
Generating mobile device user interfaces for diagram-based modelling
tools

Dejin Zhao1, John Grundy1, 2 and John Hosking1
1Department of Computer Science and 2Department of Electrical and Computer Engineering,

University of Auckland, New Zealand
{john-g, john}@cs.auckland.ac.nz

Abstract
Mobile display devices such as phones and PDAs have
become very widely available and used. However, most
content on these devices is limited to text, static images
and motion video. Displaying and interacting with
dynamic diagrammatic content on such devices is
difficult, as is engineering applications to implement such
functionality. We describe a set of plug-in components for
a meta-diagramming tool that enable a diagram type to be
visualized and interacted with on mobile devices. Key
features of our approach include generating diagram
content from an existing meta-tool, run-time user
configuration of diagram appearance and navigation, and
multi-level, zoomable diagrams and diagram content. We
describe our experiences prototyping, using and
evaluating this new mobile device diagramming
technology..

Keywords: mobile user interfaces, diagrams on mobile
phones, collaborative design

1 Introduction
Mobile devices such as PDAs and phones have become
very widely available and used in recent years. Many
offer a range of sophisticated content including styled
text, rich graphical images and full-motion video
streaming. Many now offer quite high resolution display
capabilities along with a variety of interaction techniques,
including buttons and stylus-based sketching. However,
very few applications for mobile devices provide
dynamic diagrammatic display and almost none
interactive diagram editing.

Diagrammatic applications include design tools for a
variety of domains such as information structuring and
browsing, concept sketching and discussion, project
management, and software and user interface design.
Examples of diagram types include trees for file and
concept hierarchies, graphs for network, relationship and
dependency specification, and various domain-specific
notations, such as Gantt and Pert charts for project
management, UML diagrams for software design, and
various visual languages for concept analysis and
programming. Traditional diagramming tools for such

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Seventh Australasian User Interface
Conference (AUIC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 50. Wayne Piekarski, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

applications are built using thick client, window-based
interfaces. This limits them to desktop and laptop
computers. To improve access to these tools, thin client
diagramming tools [1, 10] have been proposed and
prototyped, typically using a web browser for viewing
and sometimes editing diagrams. The advantages of this
approach include no need to install software on each
user’s computer and use of web-based architectures and
interaction to build and access the diagramming tools.
However, unlike desktop PCs and laptops, mobile devices
have many constraints on screen display size, interaction
techniques and bandwidth over mobile cellular networks.
This makes existing thick- and thin-client diagramming
approaches unsuitable for these devices.

We wanted to explore the issues involved in making thin-
client diagramming applications available on mobile
devices like PDAs and mobile phones. To this end we
have built a proof-of-concept extension to a meta-CASE
tool, Pounamu, allowing each diagramming tool specified
in Pounamu to be effectively realized on mobile devices.
We begin by presenting our motivation and surveying
related research. Then we give a detailed walkthrough of
the architecture and our approaches with illustration of
use cases. We briefly describe our implementation based
on Nokia’s MUPE framework [19] before concluding
with a summary and future work.

2 Motivation
We have been developing a meta-CASE tool called
Pounamu [24]. Pounamu is used to interactively define
new domain-specific tools and to provide a framework
for realizing these tools. Some extensions have been
developed to extend access to tools and support
collaborative editing. These include a thin client
diagramming plug-in [1] and a collaborative work plug-in
[15]. These extensions of Pounamu provide different
kinds of user interfaces for diagram modeling tools built
with Pounamu, including single user thick client, multi-
user thin client, and multi-user collaborative work
support.

Figure 1 (a) shows an example diagramming tool
generated by Pounamu, a UML CASE Tool, in use.
Another tool, a project management tool, is shown in
Figure 1 (b). Figure 1 (c) shows a web client user
interface implemented by Pounamu/Thin, our plug-in
extension to support web-based diagramming for
Pounamu tools. While these modelling tools provide a
range of diagramming features, they are constrained to
use on desk-top or laptop PCs.

