
An environment for developing adaptive, multi-device user interfaces

John Grundy1,2 and Biao Yang2
Department of Electrical and Electronic Engineering1 and Department of Computer Science2

University of Auckland, Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract
There is a growing demand for the development of multi-device,
adaptive user interfaces – interfaces that will run on and adapt to
the characteristics of multiple display devices and networks as
well as multiple users and user tasks. We describe a design and
implementation environment for the development of such
interfaces. This tool allows developers to specify their desired
interfaces using an abstract set of screen element and layout
constructs. It then generates a Java Server Page implementation
using a custom tag library that realises a multi-device, adaptive
interface. We compare and contrast our approach to other
techniques and describe our experiences using it..

Keywords: multi-device user interfaces, adaptive user
interfaces, user interface design tools, mobile user
interfaces, thin-client user interfaces.

1 Introduction
Many researchers and practitioners have identified the
need for adaptive, multi-device user interfaces (Amoroso,
and Brancheau, 2001; Grundy and Zou, 2002; Han et al,
2000; Van der Donckt et al, 2001). These systems
provide user interfaces that can be used across platforms
and/or display devices e.g. an interface that will run on
both a conventional desktop web browser but also on a
PDA or mobile phone device. This allows developers to
design and implement a single interface that may be run
and provide a userful interface on many different devices
(some whose characteristics may be unknown to the
developers). In addition, similar techniques can be
employed to have the user interface adapt to the
characteristics of different users and user tasks. For
example, an Update button is hidden if the user is not
sufficiently privileged or the user is performing a search
vs a data maintenance task.

However, many challenges present when developing such
interfaces (Grundy and Zou, 2002; Marsic, 2001b;
Stephanidis, 2001). Many commercial “web clipping”,
portal and interface transformation technologies apply
various filters to information to generate interfaces for
particular display devices and users (IBM Corp, 2001;
Oracle Corp, 1999; Palm Corp., 2001). Some systems
provide server-side implementations of interfaces that at
run-time consider the device and user characteristics and
produce context-dependent interfaces (Bonifati et al,

Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at Fourth Australasian User Interface
Conference (AUIC2003), Adelaide, Australia. Conferences in
Research and Practice in Information Technology, Vol. 18.
Robert Biddle and Bruce Thomas, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

2000; Han et al, 2000; Van der Donckt et al, 2001). Some
basic design tools have been developed that support
typically simple interface element and layout
specification and generate hard-coded, device-specific
implementations (Ceri et al 2000; Fraternali and Paolini,
2002).

We describe a design environment for multi-device,
adaptive user interfaces we have developed. Currently
this supports the generation of a single run-time adaptive
interface implementation for thin-client user interfaces
(HTML and WML) for desktop, PDA and mobile phone
web browsers. Our tool provides the designer with
several views of interface designs and implementation,
including structure and abstract screen layout. All design
views are kept consistent under change. Currently
Adaptive User Interface Technology implementations are
generated from an XML encoded of an interface design –
these are extended Java Server Page implementations
using a custom tag library to provide run-time device,
user and user task adaptive features.

We begin by a motivating example for our work, then
review related approaches. We outline our design
environment and illustrate its support for designing
adaptive interfaces using a single model presented in
several ways. We illustrate integrated user interface
testing and discuss the design and implementation of our
tool. We conclude by summarising our experience to date
designing and building adaptive user interfaces and some
of our future research directions.

2 Motivation
Consider an on-line system for the car sales industry. The
purpose of this system is to provide customers a multiple
dealer on-line search and messaging facility, and car
dealers a shared site for advertising their products. Some
of the main use cases of this system are summarised in
Figure 1 (a): customers view stock by dealers; search for
cars with specified characteristics, and message dealers to
ask questions/book cars for viewing etc. Dealers update
stock and communicate with customers. Sales staff
maintain various data. The interfaces to support these use
cases can be implemented by HTML-based web pages
and viewed by conventional desktop web browsers (many
such car sales sites now exist). However, both dealers and
some customers may wish to access the system away
from their desktop PCs e.g. on a wireless PDA or mobile
phone. Some of the user interfaces we have implemented
for such an application are illustrated in Figure 1 (b) – 1
and 2 are desktop browser-viewed car search and results
display; 3 and 4 are wireless PDA-viewed equivalents
and 5 is a search being requested from a mobile phone.

