
In Proceedings of ASWEC’97, Sydney, Sept 28-Oct 2, 1997, IEEE CS Press.

 © 1997 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
 component of this work in other works must be obtained from the IEEE.

Utilising Past Event Histories in a Process-Centred Software Engineering
Environment

John C. Grundy†, Warwick B. Mugridge†† and John G. Hosking††

Department of Computer Science† Department of Computer Science††
University of Waikato University of Auckland

Private Bag 3105, Hamilton Private Bag, Auckland
New Zealand New Zealand

jgrundy@cs.waikato.ac.nz {rick, john}@cs.auckland.ac.nz

Abstract

When working on complex software systems, it is
often difficult for multiple software developers to
coordinate their work, and for developers to coordinate their
multiple tool and software process usage. Process-centred
Software Engineering Environments attempt to help
developers manage the complexities of such coordination
by codifying steps in a software process, and codifying the
"work context" a developer utilises (i.e. the artefacts, tools
and collaborators the developer requires during their work).
Unfortunately most process-centred environments do not
adequately support work coordination, ease-of-use and
improvement of process models. We describe our work
utilising histories of past events within a process-centred
environment to give developers extra leverage when using
process models to guide collaborative software
development. We describe techniques for work history
determination, improved visualisation support for work
coordination, and automatic process enactment and process
improvement. Our approach to realising these facilities
within a process-centred software engineering environment
is described, and our experiences using our event history-
based techniques during software development is reviewed.

1. Introduction

When working on large-scale software development
projects, developers are faced with difficulties coordinating
their work with others, coordinating their use of multiple
development tools, and adhering to a (sometimes loosely
defined) “process” for carrying out their work [8, 20].
Developers (either implicitly or explicitly) have a “work
context”, which is made up of the software artefacts they
are building, tools they are using to build these artefacts,
communication tools and some notion of the part of the
development process they are working on. Work contexts
become large and complex, even for small projects.
Difficulties in coordinating work, managing complex work
contexts, and adhering to defined processes leads to

problems during development, and ultimately to poor
quality of software [3, 27].

Work contexts may be fixed for specific phases of a
well-defined software process, such as detailed system
design and coding, and such codified work contexts help in
understanding others’ work, particularly the inter-
relationships between work being carried out in parallel
[12]. At other times a developer’s work context may be
volatile, with a varying set of artefacts, tools and/or
collaborators over time. Coordinating the work of several
developers without explicit work contexts and processes,
and without suitable tool support, is very difficult.
However, a requirement for explicit codification under such
volatile conditions results in inflexible work practices and
the use of inadequate process models [28].

A developer’s “work context” is implicit in most
software development tools. CASE tools and
programming environments allow developers to view and
modify a variety of diagrams and code, with those being
edited or used to form the work context of the developer.
While many support collaborative work via shared
workspaces and/or version control and merging, most do
not support higher-level work coordination schemes [21],
limiting their effectiveness.

Process-Centred Environments (PCEs) allow developers
to codify the processes used to develop software, and to
codify their work contexts for each process stage. This use
of codified work processes and contexts leads to better
software development processes and thus to better software
quality [3, 4, 5, 28]. Most PCEs require developers to
explicitly specify which artefacts, tools and/or
collaborators are utilised for each stage in a software
process model [1, 2, 28], and do not support the
determination of work contexts from past work. This
results in limitations which reduces their degree of work
coordination support, and thus their ability to contribute to
improved software production and production processes:
• As many stages of development involve volatile work

contexts, developers may not wish or may not even be
able to formally specify exactly what artefacts, tools,

collaborators and communication mechanisms they
want to use for all process stages [27, 19, 23].

• Visualisation of collaborators’ work contexts is
usually limited, with often no visualisation of the
current work contexts of process stages, and no
visualisation of past work contexts of a stage. This
leads to less effective work coordination.

• Most PCEs utilise a notion of a “current” enacted
process model stage, which can be overly-restrictive,
as a developer may have several process model stages
enacted at once. This necessitates regular, manual
switching between them.

• Process improvement in most PCEs does not
adequately utilise the history of work done on a
project to feedback into the process improvement
process, limiting the degree of process improvement a
developer can achieve with the PCE.

We describe our work in utilising the history of work
contexts for a process stage, and the history of work by a
developer, to provide better support for work coordination,
automatic process stage enactment, and process
improvement within a PCE and its related, integrated
tools. Our techniques help to reduce the management load
in multiple-developer projects by automatically tracking
work context changes, automatically keeping developers
aware of each others current, past and likely future work
contexts, and in limited automatic enactment of
appropriate process stages based on prior event histories.