1

2

3

Figure 1. (a) UML tool in Pounamu; (2) Project Management tool in Pounamu; (3) Pounamu/Thin interface.

As discussed above, there are many applications for
diagram-based user interfaces that users could potentially
want deployed on mobile devices. To support such
pervasive access and mobile collaborative model design,
we wanted to make Pounamu modelling tools accessible
on a range of mobile devices, such as mobile phones and
PDAs. We also wanted to explore the technical and
usability issues associated with building complex
diagram-based user interfaces on mobile devices. Our
approach to achieving this was to adopt a similar
mechanism to our web-based Pounamu/Thin plug-in. We
built a new server using Pounamu’s plug-in mechanism
(Pounamu/Mobile). This supports multi-user access to
tools generated by Pounamu, through thin clients on
disparate mobile devices.

Mobile devices are however constrained in a number of
ways over desktop clients making them particularly
challenging on which to realize diagram-based interfaces.
Some of these constraints include:
• The relatively low processor speed, small memory

and storage of most mobile devices
• The wide range of mobile devices and the issue of

deploying applications onto devices running different
operating systems

• Diagram rendering limitations of most current
mobile devices, particularly for diagrams originally
defined for thick-client PC display and editing.

• Techniques to display large diagrams on small
screens and yet still keep the diagram meaningful

• Techniques to navigate large diagrams and between
multiple views (diagrams) of a model

• Supporting user preferences so that different users
can specify different diagram content rendering,

zooming and navigation configurations via their
mobile device

3 Related Work
A number of systems have been developed to assist in
developing mobile and thin-client user interfaces. Several
provide overviews of complex information such as web
pages, on mobile devices, using e.g zoomed-out copies of
pages [9, 19] or summarized versions of the page [1, 7].
Generally these “content outlining” approaches transform
pages into sets of tiles [19, 5, 1] and while they assist
navigation they are not suitable for most diagrammatic
representations. Some mobile browsers combine tiling
with zooming, so that users can access individual tiles
from an overview [9, 7, 8]. These increase the amount of
complex content that can be reasonably accessed and
browsed on a small screen mobile phone. Approaches to
collapsing page content allows users to zoom into
relevant areas by collapsing areas that are less relevant
[1] and also increase the ability of mobile users to access
complex information that otherwise could not be
presented on a single small screen.

A number of mobile applications have been developed
that provide diagrammatic representations of complex
information. These include tourism and travel planning,
map usage and management [12, 16, 21, 22, 24]. Most of
these applications have read-only diagrams that do not
support editing. A number support some form of zoom-
based display enabling users to focus in on areas of
interest quickly and navigate complex information
spaces. However many of the panning and zooming
capabilities are limited to either the mobile device’s
standard characteristics or single points of zoom and
focus. Our experiences have indicated that multiple points

of focus are desired by users when working with the
kinds of diagrammatic representations illustrated in the
previous section.

Thin-client, web browser-based approaches have become
popular for various diagramming applications [1, 10, 9,
14]. At present most such systems focus on supporting
standard web browsers on desktop or laptop PCs, rather
than smaller screen mobile PDA or phone devices.
However, many of these web browser-based
diagramming tools use architectures that could support
mobile device-based diagrammatic rendering and editing.

A number of architectures have been developed to
support multi-device user interface construction [20, 3,
11, 15, 23]. These systems aim to provide a single way of
specifying user interfaces that may be presented on a
wide range of devices. To date however most of these
interfaces have been limited to text and form-based data
rather than richer diagrammatic content. Some use an
approach of translation from an abstract XML format into
a device-specific format. However most do not have a
generic diagramming application as their “application
server”, instead implementing custom diagramming
support specifically for the mobile device. While this
allows some optimisations to be made in terms of content
production, it has the disadvantage of not being able to
leverage much of the work on diagramming meta-tools
and architectures.

4 Our Approach
In this section, we briefly explain the architecture of our
Pounamu/Mobile thin-client diagramming extension and
our approaches to addressing the above requirements. The
following section illustrates how our extension works
using two prototype design tools, a UML design tool and
a Project Management tool.