Search cars

Message dealers

View dealer stock

View featured cars

Customer

Update Own Stock Car Dealers

Update Featured Cars Display
Update Dealers Info

Web Sales Staff

Message customers

1 2

3
4

5

Figure 1. (a) Use case model for an on-line car site; and (b) examples of multi-device interfaces.

A variety of approaches have been developed to support
such adaptive user interface development. A number of
thick-client approaches using adaptive software
components have been implemented (Dewan and Sharma,
1999; Eisenstein and Puerta, 2000; Grundy and Hosking,
2001; Morch, 1998). These approaches provide good user
and task adaptation support, but typically do not run on
anything but desktop machines i.e. are unsuitable for
small-screen, mobile display devices.

Due to the increase in popularity of these devices, there
has become a large demand for conventional web-based
interfaces to be made available for them. Typical
approaches are to hard-code interfaces specifically for
such devices or to provide portals or “clipping” and
transformation services that attempt to transform interface
descriptions intended for standard web browsers on
desktop machines to small-screen displays (IBM Corp,
2001; Oracle Corp., 1999; Palm Corp., 2001). The major
problem of these approaches is lack of information in the
transformation engine about the meaning and purpose of
various interface elements, resulting in often poor
transformed user interfaces.

A variety of technologies have been developed to support
server-side adaptive interfaces for thin-client devices
(Ceri et al 2000; Grundy and Zou, 2002; Han et al, 2000;
Marsic, 2001b; Van der Donckt et al, 2001; Zarikas et al,
2001). Most of these approaches adopt XML-based
encoding of data and transform this into a variety of
target user interface implementations. Many do not
support user or task adaptation and essentially provide
statically generated interfaces for a limited range of
devices known at generation-time.

Some design tools have been developed based on generic
description languages for web-based user interfaces
(Bonifati et al, 2000; Fraternali and Paolini, 2002). They
support specifying encodings of interface descriptions for
the generation of interface implementations. The

encodings are typically specified in an abstract manner
not corresponding to eventual interface appearance and
behaviour.

3 Our Approach
We have developed a technology for implementing run-
time adaptable multi-device user interfaces using a set of
custom tag libraries for Java Server Pages (JSPs), that we
call Adaptive User Interface Technology (AUIT) (Grundy
and Zou, 2002). Developers implement these extended
JSPs describing interface elements and layout information
with generic, device-independent mark-up tags. They
may also indicate the users (by roles) and user tasks (by
role-assigned tasks) for which some tags are
(in)appropriate. At run-time when an AUIT JSP page is
accessed, it determines the characteristics of the
requesting display device (client), user of that device, and
the user’s current task.

When formatting mark-up to send back to the device for
display it uses this information to provide suitable mark-
up (e.g. HTML or WML), layout (e.g. multiple
screens/cards for small-screen devices), interaction (e.g.
buttons or command list items), adornment (e.g. available
fonts only; no colour if black-and-white device), graphic
(e.g. high-res GIF or low-res, monotone WBMP) and
hides inappropriate screen elements for the user and
user’s task.

Figure 2 shows an part of an AUIT JSP on the right hand
side. The user must specify a large number of tags and tag
parameter values in order for AUIT tag library classes to
appropriate adapt interfaces at run-time. When designing
these implementations, we often use an abstract structure,
as shown on the left, to guide the specification of the
hierarchical tag structures.