2. Related Research

Most CASE tools, such as Software thru Pictures [30],
and Integrated Software Development Environments, such
as Dora [24], FIELD [25], and SPE [10], do not support
the idea of codifying or determining work contexts for
software development. This means that while they support
the processes of doing work on a software project, they do
not assist developers in the complex tasks of work
coordination using multiple people, tools and processes.

Most workflow systems provide some manner of
codifying the context of work for each process in the
workflow. This is either just the roles involved, as in
Regatta [28] and TeamFLOW [29], or more explicit
artefact, tool and role definitions as in Action Workflow
[22]. Some, such as TeamFLOW, provide process stage
enactment histories, but do not record artefact, tool and
communication events. Once again, this limits the degree
of work coordination the tools can provide for developers,
and work history is not used in improving the processes.

PCEs such as SPADE [3], ProcessWEAVER [8],
EPOS [7], E3 [1], ADELE-TEMPO [4], and Oz [5] require
explicit codification of aspects of a process stages work
context, such as the artefacts and tools it uses. These
systems provide limited visualisation of enacted process
models, with the enacted stages being highlighted.
However, no support for work context highlighting is
provided nor usage of work histories during process

improvement. This again limits the degree to which they
can effectively support large project collaborative work.

Groupware systems, such as GroupKit [26] and
Rendezvous [18], provide various mechanisms for
“synchronous” group awareness ie. keeping collaborators
aware of artefacts in current use, but not things previously
used or likely to be used (“asynchronous” group
awareness). Some CSCW systems, such as wOrlds [6] and
Orbit [19], allow work contexts to be implicitly defined by
the artefacts, tools, actions and collaborators involved,
rather than explicitly codified. However, most groupware
systems still suffer from lack of flexibility in defining a of
determining process stage work contexts, and still tend to
force people to be in only one context at a time.

3. The Serendipity PCE

In the following sections, we describe facilities we have
added to the Serendipity PCE to better support work
coordination and process improvement for software
development using prior event histories. These techniques
help alleviate some problems with current PCEs,
workflow systems and groupware applications.

Serendipity is a process modelling, enactment and work
planning environment, which also supports event
handling, group communication, and group awareness
facilities [16, 12]. Fore example, the left and bottom
windows shown in Figure 1 are Serendipity views that
model part of the ISPW6 software process example [20].
Stages (rounded rectangles) describe steps in the process of
modifying a software system. Enactment event flows link
stages, where the label is the finishing state of the stage
the flow is from. Serendipity also supports artefact, tool
and role modelling. Usage connections show how stages,
artefacts, tools and roles are related. Serendipity also
provides graphical filters (rectangular icons) and actions
(ovals), which process arbitrary enactment and work
artefact modification events [16, 11, 12]. Work
coordination in the ISPW6 model is defined by the top-
right window of Figure 1. The filters detect when testing
starts or completes, and actions inform the project manager
of this. Artefact updates made OOA/D diagrams are stored
in a changes list owned by the project manager.

We have integrated Serendipity with SPE (Snart
Programming Environment) [10], an integrated software
development environment, to produce SPE–Serendipity
[12, 13]. Serendipity provides the process modelling and
enactment capabilities used to guide or enforce work in
SPE. SPE provides object-oriented analysis, design,
implementation, debugging and documentation views of
software development [10]. Figure 2 shows a screen dump
from SPE–Serendipity. The bold, shaded stage
aff.2.2:Review Design Changes is the "current enacted
stage" for developer “judy”. Each developer may have
several process model stages enacted at one time, but only
one “current” enacted stage (the one they are doing work on
at the present moment).

Figure 1. Part of the ISPW6 software process example modelled in Serendipity.

"Change descriptions", which document all events
occurring in SPE-Serendipity, are generated when enacting
or finishing process model stages, when switching the
current enacted stage, when making artefact modifications
in SPE, when SPE tools generate events, and when
developers communicate. Enactment events are stored by
Serendipity for each stage, forming an enactment history.
Change descriptions generated by SPE are augmented with
information about the current enacted process model stage
[12, 16], and are stored by Serendipity in artefact change
histories for the current enacted stage, forming work
histories for each software process stage. Figure 2 shows
examples of artefact histories (left hand dialogue),
augmented change descriptions being presented in SPE
(middle textual view) and artefact modification histories
with augmented change descriptions in SPE (right-hand
dialogue).