Figure 2 shows a high-level architecture of our
Pounamu/Mobile approach. The Pounamu meta-tool runs
on a host and behaves as the application server/database
manager. It supplies application data to the Pounamu
MUPE server, including tool specifications, models, and

multiple views (diagrams) of models. The Pounamu
MUPE server generates user interfaces for diagramming
tools according to this data and user configurations,
which is explained later in this section. Mobile hosts can
have differing screen size, display and input capabilities,
and differing connectivity to the Pounamu MUPE server
(Bluetooth, WLAN, GPRS etc).

We addressed the requirement for deployment of
Pounamu/Mobile interfaces on various devices by using
Nokia’s MUPE mobile client/server technology. MUPE
is a mobile thin client technology developed by Nokia
consisting of a MUPE server and MUPE client browser.
The MUPE server responds to client requests by
generating and sending back pages in XML, which can be
browsed in a MUPE client. MUPE clients are based on
Java MIDP, which is enabled on most newer mobile
devices. By using MUPE, diagrammatic user interfaces
generated by our system can be easily deployed on a wide
range of MIDP-compatible devices. The server sends
XML-encoded data to the MUPE handset client using a
protocol optimised for the MUPE client. MUPE XML
markup includes GUI widgets like text, bitmaps, input
fields and so on, along with canvas-based drawing and
client-side scripting for highly interactive interfaces. The
MUPE client sends XML-encoded requests back to the
MUPE server for processing. MUPE differs from other
mobile client-side applications such as pure MIDP2.0 by
trying to provide a higher-level markup language for
complex interface specification along with a client-server
request/response protocol in XML.

Our Pounamu/Mobile server is implemented as a set of
components hosted on a MUPE-supporting server. These
components include diagram view rendering and
manipulation, diagram shape and connector property
editing facilities, and multi-user tool configuring
facilities. Any MIDP2.0 supporting client device can
have the MUPE client application installed and thus
render Pounamu/Mobile diagrams and provide editing
support.

 Pounamu Host

Pounamu Meta-tool

Model views

Meta-tool specs
(such as UML tool,
project management tool,

Models of
tools

RMI
API

Pounamu MUPE Server

tool configuring

Model UI
generators:
diagram and
text views

Property sheet
generator

Users’ tool
configurations

(XML)

Request
handlers
(handle all
requests,
including
add, move,
remove
item;
multi-level
zoom;
edit item
properties;
configure
diagrams
in multi-
level
zoom)

Model data
information from
Pounamu

User
tool
config

User devices

JAVA MIDP 2.0

MUPE Client Browser
MUPE XML Pounamu XML

Figure 2. Architecture of the Pounamu MUPE Server and Clients.

To help address the rendering and resolution limitations
of most mobile devices, we developed a multi-level
rendering and zooming capability. This facility allows
users to define multiple representations for a single
diagram at different levels of detail. While manipulating
model views, each diagram element can be separately
selected and zoomed among multiple levels. Automatic
zooming of elements is supported as users navigate a
large view.

We use several navigation approaches to improve user
interaction with diagramming tools on mobile devices.
Button-panning let users quickly move around in a big
diagram using mobile phone buttons. A floating zooming
window allows users to easily and quickly zoom to
interesting areas from an overview of a large diagram.
Pounamu/Mobile supports user preferences by using a
multi-user runtime application configuration facility. This
allows users to specify different diagram content, zoom,
and navigation configurations via their mobile device.
User configurations are stored in XML format in the
Pounamu/Mobile Server. At run-time the system obtains
model information to display from the Pounamu
application server and generates diagram views according
to each user’s configuration. Default user configurations
are generated and these may be tailored to enhance users’
display and interaction.