 Car Search Results: Screen

Title: Heading

Cars : Table

Cars: Iterator

Car info : Row

ID : Column

Car.ID : Text field

Title : Column

Car.Make : Link

Cars Table Heading : Row

ID : Column

Car ID : Label

Title : Column

Car Make : Label

…

<%@ taglib uri="/auit" prefix="auit" %> // page directive to access AUIT tags
<jsp:useBean id=’car_manager’ class=’car.CarManager /> // JavaBeans to use
…
<auit:screen name=”car search result”> // sets user/task/device information…
 <auit:heading level=2 value=’Car Search Result’ />
 <auit:table width=60 border=0>
 <auit:row><auit:column><auit:label width=6
 value=’Num’ /></auit:column>…
 <% cars = car_manager.selectCars(…); %>
 <auit:iterator name=car data=cars %>
 <auit:row height=1>
 <auit:column><auit:label width=6 value=
 ’<% car.getCarID() %>’ /></auit:column>
 <auit:column><auit:link width=20 name=’<% car.getCarID() %>’
 href=‘car_details.jsp?task=detail&car=
 <% car.getCarID() %>’ /></auit:column>
 <auit:column><auit:label width=30 value=
 ’<% car.getMake() %>’ /></auit:column>
 …
 </auit:row>
 </auit:iterator>
 </auit:table>
</auit:screen>

Figure 2. Adaptive User Interface Technology example.

Hand-coding these AUIT implementations is time-
consuming and error-prone, just like hand-coding
concentional JSP implementations and HTML pages
(Evans and Rogers, 1997). To enable developers to much
more easily design, test and implement such adaptive
interfaces a design tool is necessary. This might not only
be able to generate AUIT implementations from the
designs but also other targets e.g. conventional JSP or
servlets, XSLT scripts or WebML (Ceri et al 2000; Fields
and Kolb, 2000).

Key requirements for such a GUI design tool are rather
different than for conventional GUI design tools like
those of MS Access™, JBuilder™ or VisualBasic™.
These include:

• Ability to design adaptive user interfaces where the
interface elements and layout may change depending
on device, user and user task accessing the interface
at run-time. A designer is thus working with a
template for multiple target user interfaces rather
than just one.

• Use of various visualisations of the interface design
and implementation including hierarchical tree-
structure, screen layout and interface implementation
target source language. Tree structured visualisations
are useful due to the hierarchical nature of the
interface descriptions (as shown in Figure 2 (b)). A
screen layout view is similar to that of conventional
user interface builder tools but would present an
“abstract” layout of the screen, like those we use
when designing AUIT interfaces (as shown in Figure
2 (a)).

• Ability to view an interface design as it would appear
in target devices. Ideally support for interacting with
the interface would also be provided to the designer.

• Multiple implementation languages for the interface
design supported. As indicated in the previous
section, a range of implementation techniques exist
to realise adaptive user interfaces, not only our
AUIT, and generating different implementations of
the same adaptive user interface design may be
required for use in different situations e.g. for
compatibility with other interface implementations.

4 Tool Architecture
We have developed a prototype design tool for the
specification of adaptive user interface designs. The
architecture of this tool is outlined in Figure 3. Designers
can view and edit an interface design using a screen
layout, hierarchical logical or textual view. All views
share a common design model. This model is encoded in
an XML format for storage or to enable generation of
target interface implementations. A range of interface
implementations are possible – currently we generate JSP
pages with AUIT custom tag library mark-up.

Figure 4 illustrates the main components of our design
tool and their major inter-relationships. A Swing based
user interface allows designers to view and edit logical
views (tree structure visualisation), textual views
(indented XML data model), and abstract screen layout
(tiled mutli-sized panels and interface elements).
Interface designs can be visualised and interacted with
using embedded Internet Explorer (web browser) and
Nokia Mobile Toolkit (PDA and mobile simulator) views.