4. Determining Work Contexts

Recorded change descriptions for stages and developers
can be used to formalise the work context and process
model a developer has been using (or may use in the
future), and for developers to visualise the dynamic aspects

of work context as they change over time. We have made
extensions to SPE–Serendipity which support recording
and collation of past events, so event histories can be used
to provide improved group awareness and process
enactment and improvement facilities.

Serendipity records change descriptions sent from SPE,
which describe artefact updates and tool events. We can use
these events to determine work contexts for process model
stages and record work histories for particular developers.
Figure 3 illustrates the process used to determine the
artefacts, tools and collaborators someone is working with
for some process stage. Whenever the developer accesses or
modifies an artefact, or communicates with a collaborator,
the tool they are using generates an event, and this is
processed to record information in a work context database.

We have built reusable filter/actions which determine
the work contexts for specified stages. A developer
connects an appropriate filter/action icon to the process
model stage icon for which they want work context
information determined. These filter/actions record not
only the artefacts/tools/people of interest, but also
frequency of access, whether artefacts were created, updated,
accessed or deleted, access/update times, etc.

Figure 2. An example of work context capture and presentation in SPE–Serendipity.

We can also store all of the events generated by a
particular developer, and record these in a database to form
a work history for the developer, as shown in Figure 4.
This information can then be presented to other software
developers so they are made aware of the recent work of
this developer. Such events can be filtered so only events
pertaining to particular stages, tools or artefacts of interest
are stored or presented.

Storing the determined work contexts of process model
stages and the work history of developers allows us to
estimate the likely composition of future work contexts
for both developer and process model stages. As shown in
Figure 5, the current enacted stage, this stage’s determined
work context, and the recent work history for a developer
are utilised to estimate the likely artefacts to be modified

by the developer in the near future. Such information can
be presented to collaborators so they can be made more
aware not only of others’ recent work history, but also
their likely future actions.

Currently we apply simple analysis to the developer’s
work history and stage’s determined work context to
estimate the artefacts, tools and developers likely to be
used by the developer in the near future. Items in the
developer’s work history are weighted based on whether
they belong to the current enacted stage’s determined work
context, how recently the developer last used them, and if
the developer has used particular items in sequence. The
highest-weighted item names and weightings are recorded
in a “likely work context” database for the developer.

stage

artefact, tool
and communication

events
collate:
- who generated
 event
- artefact, tool
 & role names
- frequency
- date/time

store
"work context"
information

determined
work context
for stage

artefact="video class"
 updated=3 times
 accessed=7 times
 times=[10/1/97 10:21, 10/1/97 1:12, ...]

tool="OOA/D editor"
 used=11 times
 used-to-view=["video OOA view", ...]
...

Example of collated information:

Figure 3. Determination and collation of process model stage work contexts.

collate:
- artefact, tool
 & role names
- frequency
- date/time

store
"work history"
information

determined
work history
for developer

developer

artefact, tool
and communication

eventsdeveloper's current
enacted stage

enactment
events partition

work history with
change-of-stage

event info

Figure 4. Determination and collation of a developer's work history.

5. Visualising Work Contexts

To fully utilise the information accrued by the above
work context and work history determination techniques,
developers need mechanisms to access and visualise it.
This enables developers to analyse their own and other
developers’ history of work and work contexts, to be made
more aware of their collaborators’ work, the reasons for it,
any likely impact on their own work, and to determine if
they need to coordinate their current work with them.

Figure 6 shows examples of Serendipity and SPE view
icons which have been highlighted by our visualisation
facilities. This screen dump is from designer judy’s
perspective, with her current enacted stage (aff.2.1)
highlighted, as well as those of her collaborators john
(aff.2.3) and rick (aff.2.5). Highlighting shows the
artefacts currently in use (determined as the last things

accessed/updated in their work histories) for judy and john.
The shadowed artefact and tool icons in the left-hand
(Serendipity) view are items in the determined work
contexts for stages aff.2.1, aff.2.3 and aff.2.4. i.e. things
that judy, john and rick have used when these stages were
previously their current enacted stages. The shaded aff.2.4.
stage icon indicates that this was the previous current
enacted stage for rick (now no longer enacted), determined
by examining rick’s work history. The bold highlighted
video class icon in the right-hand (SPE) view is being
modified by john. The shadowed rentals class icon in the
right-hand window of Figure 6 is an artefact predicted to be
used by john again in the near future, based on events in
his recent work history and the determined work context of
stage aff.2.3. The highlighting used in these views allows
judy to remain aware of items which are of recent, current
and likely immediate future interest to her collaborators.

developer's current
enacted stage

developer's
work history

stage's determined
work context

developer

Assign ranking to
artefacts, tools

and other developers
likely to be used next

extract
data store artefact(s),

tool(s), developer(s)

"likely to be
used next" work
context items

Figure 5. Estimating the future work contexts and work plans for a developer from their work history.