5 Example Usage
In this section we illustrate example mobile user
interfaces generated by our Pounamu/Mobile from two
quite different prototype tools. One is a UML CASE tool
and the other is a Project Management tool, as shown in
thick client form in Figure 1. Our Pounamu/Mobile
components are completely tool-independent hence no
code changes are necessary to support rendering and
editing of any diagramming tool specified in our original
Pounamu meta-tool.

Figure 3 (a) shows the initial Pounamu/Mobile screen
after logon, showing a list of viewing and editing options.
After selecting a diagram to display, an initial overview
of it is generated. Two overviews of selected views using
the two tools are shown on two different mobile phones
in (b) and (c). An overview of the same model view may
appear differently on different mobile devices. This is
because the overview is generated by proportionally
shrinking original diagrams to fill them onto the small
screens of mobile devices. The proportion is calculated
according to the size of the selected Pounamu view to
display and the screen size of the client device requesting
a page. Detailed contents of diagrams are filtered out in
overview mode because they are thumbnails and hard to
see. Users can press direction keys to select diagram
shapes and connectors. The status bar underneath displays
certain details of the current selected item, such as the
name and type of the selected item. Figure 3 (b) shows
one class diagram view on a small colour phone. Figure 3
(c) shows a Gantt chart view from a project management
model on the Nokia 7650.

Figure 4 shows an example of multi-level zooming and
pan navigation in Pounamu/Mobile views. To zoom

in/out diagram shapes to various detail levels, firstly a
user selects a diagram shape from the model view, and
then presses a pre-defined hot key to zoom into a
particular level.

a

c

b

Figure 3. (a) main menu of Pounamu/Mobile tools; (b)
overview of class diagram view on a small colour

phone; (c) overview of a Gantt-chart view on Nokia
7650.

a

b

c

Figure 4. (a) the class diagram view with all diagrams
zoomed in level 1; (b) same class diagram view with

diagrams zoomed to different levels; (c) pan
navigation to show the current position and quick

zoom in to the selected area.

In Figure 4 (a), all diagram elements are at “zoom level
1”, providing a high level overview of the diagram but no
details for each element. In Figure 4 (b), one object entity
is zoomed in level 2, and two class entities are zoomed in
level 3. The user can select individual elements and zoom
them in or out, or can enable an auto-zoom facility that

magnifies the selected item and its immediate neighbours
while de-magnifying those further away. This forms a
basic distortion-oriented display. As each Pounamu
diagram type can have different element types and
connectivity, different view types have different auto-
zoom behaviours.

To use pan navigation, a user selects pan navigation from
the options menu or a hot-key button. They can zoom out
to the top-level overview and a floating window indicates
the current zooming area in the model view, as shown in
Figure 4 (c). The floating window can be moved across
the diagram using mobile phone keys and selecting a hot-
key magnifies elements in the selected zooming area.

Figure 5 shows another example of multi-level zooming
facility this time with the Gantt chart model view. The
overview shows the Gantt chart elements at their lowest
zoom level, as in Figure 5 (a), giving an indication of the
overall flow of project work only. Elements can be
magnified to see their relative duration and details of the
task they indicate, as in Figure 5 (b). Users can navigate
around the task flow using the pan facility and auto-
zoom. For example, as the user moves the selection focus
down the tasks in the Gantt chart, de-selected tasks are
zoomed to a lower level, as shown in Figure 5 (c).

a

c

b

Figure 5. Multi-level zooming with the Gantt-chart
view of a project management model.

Adding, moving, deleting, and editing items in a diagram
require similar interactions through the generated
Pounamu/Mobile User interfaces. Firstly a user selects
an item to manipulate, and then chooses a menu
command or a hot-key indicating the action they want to
perform on that item. For example, to move a shape, the
user selects a shape then repositions the shape using the
mobile device’s direction keys. They then confirm the
new position by pressing e.g. the Select hot-key on the
device. Items are added to a place on the screen by
moving the pan selection floating window and narrowing
it down to an unoccupied space with hot-keys.