Data
Model

Adaptors

Presentation
Model

Code generation
and Data storage

XML-encoded
Descriptions

Screen layout view Textual view

Logical View

XML Encoding

Target Interface
Implementations
and Design Data

Figure 3. Adaptive GUI design tool architecture.

A shared screen design data structure is used by all design
views. We have based this logical design model on the
AUIT custom tag library components we have developed
for realising adaptive user interfaces. However we have
further-generalised these components to allow a wide
range of user interface elements, interactors and layout
constraints to be specified, along with user and task
model information, independent of any specific target
implementation technology. This data structure is
converted into an XML model for storage and for target
implementation code generators. Java scriptlet tags
(server-side interface functionality) may be specified by
designers and JavaBeans referenced, with both embedded
in the generated target implementations of designs. These
allow designers to fully-implement their interfaces and
associated server-side functionality within our tool.

Our XML model is used to generate AUIT
implementations (one per interface design), but we have
also prototyped code generation for standard JSP and
servlet implementations (one per device/user/task
combination). We use a set of XSLT transformation
scripts to convert our XML-encoded logical screen design
into these target implementations.

In order to display running designs as they would appear
in target devices with example user role and user task, we
use Internet Explorer 6 (IE6) and the Nokia Mobile
Toolkit. A Tomcat JSP engine is used to run target
implementations and display them in IE6 and Nokia
toolkit windows. Active-X controls are used to
incorporate these inside our design environment’s display
panels. The designer may interact with these interfaces

and depending on the amount so far specified, embedded
Java scriptlets and hypertext links if specified allow
sophisticated functionality and navigation to be tested.

Tomcat JSP Server

XML Encoding

Screen definition data structure

Tree
Structure Editor

Text
Editor

Layout
Editor

Browser
Viewer

PDA
Viewer

User Interface components – Java Swing

XML Storage XSLT-based Code
Generation

AUIT, JSPs,
servlets, etc.

IE6
ActiveX
Object

Nokia
PDA

Simulator

Figure 4. Tool components.

5 Design and Implementation
Figure 5 shows a screen dump from our design
environment. The environment provides a Swing-based
user interface with menu and tool bars (1) for design
document management. The set of views of a design (2)
include logical structure view (tree hierarchy), screen
layout, source (textual) view and previews in browser and
PDA/mobile phone simulator. When editing logical
structure and screen layout views a tool bar with screen
elements, layout control, navigation and scriptlets is
available (3). Each view displays information in its
particular format (4) and provides appropriate editing
support e.g. tree manipulation, panel tiling, and text
editing. Properties for elements can be set by direct
manipulation in some cases, and in dialogues in others
(5).

Consider designing adaptable interfaces for the on-line
car site illustrated in Figure 1. Interfaces required include
a login screen, a dealer catalogue, dealer search and
dealer information, car search and detailed information
display, and data update screens – cars, dealers, makes
and models, and so on. Each of these interfaces can
potentially be accessed by various display devices
(desktop browsers, PDAs, mobile phones etc), and some
can be used by different kinds of users or during different
user tasks (e.g. customers vs dealership staff; searching
task vs data maintenance task).

1

2
3

4

5

Figure 5. Overview of the design tool user interface.

A designer can choose one of the three editing views to
construct an interface – the logical structure view, which
provides a tree structure editor; a screen layout view,
which provides a tiled view; and a “source view” which
currently provides an indented XML editor using an
XML encoding of the shared data model. Designers may
switch between views at any stage for the same interface
design, and changes to one view are automatically
propagated to the other two views.