Visualisations can be used to summarise the work
contexts of collaborators (determined from stage work
contexts and from developer work histories). The left-hand
side view in Figure 7 shows a simple visualisation using

the determined work context for process stage
aff2.1:Design Changes. This shows the actual artefacts,
tools and collaborators that were used whenever developer
judy had this stage enacted.

Developers request visualisations by connecting
visualisation filter/action icons to artefacts representing the
views in which they want icons highlighted. The
visualisations can be tailored by the developer specifying

highlighting mechanisms (eg. colour, shading); we have
used only shading above to make this screen dump more
readable when printed, but colouring is usually used.

Figure 6. Highlighting Serendipity and SPE view icons to support group awareness.

Figure 7. Visualisations of determined work context information for a process model stage.

Additional filtering can be applied to restrict a
visualisation to show specific artefacts, tools and people,
more or less frequently-used items, artefacts and tools used
within a particular time range (eg. only recently-used vs.
older ones). It is also possible to highlight determined
work context information in various additional ways (eg.
most frequently used artefacts/tools larger or in a different
colour, recently used tools and artefacts coloured or shaded

differently, etc.). The right-hand visualisation in Figure 7
is showing additional information to the simple query on
the left. Views showing the overlapping work contexts for
stages, where the items common to the determined work
contexts of stages are highlighted, can also be generated.

6. Automatic Process Enactment

In Serendipity, developers are allowed to have several
process model stages enacted at one time, but only one of
these may be the “current enacted stage” ie. the stage for
which work is currently being done. Very often developers
switch between these enacted stages doing small amounts
of work on several of them e.g. modifying a design,
implementing part of the code, testing the partially–
modified part of the system.

We can utilise determined work context information to
“automatically” change the current enacted process model
stage for a developer, if this is an appropriate thing to do.
This allows developers to avoid having to manually
change their current enacted process model stage when an
obvious change in their work context occurs. For example,
a developer may have the “design changes” stage as their
current enacted stage, but also have the “code changes” and
“test changes” stages enacted i.e. the developer is
switching between these three enacted stages doing some
work on each, rather than doing them in “waterfall”
sequential fashion. If the developer starts to edit a test
plan, their determined work context for “design changes”
will not contain this artefact, but “test changes” will,
indicating the developer is now working on “test changes”,
which should now be made their current enacted stage.

To achieve a form of automatic switching of current
enacted stage, we determine if a developer is now using a
tool or artefact, or communicating with another user, not
before determined as part the work context for their current
enacted process model stage. An illustration of how this
works is shown in Figure 8. All developer-generated
events are monitored and the filter/action attempts to

determine an appropriate alternative process stage from the
recent work history of the developer, and if one is judged
suitable, then it makes that stage the current enacted stage
for the developer. Obviously this assumption of a context
switch may be in error, so developers usually choose to
use this facility only if they have built up determined work
context information and a personal work history over a
period of time for the process models they are using.

We now allow Serendipity to have no process model
stage selected as the “current enacted stage” for a particular
developer ie. no specified stage for which it is indicated
current work is being done. This gives developers more
freedom to do “exploratory” work without having to
specify a particular process model stage is being worked
on. We use a developer’s work history to record events
generated while in this state. When the developer
subsequently specifies their current enacted stage, the
events cached while they had no current enacted stage can
be utilised to process and record these events “after the
fact”. This use of a determined work history supports
much more flexible use of evolving process models than
most existing workflow and process modelling
environments.