To edit properties of an item, the user selects the item, as
shown in Figure 6 (a), then selects a hot-key or menu
option to edit its properties. A list of the element’s
properties is displayed which the user edits with
conventional mobile device interactions, as shown in
Figure 6 (b). The user then selects the OK menu to submit
the values back to server. After processing the user
request, the server sends back an updated view.

a
c

b

Figure 6. (a) select an element; (b) edit item
properties; (c) moving an element.

a
b

c

d

Figure 7. (a-c) user configuring class diagram
representations in multi-level; (d) the class diagram
with all items zoomed to level 1 as specified by users.

One issue we repeatedly encountered when building
multi-device user interfaces is the inability of generated
interfaces to suit all potential users. In particular, when
providing multi-level zooming capability on a diagram,
we found different users want to have different element
renderings for different zoom levels. Hence we have built
individual user configuration capability into
Pounamu/Mobile. Figure 7 (a) shows an example of tool
configuration via mobile user interfaces at runtime to
specify different element appearance at different zoom
levels.

To configure diagram representations, a user selects the
type of entities that they want to specify the appearance
of and then select the menu “Config rendering”. The
mobile server finds the user’s Pounamu tool
configuration in xml format and generates configuration
user interfaces. Then the user selects the zoom level that
they want to specify the representation for. A diagram
representation currently can be specified by using color,
size, icon shape, and properties to show. Figure 7 (b)
shows the result of a user configuring a UML class
diagram view in which all diagrams are zoomed in level
1. Diagram representations are different from the one
shown in Figure 5 (a) as different shapes have been
selected for the icon representations.

6 Design and Implementation
The Pounamu/Mobile server is made up of a set of MUPE
server components that interact with the Pounamu meta-
tool to synthesise user interfaces. A single instance of the
Pounamu meta-tool acts as both the meta-tool capability,
allowing definition and modification of diagramming
tools, and the data and processing application server for
Pounamu/Mobile. All Pounamu/Mobile interactions are
handled in a similar way.

Our Pounamu/Mobile server is mainly composed of 3
components: Request Handling, UI Generation, and User
Tool Configuration. Request handlers respond to all
requests from MUPE clients. They hold the functional
services supplied by the server. The Request Handling
component is responsible for handling user requests,

communicating with Pounamu application, and notifying
corresponding UI generators to generate pages. UI
generators generate user interfaces of Pounamu views,
property forms, and tool configurations.

Each UI generator contains a set of objects, which have
their own visual representation templates in an XML
format. Each registered user has his/her own tool
configuration as an XML file for each tool he/she has
loaded. These configuration files are stored in the
Pounamu/Mobile Server. To generate a diagram view, the
Model UI generator collects and combines information
from multiple sources, including model view information
from the Pounamu application server, user personalized
specification of diagrams from user’s tool configuration
file, screen size of client device, and diagram rendering
templates of rendering objects.

Figure 8 shows an example set of interactions when
editing a diagram in a Pounamu/Mobile client. If the user
asks for an element to be deleted, a MUPE XML event
message is formulated by the MUPE client on the device
and sent to the MUPE server (1). A Pounamu/Mobile
request handler determines the diagram update required
(2) and formulates a Pounamu API call to action the
update on the diagram (3). The update results in the
element being deleted from the Pounamu view (4),
deleting the model element and impacting other views of
this deleted element (5). Once the Pounamu server
acknowledges that the update has successfully occurred,
Pounamu/Mobile re-reads the updated view’s Pounamu
XML from the Pounamu server (6). It then synthesises a
new view in the MUPE XML format, using the user
preferences and Pounamu view XML to do this (7). The
MUPE client is returned a new page to display, the
updated diagram content (8). Various optimisations are
possible, including caching the MUPE XML in the
MUPE server and only updating affected portions.
However we have found response time when re-
generating the whole diagram content is adequate and this
simplifies the process considerably.