In Figure 6 (1) the designer is viewing and editing a
design for the login screen with the logical structure
editor. This presents the design as an editable tree
structure, allowing the designer to browse complex
interfaces and to perform tree editing operations to
modify their design. The choice of a tree visualisation is
due to the very hierarchical nature of AUIT (and other)
screen implementation technologies – feedback from
previous users of AUIT indicated that they felt a tree-
editor would be an effective way to visualise and modify
their adaptive interface designs (Grundy and Zou, 2002).
The designer can select (2) tree nodes, corresponding to
screen elements, layout constraints, navigation elements
or Java scriptlets and JavaBean references. The detailed
properties of different element types can be edited in a
dialogue (3), and changes to the tree structure, changing
the logical structure of the interface design, are affected
using the tool-bar (4).

Designers may also choose to view and/or edit an auto-
indented textual view of their interface design (5). This is
sometimes a more convenient form to interact with,
particularly when specifying Java scriptlets and JavaBean
expressions, which need to be done textually. For the
expert designer it is also quicker to edit, particularly when
wanting to change properties associated with many screen
elements at a time.

Currently we use an AUIT-based XML rendering to
display the screen design textually, which developers may
then modify with text editing operations (6). Any changes
made to this textual representation are parsed back into
XML and then reflected back into the shared data model,
and from there in the other design views. We chose to use
an AUIT-based XML model to display the interface
design in a textual form due to our familiarity with this
adaptive user interface implementation technology. It is
also easy to both render the shared design model in this
form and to translate editing operations on this XML
structure back into changes on the shared data model.

AUIT provides a GridBag-style layout control
mechanism to support the implementation of complex
interface layouts. This can be translated into HTML
Table tags or into WML layouts using multiple cards and
tabbed field separation.

An important characteristic of AUIT-implemented
interfaces is that the grid structure can be used at run-time
to divide a large interface into multiple, logically sensible
smaller interfaces for display on small-screen devices
(Grundy and Zou, 2002). Similarly, if generating hard-
coded JSP or servlet implementations for a particular
small-screen display device, this splitting can be done at
code generation time rather than at run-time as with
AUIT. A further design view available is the screen
layout view which allows the designer to see and directly
manipulate this grid-based layout structure. This provides
a tiled interface, as shown in Figure 7, where the user can
see the relative positions and groupings of screen
elements based on the grid model. The screen layout view
allows the designer to see and edit this grid layout
structure and to manipulate screen elements embedded in
each grid cell. Note that this direct manipulation design
tool is very different from MS Access™, JBuilder™ and
Visual Basic™ drag-and-drop GUI design tools.

1

2

3

4

5

6

Figure 6. Examples of using of the structure editor for GUI design.

2

1
3

4

Figure 7. Example of using the screen layout view.

Unlike these tools, however, the screen layout view does
not show a what-you-see-is-what-you-get view of the
resultant implemented GUI interface, but a rendering of
its entire logical structure using a tiled grid view. As
mentioned above, when running the interface for a
particular display device it may be split into multiple
parts using the grid specified, in order to fit the interface
to in parts to the device’s small screen. The designer can
specify that certain grid columns (e.g. an ID) or rows (e.g.
a title bar) are shown on each split-screen for clarity.

In Figure 7, the screen layout design (1) shown is a
complex one which is to provide an interface to display a
list of jobs to be performed by a staff member. The rows

and columns for the screen design (2) can be changed (3)
in number and size (width for columns and height for
rows). Each cell may be further refined into a number of
differently-sized sub-rows and columns if required,
providing GridBag-style layout control. Items can be
placed in cells by drag-and-drop from the tool bar at left
into the screen layout-based design (4). The designer can
change the number of rows and columns for the design,
their sizes, and the number of rows and columns for each
cell as they require. Screen items in each row may span
multiple columns (as shown in this example). Properties
of screen elements may be modified in a dialogue box or
in the tree-structured design view. Changes made to a
design in the screen layout view are immediately

reflected in the tree structure and textual views and vice-
versa. Designers use the screen layout view to specify
interactively and view the two-dimensional organization
of their adaptive interface designs.

