throughout the design of the tool, the main usage scenario
considered was that of a new employee, or group of employees,
arriving to work at a company, and being given a guided tour of
the company's source code base by an existing employee. The
main functional requirements thus identified included:

♦ A web browser like interface, but with webpages (source
code files) represented as movable 3D entities in a 3D world.
Syntax highlighting and hyperlinks are to be displayed when
a source code file is shown.

♦ Ability for users to identify, by their appearance (model),
other users in the world.

♦ Ability for a user to give a guided tour - so that new
employees can automatically follow experienced employees.

♦ Ability for users to point out specific parts of the code to
each other during a guided tour - by circling parts of code on
their screen, and by having the same drawing appear on the
other player's screens.

♦ Communication between users (via a chat facility)

5.2 Requirements for the Game Engine and
Engine Choice
The game engine used needs to be multi-user capable, stable, and
well tested. Since as discussed in Section 4 the tool will be
implemented by modifying an existing game running on the
chosen game engine, there must be a well-tested, open-source,
implementation of a game for the chosen game engine. This is
required since this project aims to reuse as much of the 3D First
Person Shooter style of interaction as possible. Because of this, it
makes sense to reuse an existing FPS implementation, rather than
spending time writing one for a game engine which has no such
existing implementation.

The game engine which seemed to best meet these requirements is
the Quake 3 engine, with the corresponding game
implementation, Quake 3 Arena [17,18],. The Quake 3 engine
source code is at the moment not available to the public. The
Quake 3 Arena source code is available, under a limited licence
(which does appear to permit modifying the source code and
distributing the modified game virtual machine bytecode).

Several open source game engines, such as OGRE, Crystal Space
and Irrlicht (see section 2.3), were investigated, however most of
them lacked crucial features (such as networking support), or had
no well-tested game implemented using them.

Quake 3 uses the standard FPS game control system: mouse and
keyboard. Moving the mouse around changes the direction the
player looks in. The mouse buttons are typically used for walking
forwards and for shooting. Various keys on the keyboard are used
for crouching, jumping, moving backwards, strafing and
switching weapons. The keys can be remapped to different in-
game functions via a process known as key binding.

Quake 3 is by design a network-oriented (LAN or internet) game,
using the client-server model of communications. Each computer
running Quake 3 runs an instance of quake3.exe, the game
engine. This executable is capable of running bytecode for three
virtual machines: game, cgame and UI. These are referred to as
QVMs, for Quake Virtual Machine. The game qvm is the server
part of the game. It is responsible for maintaining the state of the
game world, such as positions of all entities, and sending
messages to the clients. It also has the final say on issues such as
whether a certain bullet hit a certain player or not. Game does not
do any rendering; it only communicates with clients. cgame is
the client QVM - there is one running on each computer
connected to a particular game. The client is responsible for
rendering the map and entities, according to data sent by the
server. Finally, the UI qvm is responsible for displaying the in-
game menus. Within the QVM environment there are several
available system calls or traps. These are functions that can be
called within the code of the QVM, to pass control into the main
quake3.exe executable. This is how tasks such as drawing on
the screen, file and network access are carried out.
Internally, the main message passing mechanism (or rather, the
most easily accessible and modifiable one) is based on passing
variable-length, null-terminated strings. These can be sent from
the server to the client or vice-versa.
Currently, only the Quake 3 game logic code is open to the
public. This consists of a total of approximately 100 000 lines of
ANSI C code running on the three Quake 3 virtual machines.

5.3 The User Interface and Interaction
Metaphor - Single User
The tool is based on displaying source code files as individual
entities within a 3D world. These entities can be moved around,
much like icons can be moved around on a 2D desktop. The
entities are drawn as floating “T” shapes, for no reason other than
that this seemed to be the most appropriate of the existing entity
models in Quake 3. Another model could be easily substituted in
the future. The size of the drawn entity indicates the size of the
corresponding source file. All file entities have their filename
displayed above them. In order to improve the readability this is
done in a way such that the text always faces the player, and is of
constant size, irrespective of the distance between the player and
the file. Additionally, header files (detected as those files whose
name ends in “.h”) have their filenames displayed in red, and their
“T” shapes surrounded by a spheroid, while other files have their
filenames in blue, and have no surrounding spheroid, so that they
may be easily distinguished as illustrated in figure 2.