MUPE Client

MIDP2.0

MUPE Server
Process
XML

request

Generate
MUPE
XML

MUPE
XML
API

User Display Configuration

Formulate
Pounamu
API call

Read Pounamu
model/view

XML

Pounamu Server
Pounamu

API
(RMI or

XML
Web

Services)

Views

Models

Meta-models

1 2

3
4

5

6
78

Request Handler

UI Generators

Figure 8. Basic component interactions in Pounamu/Mobile.

7 Discussion
We have tested our Pounamu/Mobile thin client plug-in
components using several visual modelling tools
specified by Pounamu. They include a UML CASE tool
with class, collaboration, use case, sequence diagram and
deployment diagram views, a project management tool
with Gantt, pert chart and work breakdown views, and a
business strategy modelling tool with process modelling
views. For each no code change to Pounamu/Mobile was
required and only a new configuration specification by
the end user for each view type if s/he wanted to modify
the default configuration.

We have evaluated the usability and performance of these
Pounamu/Mobile tools with several experienced mobile
phone and PDA users. We carried out experiments with
the MUPE and Pounamu servers installed on a
workstation and users accessing the MUPE mobile
interface via the MUPE client simulator, running on
separate workstations in different locations. We used two
basic experiments, one using the project management tool
prototype with users carrying out basic task planning and
co-ordination activities. The second involved users
reviewing and making minor modifications to (fairly
simple) UML class diagrams representing a data model
for a business application. Users carried out both
concurrent (synchronous) activities as well as
asynchronous activities in both experiments. Users also
used the Pounamu desktop application to carry out these
same tasks as a comparison. We used the exact same tool
specifications from Pounamu for both Pounamu/Mobile
experiments as for the desktop editing experiments.

Results from these evaluations indicate that overall our
Pounamu/Mobile approach provides similar viewing and
editing support to the capabilities of our previous desk-
top thick client and web-based thin client versions of
Pounamu. Users were able to access both navigation and
editing facilities in the mobile device but as expected the
editing of diagrams was much more difficult than desktop
or even web browser-based interfaces. Navigation issues
on a small screen were to some degree mitigated by
Pounamu/Mobile’s multi-level zoom capability and by
users being able to specify multiple visual representations
for a single diagram shape. Users found these features to
be almost essential in order to support complex diagram
browsing and drill-down to detailed item viewing and
editing.

Users indicated that more automated support by the
Pounamu tool would help diagram editing e.g. automated
placement, layout and auto-zooming both during
browsing and editing. This was particularly so for the
UML tool which provides little of such support. This
finding is in contrast to when using these tools through
the thick-client Pounamu interface where automatic
layout by the tool is not preferred by users. The
difference with the mobile application interface appears
due to the more limited placement control users have with
non-stylus mobile devices we evaluated. The Gantt chart
tool does provide some automatic layout support which
users did find helpful to have on the mobile device. In
both examples as soon as diagrams get moderately large

(greater than about 15 items) they became very difficult
to use on the mobile interface. Overall users thought the
approach to be effective for making complex
diagrammatic content accessible via a mobile device and
allowing other users to simultaneously access desktop
and web browser versions of the content. A number of
usability enhancements to make browsing and editing
faster and easier are required to make the approach
feasible for real work. These include user configurable
hot-keys to speed up some functions, especially
browsing, and user configurable layout in addition to
zoom shape specification. In addition, support for
collaborative interactions needs to be improved, as has
been done in the work of others [13]. The element-by-
element zooming and auto-zoom capabilities of
Pounamu/Mobile were thought to be potentially useful in
the desktop Pounamu editing tools by several users.

Like other researchers we have encountered some hard
technical challenges when developing Pounamu/Mobile.
The graphic rendering limitations of MIDP and difficulty
of user interaction on mobile phones means that diagrams
specified and rendered on mobile devices can not be as
complex as on a PC. However, as mobile devices
continue to become more powerful we expect to be able
to achieve more complex diagramming rendering on
mobile devices. Icon specification is currently quite
cumbersome using the MUPE mobile device interface.
This would be much easier and flexible on pen-based
PDAs than on the key-based phones that we have used in
our experiments to date. Because of the memory
limitations on current mobile devices, very large
diagrams can’t be rendered, even when using MUPE thin
client technology. Instead, at present, smaller overlapping
Pounamu views must be constructed. Again the rapid
evolution of mobile hardware will remove this limitation.
We currently use a basic layout algorithm to transform
Pounamu views into an overview for mobile devices.
This works fine for e.g. our UML tool which is not so
sensitive to spatial layout. However, some tools use
layout as an important component of the diagram such as
Gantt charts in our project management tool.