As the user interfaces designed in our tool are adaptive,
designers can never be sure just what an implemented
interface will look and feel like for particular
combinations of display device, user and user task, even
using the screen layout view. In order to help them
visualise their designs in a concrete fashion, our tool
provides two views of a running interface design – one
using a browser (IE6) and one a PDA/mobile phone
simulator (the Nokia Mobile Toolkit). When the designer
selects one of these views, the interface design is
translated into an XML encoding and saved, and then an
AUIT implementation of the interface design generated
from it. A Tomcat JSP server is run and then the IE6
browser or Nokia Toolkit is then used to display the
interface embedded in a tabbed panel in our tool (using
ActiveX controls). Examples of these running interfaces
are shown in Figure 8. The designer can interact with the
running interfaces, and, depending on how much of the
design and implementation they have completed, get a
feel for the interface’s suitability.

In Figure 8 three interfaces are being run. A customer
login screen (1) shows the appearance of this interface
after specifying a particular user and task and this is
rendered using an IE6 browser, set for full (800x600)
screen resolution. In (2) a job list interface is being shown
in IE6 with the display size set for 100x150 (a PDA-sized
display device) using XHTML. The user is set to a job
manager doing a job assignment task, allowing the
manager to assign new jobs and modify job assignments.

The GridBag layout has been implemented by the
generated AUIT JSP implementation of the interface
using embedded HTML tables. This same interface is
shown in (3) displayed using a spawned phone simulator
which displays a WML-encoded version of the interface,
using the same generated AUIT JSP page to generate the

WML to display to the user and consume user inputs
POSTed to the JSP page. In this example the user is a job
performer who is browsing job details, resulting in no
“Assign New Job” ability and no ability to modify job
assignments.

We have implemented the code generation component of
our tool using XSLT transformation scripts. When the
designer wants to view an interface in one of the target
implementation views (browser or PDA/mobile phone
simulator) the shared design data model is translated into
an XML encoding (currently the same used in the textual
view editor) and saved to a XML file. We have currently
implemented a full code generator to translate this XML
encoding into an AUIT-augmented JSP page
implementation, and partial proof-of-concept code
generators to translate the XML-encoded design into
standard JSP and servlet implementations. We chose to
use XSLT scripts to carry out our code generation as
these come with useful infrastructure in terms of XML
parsing and output document generation support. They
are also able to be readily edited, tested and extended
without the need to change any code in our design tool
implementation. New generation scripts can be
seamlessly added that consume the same XML encoded
design but generate vastly different target adaptive
interface implementation.

Figure 9 shows an example of the translation of an XML
encoded design (1) into an AUIT JSP page
implementation (3) via an XSLT transformation script
(2). This translation is pretty straightforward, as the
design model data structure and its XML encoding were
based on AUIT’s custom tag library components and their
parameters (Grundy and Zou, 2002). The translation of
the XML design encoding into e.g. device-specific hard-
coded Java Servlets is more complex, with the XSLT
scripts basically embedding parts of the AUIT custom tag
library component code into the generated Servlet .java
file.

1

2

3

Figure 8. Examples of running generated AUIT interfaces.

1

2

3

Figure 9. Examples of XML-encoded interface design, XSLT script and generated AUIT JSP page.

6 Discussion
We initially developed our design tool to allow
developers of adaptive user interfaces to more easily
design AUIT-based implementations. To this end we
provided the tree-based logical structure view that closely
corresponds to AUIT’s XML-style hierarchy of screen
elements, and provided a screen layout view using tiled
grids to encapsulate screen elements and to support
specifying and viewing their relative layout
characteristics via direct manipulation and two-dimension
rendering respectively. An XML encoded textual view
closely corresponding to AUIT JSP page custom tags
provides an alternative mechanism for expert users to
view and edit detailed screen element properties. We
have used our design tool to re-implement adaptive user
interfaces for an on-line car site, an on-line video store
and a collaborative job management system, all having
been previously implemented with AUIT with no tool
support. We are also planning to re-implement the
interfaces for an on-line travel system and collaborative
work support components using our new development
tool.