Files can be picked up by shooting at them. When this occurs, the
file disappears from the map, in all players' views, but a “T” icon
appears on the side of the screen of the player who is now holding
the file. The player can then walk anywhere on the map, and press
the item use key to drop the file at the new location. The file than
appears at this new place in the map. In the current
implementation, there is no way for players to distinguish if a
certain player is carrying a file. This may cause some confusion
due to “missing” files, so this feature should be added in a later
version.

Figure 2: A small header file (left) and a large .c file.

Figure 3: Viewing a source code file.

To view the contents of a file, players just walk into a file. When
they are close enough, the file is displayed on the screen, as
shown in figure 3, in a scrollable box. The file may be scrolled
using the arrow and page up and down keys. The current position
in the file is indicated by a scrollbar on the left and as line and
column numbers at the top of the screen.

The displayed text is shown using syntax highlighting, for easier
comprehension. Function invocations and uses of variables are
displayed as hyperlinks - by being underlined in blue. The
hyperlinks are generated by using the doxygen [26]

documentation tool, in conjunction with a purpose-written parsing
tool. Clicking on a hyperlink will take the user to where the
symbol in question is defined in the source code. If the definition
is within the same file, the file is scrolled so that the definition is
at the top of the screen. If the definition is in another file, the file
view is closed, so that the user sees the 3D world. The user's view
is than slowly panned around so that the file in which the symbol
is defined is centred on the screen. The player is then slid towards
the file, and upon reaching it the file is displayed, with the
definition of the symbol at the top of the screen. In the present
implementation, if the files are in different rooms separated by a
wall, the player will be slid through the wall, which may be
disorientating to the player. In future, part of the AI route-finding
algorithm in Quake 3 could be reused to have the player follow a
path to the destination file without crossing any walls.

Each time a player clicks on a hyperlink, the currently viewed
file, and their position therein, is added to their history. The
history operates exactly like a web browser's history, via a back
and forward button.

5.4 Multi-User Features
Most of the multi-user features present in Quake 3 remain
unaltered. These include the ability of players to see other players
in the 3D world, to chat with them, and to view the names of all
players in the current game by pressing the F1 key (the
scoreboard key). In Quake 3, each player can choose a 3D model
that will be their avatar in the 3D world. Each player also can set
their name - this is the name that will be displayed in the
scoreboard and in the chat dialog.

The standard Quake 3 interaction provides a simple way of seeing
what file another player is looking at - one can walk around the
map, looking for that player's model, and see what file they are
standing at. Unfortunately, the standard Quake 3 multi-user
system does not provide a simple way of seeing which part of the
file another user is looking at, and also there is no simple way of
pointing out certain lines of code to another user.

Therefore, two new multi-user features were added to Quake 3 for
this tool: a way of "locking" one's view with another player's, so
that your screen shows exactly what the other player is seeing;
and a way of "drawing" on the file display, so that one can point
out parts of the source code to other users.

The lock view feature works as follows: when viewing a file (ie.
when standing very near to it), portraits of all other players also
viewing the same file are displayed at the bottom of the screen.
Clicking on a portrait locks your view with that player's. This is
indicated by the background of that player's portrait flashing.
When your view is locked with another players', you cannot
scroll, but your view shows exactly what the other player sees - if
they scroll, your view also scrolls to the same position.

One can point out parts of source code to other users currently
viewing a file. This is done by dragging the mouse cursor with the
right mouse button held down. This leaves behind a long trail of
squares, which fade out over time. This can be used for example
for circling or underlining certain items. In the present
implementation, if one player viewing a file draws on it, the same
trail of squares appears in the view of all other players also
viewing the source file, irrespective of whether their views are
locked or not. Whether the trail drawing should be restricted to

only the players with locked views is something to be investigated
in the future. Each player has a unique colour, which is used as
the background of their portrait, as well as for the colour of the
trail of squares. This is so users can easily identify who is
drawing. See Figure 4.

Figure 4: Detail of the source file view. The player with the
green background is pointing out the “unzip” link using a

trail.