Key areas for future work we are planning include
extending our work to cover more types of mobile
devices with other styles of input, such as stylus input on
PDA and Tablet PC and speech input. As we discussed
above, specifying representations of diagrams will
definitely be improved by using stylus input. We would
also like to apply our approaches to mobile technologies
other than MUPE, such as Mobile SVB, Symbian
development framework in C++, and Microsoft .Net
Mobile version. We want to improve the layout algorithm
used for overview diagrams to better produce layouts for
those diagram types relying heavily on spatial
relationships. Potential approaches may include spatial
reasoning and other related approaches on mobile devices
[24]. We would also like to integrate some of our
previous work on collaborative editing support [15] to the
Pounamu/Mobile user interfaces. Back-porting the
zooming feature of Pounamu/Mobile to the desktop
Pounamu editing tools appears to be useful.

8 Summary
We have built a prototype mobile thin client plug-in
component for a meta-CASE tool, Pounamu. This means
that ANY Pounamu-specified visual designing tool can
be accessed via thick client, web-based thin client, and
mobile thin client interfaces without additional
programming. Our main contributions include the
following: (1) our proof-concept work demonstrates that
complex diagram based user interfaces specified for thick
client diagramming tools can be supported on mobile
devices using the same specification; (2) we have
proposed a set of approaches for manipulating complex
diagrammatic models using small screen interfaces,
including multi-user runtime configuration and multi-
level zooming; (3) three exemplar tool applications have
been tested and evaluated using the mobile thin plug-in
demonstrating efficacy of the approach.

References
1. Baudisch1, P., Xie, X., Wang C., and Ma, W.Y.

(2004): Collapse-to-Zoom: Viewing Web Pages on
Small Screen Devices by Interactively Removing
Irrelevant Content. In Proc.UIST '04.

2. Björk, S., Holmquist, L.E., Redström, J., Bretan, I.,
Danielsson, R., Karlgren, J., and Franzén, K. (1999):
WEST:: a web browser for small terminals. In Proc.
UIST’99, pp. 187–196.

3. Bonifati, A., Ceri, S., Fraternali, P., Maurino, A.
(2000) : Building multi-device, content-centric
applications using WebML and the W3I3 Tool
Suite, Proc. Conceptual Modelling for E-Business
and the Web, LNCS 1921, pp. 64-75.

4. Buyukkokten, O., Garcia-Molina, H., Paepcke, A.
(2001): Text Summarization for Web Browsing on
Handheld Devices. Trans. Inf. Sys. 20 (1):82-115.

5. Buyukkoten, O., Garcia-Molina, H., Paepcke, A.,
and Winograd, T. (2000): Power browser: efficient
web browsing for PDAs. In Proc. CHI’00, ACM
Press, April 1-6, 2000, The Hague, pp. 430–437.

6. Cao, S., Grundy, J.C., Hosking, J.G, Stoeckle, H.,
Tempero, E. (2004): An architecture for generating
web-based, thin-client diagramming tools, 2004
IEEE Int. Conf. on Automated Software
Engineering, Linz, Austria, Sept 25-29 2004, IEEE.

7. Chen, Y., Ma, W.Y., and Zhang, H.J. (2003):
Detecting Webpage Structure for Adaptive Viewing
on Small Form Factor Devices. In Proc. WWW’03,
20-24 May 2003 Budapest, Hungary, pp 225–233.

8. Chen, L.Q., Xie, X., Ma, W.Y., Zhang, H.J., Zhou
H.Q., Feng H.Q., (2002): DRESS: A Slicing Tree
Based Web Representation for Various Display
Sizes. Microsoft Research MSR-TR-2002-126.