Currently our design tool allows all the facilities provided
by AUIT to be used in the tree-structure logical design
view and the screen layout view. The tree structure view
was developed initially as users of AUIT in previous
studies indicated this would be a useful way of designing
AUIT-based adaptive interfaces, due to the hierarchical

way AUIT custom tags implementing adaptive interface
elements are used. We have found that it does provide a
useful visualisation of designs and provides an easier way
of combining low-level screen elements to form an
interface specification. It is very hard, however, to gain
an idea of the likely appearance of anything but very
simple screen designs with this view. The screen layout
view was developed to overcome this by providing a tiled
grid editor using AUIT’s grid approach to interface layout
specification. This view works well in allowing direct
manipulation specification of layout, proving much easier
than in the tree or textual views. However, we have also
found that the current prototype of the screen layout view
doesn’t sufficiently convey the embedded griding
structure of the design and needs to be enhanced to
explicitly show designers the grid lines. We have found
the textual view useful for detailed or multiple, different
element property specification but little else. Both the tree
and screen layout views prevent syntax errors in designs
which is very useful given their complexity. The views of
running implementations of a adaptive user interface
design have proved very valuable in providing fast round-
trip feedback to designer within the environment.

Improvements to our design tool we are planning include
the ability to more easily associate parts of an interface
with particular user roles and user tasks. We plan to use
colour to distinguish interface components and groups
applicable to user/task combinations. Many elements in
our design tool provide “adornment” of fundamental

interface elements by enclosing the fundamental elements
inside these adornment tags. For example the layout
element is used to specify additional properties for
elements it encloses, like text-fields, labels and buttons.
This approach works well for implementing this
adornment of screen elements using AUIT custom tag
library classes but has the disadvantage of creating quite
quite deep, complex hierarchies (as illustrated in some of
the example design views in previous sections). This
approach to specifying complex screen element properties
was derived from AUIT’s hierarchical tags and a better
approach for interface design is probably to add these as
properties to screen elements in their property dialogue
box or to allow direct manipulation of these properties
using tool bar and menu options, as done in word
processors and some other GUI design tools. If
generating AUIT implementations then the various AUIT
adornment tags need only be created at code generation
time. This would also allow quite different target
implementations for adaptive interfaces to be more easily
generated e.g. code for a Servlet which is organised quite
differently to AUIT tags. We are currently designing a
usability evaluation of our design tool to gather more
information about its facilities and their appropriateness
for adaptive interface design. Our intention is to survey
several experienced developers of web-based and mobile
user interfaces as we did when evaluating AUIT’s
effectiveness in previous work [0]. Many of our original
set of developers who evaluated AUIT for us indicated
the need for a development environment and we used
their feedback when designing many of the facilities in
the prototype environment described in this paper.

7 Summary
We have developed an implementation technology for
building thin-client user interfaces that adapt to multiple
display devices, user roles and user tasks. To aid
developers using this technology we have developed a
prototype design environment providing tree-structured,
tiled screen layout and textual views of interface designs.
Designers may edit any view with all others kept
consistent – typically designers specify screen layout via
direct manipulation with the screen layout view, detailed
element properties with the tree-structured view and
embedded Java code scriptlets for interface behvaiour
with the textual view. Interface descriptions are encoded
in XML and XSLT transformation scripts used to
generate AUIT (or other) interface implementations.
Developers may view and interact with running adaptive
interface implementations via embedded views. We are
currently designing a usability experiment to gather
feedback on our design tool’s performance and to guide
further enhancement of it.

8 Acknowledgements
Wendy Zou’s efforts in developing the AUIT adaptive
user interface toolkit during her MSc study are gratefully
acknowledged. We also thank the anonymous reviewers
for their helpful comments.