6. EVALUATION
6.1 Evaluation of the Tool
The implemented tool met all the major functional requirements
listed in the design section: source code files are represented as
physical, movable 3D entities in a 3D world. They can be
navigated via a web browser like interface which displays the
files with syntax highlighting and hyperlinks. Users can see each
other, and can customise their appearance to be unique using the
normal Quake 3 model choosing system. A player can lock their
view with another player, so that giving guided tours is possible.
Users can “draw” on the source files, thereby indicating important
parts of the code to other players also viewing that file (the
“drawing” fades over time to reduce clutter). The chat
functionality is not completely implemented yet, as it does not
work correctly for users who are viewing contents of files,
however it does work well in the normal 3D view.
There was no real usability trial done. However, during
debugging, the help of several people was enlisted, and the
following observations were made:

♦ Since everyone was in the same physical room, no-one
bothered using the chat functionality, and just communicated
using voice.

♦ Sometimes in a place where there were lots of files, the file
name labels would overlap, being difficult to read. One
person came up with an interesting use of the Quake 3 'zoom'
function to overcome this. By holding down the 'Ctrl' key,
the player's view is magnified, showing less files, and
separating the filenames labels more, making them easier to
read.

♦ An unplanned feature was discovered: a player who is
currently carrying a file can run up to another player, and
drop the file onto him. The other player's view will then
show the contents of that dropped file. It is interesting to
note that this feature arose by itself due to basing the tool on
a 3D physical world metaphor. In the future, this sort of
interaction could be used, for example, for a 3D interface to
a source code version control system: a user walks up to a

“vault”, where the checked-out files are dispensed, picks one
up, carries it to their virtual workplace to work on it, and
then carries it back and “drops” it into a chute leading back
to the vault, to check-in the changes.

♦ In an early version of the tool, the lock view feature was
only implemented within one source file view - as soon as
the tour guide clicked on a link, the other participants' views
became unlocked, and they did not automatically follow the
tour guide to the destination of the clicked link. The
participants found this annoying, so the lock view feature
was changed in the current version, to allow groups to follow
the leader between files automatically. Unfortunately, this
seems to have had the effect of turning the players who are
being guided around into “zombies” - all that they do is look
at the screen, and have no control of what they are looking
at. This may lead them to losing attention quickly. Perhaps
an intermediate solution could be implemented, where if the
leader clicks on a link, that link is highlighted on the other
player's screens, but then they have to click on it. Whether
this is a good solution needs further investigation.

6.2 Evaluation of Quake 3 Game Engine
Suitability
We found that Quake 3 was a good choice for the underlying
implementation platform. Some minor problems were
encountered with using this engine as listed below.
Learning to modify the game engine took time, and was mostly
done through trial and error. There is no documentation of the
code provided by idSoftware. There are basic third party
resources [17,18] that serve as a good introduction to the basics.
However, it was often necessary to walk through the existing code
by hand and figure out how it worked and how best to modify it.
The game code which runs on the VMs is written in C. This has
the usual side-effect of having the implementation of a particular
entity split across many different files. This is not necessarily a
bad thing in itself, but sometimes this leads to subtle bugs where
some other part of the code in another file unexpectedly alters the
state of an entity.
The lack of dynamic memory allocation in the VMs is a
limitation, but can be easily worked around. Either a large static
array can be used and memory allocated out of that by hand (as
was done in the cgame.qvm modification), or once the game
engine source code is opened, this functionality may be added.
However, such an addition would need to be carefully planned,
since presumably there was a good reason for not including this
functionality in the first place. Another way to work around this
issue, which is not optimal, is to compile the game code as a
win32 DLL. This can be loaded by Quake 3, and can make use of
all native win32 functions such as dynamic memory allocation.
However, this solution is non-portable, and removes the security
barrier which is provided by executing the code in a QVM.
There seems to be a bug in the game engine itself, whose source
code is not currently available to the public. This bug manifests
itself when a large number (> 8000) of triangles are drawn from
within the UI QVM. This is an important example of how using
the engine for what it was not designed for (displaying lots of text
in the UI) may test the engine in ways that a normal game
wouldn't, revealing hidden bugs. Since the Quake 3 game engine
should be open-sourced soon, this bug should be able to be fixed.