9. Eisenstein, J. and Puerta, A. (2000): Adaptation in
automated user-interface design, Proc. 2000
Conference on Intelligent User Interfaces, New
Orleans, 9-12 January 2000, ACM Press, pp. 74-81.

10. Gordon, D., Biddle, R., Noble, J. and Tempero, E.
(2003); A technology for lightweight web-based
visual applications, Proc. 2003 IEEE Conf. on HCC,
Auckland, NZ, 28-31.

11. Grundy, J.C. and Zhou, W. (2003): Building multi-
device, adaptive thin-client web user interfaces with

Extended Java Server Pages, In Cross-platform and
Multi-device User Interfaces, Wiley, 2003.

12. Luz, S., and Masoodian, M. (2004): A Mobile
System for Supporting Non-Linear Access to Time-
Based. In Proc. 7th International Working
Conference on Advanced Visual Interfaces,
Gallipoli, Italy, 25-28 May, ACM Press, 454-457.

13. Luz, S., Masoodian, M., and Weng, G. (2003):
Browsing and Visualisation of Recorded
Collaborative Meetings, In Proc. 10th International
Conference on Human-Computer Interaction, Crete,
Greece, 22-27 June, vol. 2, 148-152.

14. Mackay, D., Biddle, R. and Noble, J. (2003): A
lightweight web based case tool for UML class
diagrams, In Proc. 4th Australasian User Interface
Conference, 2003.

15. Marsic, I. (2001): An architecture for heterogeneous
groupware applications, Proc. International
Conference on Software Engineering, May 2001,
IEEE CS Press, pp. 475-484.

16. Masoodian, M., and Budd, D. (2004): Visualization
of Travel Itinerary Information on PDAs.
Conference Proceedings of AUIC 2004, Proc. 5th
Australasian User Interface Conference, Dunedin,
New Zealand, 18-22 January, pp. 65-71.

17. Mehra, A. Grundy, J.C. and Hosking, J.G. (2004):
Supporting Collaborative Software Design with a
Plug-in, Web Services-based Architecture, Proc.
ICSE 2004 Workshop on Directions in Software
Engineering Environments, May 25 2004,
Edingurgh, Scotland, IEE Press.

18. Milic-Frayling, N. and Sommerer, R. (2002):
SmartView: Enhanced Document Viewer for
Mobile Devices. Microsoft Research Technical
Report MSR-TR-2002-114.

19. MUPE, www.mupe.net
20. Palm Corp. (2001): Web Clipping services,

www.palm.com, 2001.
21. Rossel M. (1999) : Adaptive support: the Intelligent

Tour Guide. 1999 Int. Conf. Intelligent User
Interfaces. ACM. 1999, New York, NY, USA.

22. Stephanidis, C. (2001): Concept of Unified User
Interfaces, In User Interfaces for All - Concepts,
Methods and Tools, Laurence Erlbaum Associates,
August 2001, pp. 371-388.

23. Van der Donckt, J., Limbourg, Q., Florins, M.,
Oger, F., and Macq, B. (2001); Synchronised,
model-based design of multiple user interfaces,
Proc. 2001 Workshop on Multiple User Interfaces
over Internet.

24. Wobbrock, J., Forlizzi, J., Hudson, S., Myers, B.
(2002): WebThumb: interaction techniques for
small-screen browsers. In Proc.UIST '02, pp. 205–
208.

25. Zarikas, V., Papatzanis, G., and Stephanidis, C.
(2001): An architecture for a self-adapting
information system for tourists, 2001 Workshop on
Multiple User Interfaces over the Internet.

26. Zhu, N., Grundy, J.C. and Hosking, J.G. (2004):
Pounamu: a meta-tool for multi-view visual
language environment construction. Proc. 2003
IEEE Int. Conf. on Human-Centric Computing,
Rome, Italy, 2004, IEEE.