9 References
AMOROSO, D.L. AND BRANCHEAU, J. (2001):

Moving the Organization to Convergent Technologies:
e-Business and Wireless, Proc. 34th Annual Hawaii
International Conference on System Sciences. Maui,
Hawaii, Jan 3-6 2001, IEEE CS Press.

BONIFATI, A., CERI, S., FRATERNALI, P.,
MAURINO, A. (2000): Building multi-device, content-
centric applications using WebML and the W3I3 Tool
Suite, Proc. Conceptual Modelling for E-Business and
the Web, LNCS 1921, pp. 64-75.

CERI, S., FRATERNALI, P., BONGIO, A. (2000): A.
Web modelling Language (WebML): a modelling
language for designing web sites, Computer Networks
33 (1-6).

DEWAN, P. AND SHARMA, A. (1999): An experiment
in inter-operating, heterogeneous collaborative
systems, Proc. 1999 European Conference on
Computer-Supported Co-operative Work, Kluwer, pp.
371-390.

EISENSTEIN, J. AND PUERTA, A. (2000): Adaptation
in automated user-interface design, Proc. 2000
Conference on Intelligent User Interfaces, New
Orleans, 9-12 January 2000, ACM Press, pp. 74-81.

EVANS, E. AND ROGERS, D. (1997): Using Java
Applets and CORBA for multi-user distributed
applications, Internet Computing 1 (3), 1997, IEEE CS
Press.

FIELDS, D., KOLB, M. (2000): Web Development with
Java Server Pages, Manning Publishers.

FRATERNALI, P. AND PAOLINI, P. (2002) Model-
driven development of web applications: the Autoweb
system, to appear in ACM Transactions on Office
Information Systems.

GRUNDY, J.C. AND HOSKING, J.G. (2001);
Developing Adaptable User Interfaces for Component-
based Systems, Interacting with Computers 14 (3),
Elsevier, 175-194.

GRUNDY, J.C. AND ZOU, W. (2002): An architecture
for building multi-device thin-client web user
interfaces, Proc. 14th Conference on Advanced
Information Systems Engineering, Toronto, Canada,
May 29-31 2002, Lecture Notes in Computer Science.

HAN, R., PERRET, V., AND NAGHSHINEH, M.
(2000): WebSplitter: A unified XML framework for
multi-device collaborative web browsing, Proc. of
Computer-Supported Cooperative Work 2000,
Philadelphia, Dec 2-6 2000, ACM Press.

IBM Corp, IBM Transcoding™ White Paper,
http://www.research.ibm.com/networked_data_systems
/ transcoding/transcodef.pdf.

MARSIC, I. (2001a): Adaptive Collaboration for Wired
and Wireless Platforms, IEEE Internet Computing
July/August 2001, 26-35.

MARSIC, I. (2001b): An architecture for heterogeneous
groupware applications, In Proc. International
Conference on Software Engineering, May 2001, IEEE
CS Press, pp. 475-484.

MORCH, A. (1998): Tailoring tools for system development,
Journal of End User Computing 10 (2), pp. 22-29.

ORACLE CORP. (1999): Oracle Portal-to-go™ White
Paper, October 1999, http://www.alentus.com/
library/oracle/wp_portal.pdf.

PALM CORP. (2001): Web Clipping services,
www.palm.com.

STEPHANIDIS, C. (2001): Concept of Unified User
Interfaces, In User Interfaces for All - Concepts,
Methods and Tools, Laurence Erlbaum Associates, pp.
371-388.

VAN DER DONCKT, J., LIMBOURG, Q., FLORINS,
M., OGER, F., AND MACQ, B. (2001): Synchronised,
model-based design of multiple user interfaces, Proc.
2001 Workshop on Multiple User Interfaces over the
Internet.

ZARIKAS, V., PAPATZANIS, G., AND
STEPHANIDIS, C. (2001): An architecture for a self-
adapting information system for tourists, Proc. 2001
Workshop on Multiple User Interfaces over the
Internet.