Another result of the game engine code being, for the moment,
closed, is that the network protocol is fixed. New character string
messages can be added easily, but these need to be assembled at
one end, and parsed at the other. In addition, these messages are
not associated with any particular entity (other than, in the case of
client-originating messages, which player sent them). This was a
problem in the implementation of the tool since the new itemid
field of sourcefile entities had to be communicated from the
server to the client. Fortunately, a field in the existing packet
structure was found which was rarely used, and so was reused to
transmit the itemid. While this worked for this particular tool,
the available space is very limited, and may not be sufficient for
other visualisation tools. A workaround based on sending the
extra information via text messages and storing them in a look up
table at the destination could be implemented, or, better, the
network protocol could be made more flexible once access to the
game engine source code is available.
The last significant problem encountered was the limited
capability of the UI system built into the game, specifically that it
did not have a text scroll box element. However, all functions
needed for implementing such an element were easily accessible,
so there were no problems with coding this by hand (other than
the 8000-triangle limit mentioned above).

7. CONCLUSION
It is possible to use a game engine as the basis for an information
visualisation tool, and thereby save a lot of implementation time
by reusing the functionality already implemented in the game
engine. The biggest benefit is obtained when as much of the game
engine functionality is reused as possible, i.e. in 3D, interactive,
multi-user visualisations based on a metaphor involving physical
entities.
In order to simplify the implementation process, it is important to
choose a visualisation which uses a metaphor of there being
several distinct dynamic entities in a static 3D world that the users
can interact with. There should typically be much less than 500 of
these entities, but this limit depends on the game engine chosen,
the amount of modifications needed, and the performance and
hardware requirements of the result. There typically is also a
limitation on the maximum allowed map (3D world) size,
although this can be usually worked around by stitching together
several smaller maps.
Out of the two ways of reusing a game engine, those being either
writing a new set of source code which uses the engine, or
modifying an existing game to customise it for producing the
desired visualisation, the second is much easier and was therefore
used in this project. There is still considerable work involved in
customising an existing game, especially as in this case, where
there was very little documentation of the code available.
The tool which was implemented in this project seems to work
well as a source comprehension tool, this observation being based
on an informal trial. It closely resembles browsing a cross-
referenced source code base via a web browser, with the addition
of multi-user capability and the ability to use one's spatial
memory to remember the structure of the code.

8. FUTURE WORK
The implemented tool may make a good basis for future software
visualisation projects, wherein various graphical representations
of information could be superimposed on top of the existing

visualisation. If users have already stored the basic structure of
the source code files in their spatial memory, they could easily
identify what parts of the source code the superimposed
information relates to. It may also be worth investigating the use
of a tool similar to this for browsing other repositories of
hyperlinked documents - for example, using hyperlinks to show
citations between scientific papers.
The tool itself could be extended in several ways, such as adding
support for “notes”, which could be used to annotate the 3D
spaces with information about what function the source code files
placed there perform. Also, the map generation could be
automated by analysing the source code. Further improvements
could include VOIP support for voice chat capability, and adding
a 2D overview map so that the location of files and other players
could be quickly ascertained. Other future research could involve
seeing how well game engines of other genres (RPG, RTS) are
suited for information visualisation.

9. ACKNOWLEDGMENTS
We gratefully acknowledge that this research was supported by a
grant from the Faculty of Science of the U of Auckland.

10. REFERENCES
[1] Moloney, J., Amor, R., Furness, J., and Moores, B. Design

Critique Inside a Multi-Player Game Engine, Proceedings of
the CIB W78 Conference on IT in Construction, Waiheke
Island, New Zealand, 23-25 April, 2003, pp. 255-262.

[2] Manojlovich, J., Prasithsangaree, P., Hughes, S., Chen, J.
and Lewis, M. UTSAF: A Multi-Agent-Based Framework
for Supporting Military-Based Distributed Interactive
Simulations in 3D Virtual Environments, Proceedings of the
Winter Simulation Conference, New Orleans, LA, 7-10
December, 2003, pp. 960-968.

[3] Herwig, A., Paar, P. Game Engines: Tools for Landscape
Visualization and Planning?, Trends in GIS and
Virtualization in Environmental Planning and Design,
Wichmann Verlag, Heidelberg, 2002, pp. 161-172.

[4] Chao, D., Doom as an Interface for Process Management,
Proceedings of SIGCHI'01, Seattle, WA, 31 March-1 April
2001, pp. 152-157.

[5] Heckenberg, S.G., Herbert, R.D. and Webber, R. (2004).
Visualisation of the Minority Game Using a Mod. In Proc.
Australasian Symposium on Information Visualisation,
(invis.au'04), Christchurch, New Zealand. Conferences in
Research and Practice in Information Technology, 35.
Churcher, N. and Churcher, C., Eds., ACS, pp. 157-163.

[6] Age of Empires II, www.microsoft.com/games/age2.
[7] World of Warcraft, www.worldofwarcraft.com.
[8] OGRE Object-oriented Graphics Rendering Engine,

www.ogre3d.org.
[9] Crystal Space 3D, crystal.sourceforge.net.
[10] Irrlicht Engine - A free open source 3d engine,

irrlicht.sourceforge.net.
[11] Blazej Kot, " Information Visualisation Utilising 3D

Computer Game Engines ", FoS Scholarship Report,
University of Auckland, February 2005, www.cs.aucklan
d.ac.nz/~burkhard/Reports/SS2004_BlazejKot.doc

[12] The Nebula Device 2, nebuladevice.cubik.org.
[13] id Software, www.idsoftware.com.
[14] Valve Corporation, www.valvesoftware.com.
[15] Epic Games, www.epicgames.com.
[16] John Carmack’s Blog, www.armadilloaerospace.com/n.x/

johnc/Recent%20Updates.
[17] Quake III: Arena, baseq3 mod commentary,

www.icculus.org/~phaethon/q3mc/q3mc.html
[18] Code3Arena, www.planetquake.com/code3arena/
[19] Gagnon, D. Videogames and Spatial Skills: An Exploratory

Study. Educational Communication and Technology, 33, 4
(1985), pp. 263-275.

[20] Leitheiser, B. and Munro, D. An Experimental Study of the
Relationship Between Spatial Ability and the Learning of a
Graphical User Interface, Proceedings of the Inaugural
Americas Conference on Information Systems, Pittsburgh,
PA, 25-27 August, 1995, pp. 122-124.

[21] Cockburn, A., and McKenzie, B., Evaluating the
Effectiveness of Spatial Memory in 2D and 3D Physical and
Virtual Environments, Spatial Cognition, 4, 1 (April 2002),
pp. 203-210.

[22] Marcus, A., Feng, L., and Maletic, J. I., 3D Representations
for Software Visualization, Proceedings of the 2003 ACM
Symposium on Software Visualization, San Diego, CA, 11-13
June, 2003, pp. 27-36.

[23] Feijs, L. M. G., de Jong, R., 3D Visualization of Software
Architectures, Communications of the ACM, 41, 12
(December 1998), pp. 73-78.

[24] Panas, T., Berrigan, R., Grundy, J., A 3D Metaphor for
Software Production Visualization, Proceedings of the
Seventh International Conference on Information
Visualization (IV'03), London, England, 16-18 July, 2003, p.
314.

[25] OpenSG Home, www.opensg.org.
[26] Doxygen, www.doxygen.org.
[27] Ed Chi, A Taxonomy of Visualization Techniques using the

Data State Reference Model, Proceedings of the Symposium
on Information Visualization (InfoVis '00), Salt Lake City,
Utah, October 9-10, 2000, pp 69-75..

[28] Colin Ware, Ed Chi, Rich Gossweiler, Visual Perception for
Data Visualization, Tutorial for Human Factors in
Computing Systems Conference (CHI 2000), 2000, www-
users.cs.umn.edu/~echi/tutorial/perception2000.

[29] Storey, M.-A., Wong, K. and Muller, H.A. How Do Program
Understanding Tools Affect How Programmers Understand
Programs, Proceedings of the Fourth Working Conference on
Reverse Engineering, October 6-8 1997, IEEE CS Press.

[30] Lintern R., J. Michaud, M.-A. Storey and X. Wu, “Plugging-
in Visualization: Experiences Integrating a Visualization
Tool with Eclipse”, ACM Symposium on Software
Visualization, (Softvis’2003), San Diego, pp. 47-56.

[31] Reiss, S.P. and Renieris, M. The BLOOM Software
Visualization System, in Software Visualization - From
Theory to Practice, MIT Press, 2003.