When a developer changes their current enacted process
model stage (or this is done automatically as described
above), their work context changes ie. the artefacts, tools
and collaborators they are interested in and/or affected by
change. When the current enacted process model stage
changes, highlighting needs to be changed in both
Serendipity and SPE views. The determined work context
for the newly enacted process model stage and the work
history for the developer are used to achieve highlighting
appropriate to a new work context.

developer's current
enacted stage

developer's
work history

determined work
contexts for all
stages developer

has enacted

developer

extract
data

artefact, tool
or communication

event

if artefact etc. not
in current enacted

stage's work context,
locate an appropriate
other enacted stage
to switch context to

extract
data

if appropriate enacted
stage found for developer,

make it the current
enacted stage

list of enacted
stages for developer

from Serendipity
("to-do" list)

Figure 8. An example of automatic change of enacted process stage based on change in work context.

Figure 9. Abstracting and codifying visualised work contexts into reusable template process models.

7. Software Process Improvement

Software process model improvement can also utilise
our work context determination and visualisation
techniques. As developers have a collated record of work
history for process model stages (and other developers),
this can be used to refine software process models codified
in Serendipity.

For example, Figure 7 showed a generated visualisation
of the work context for stage aff.2.1., showing the
software artefacts, tools and collaborators utilised for
aff.2.1. on an actual development project. Obviously the
artefacts and collaborators are project-specific, but a
software process modeller can abstract a codified (ie.
defined work context specification) from such
visualisations, as illustrated in Figure 9. The visualisation
on the left, generated from a stage’s determined work
context, has been used by a developer to refine the codified
work context for process model stage aff.2.1., which now
takes into account the communication tool, other
developer and document editing tool shown in the
determined work context visualisation. We have found the
determined work context information for a stage to be very
useful for restructuring and refining process models.

8. Implementation and Experience

SPE and Serendipity were developed by reusing the
MViews framework for constructing ISDEs [17]. MViews
provides a general model for defining software system data
structures and tool views, with a flexible mechanism for
propagating changes between software components, views
and tools. ISDE data is described by components with
attributes, linked by a variety of relationships. When a
component is updated, a change description is generated.

Change descriptions are propagated to all components
dependent upon the updated component’s state. Dependents
interpret these change descriptions and possibly modify
their own state, producing further change descriptions.
This change description propagation mechanism supports a
diverse range of software development environment
facilities, including attribute recalculation, multiple views
with flexible, bi-directional textual and graphical view
consistency, a generic undo/redo mechanism, component
versioning, and collaborative view editing [14].

SPE and Serendipity have been integrated by modifying
MViews so that it sends change descriptions generated by
tools to Serendipity, and by extending Serendipity to
handle these artefact update and tool events. Relationships
between the Serendipity base view and the SPE base view
translate events (in the form of change descriptions) from
one environment into appropriate events in the other.

Rather than alter the implementations of Serendipity
and SPE directly to provide the work context and work
history determination, visualisation and utilisation
techniques described in the previous Sections, we have
used Serendipity’s filter/action language to implement
them. This has the advantage of not having to modify the
source code of the environments, allows developers to look
at how the various determination, visualisation etc.
utilities have been implemented, and because of the high-
level nature of our filter/action language, this allows
developers to tailor these to their own needs.

A simple work history determining filter/action is
shown in Figure 10. Artefact, tool and communication
events generated by the developer’s actions are stored in a
work history artefact (right-hand event flow). Any “set
current stage” enactment events cause this work history to
be partitioned, grouping artefact etc. events according to
which stage the developer currently had enacted. Process

model users can modify this filter/action to only record
particular kinds of events, or to record them in different
work history artefacts.

Figure 10. Filter/action determining work histories.

 This approach of using the built-in Serendipity
filter/action language has the disadvantage of limiting how
these work context and history determination techniques
are used. Developers must attach an icon representing the
overall filter/action model to developer or stage icons in
other views, which is not always an ideal approach. In
addition, the interpreted nature of these filter/action models
means their execution is currently quite slow e.g. half a
minute to generate a work context visualisation like in
Figure 7.

We have used our event history compilation,
visualisation and automatic enactment mechanisms on
several small software process problems. Our techniques
have proven to be useful for allowing developers to
effectively visualise past, current and likely future work
contexts of themselves and other developers. They are also
very helpful in assisting process improvement and
alleviating manual context switching between multiple
enacted stages.

Due to the slowness of the current SPE-Serendipity
environment, and its limited integration with third party
tools, we have built a new Java Beans-based prototype
environment, JComposer. This provides much more
efficient filter/actions and a much more open architecture.
We are planning to port Serendipity to this new
architecture and reimplement the techniques described in
this paper. An industrial evaluation of the techniques on
larger software development projects should then be
possible.

9. Summary

When working on large, multi-user software
development projects, developers need assistance in
maintaining awareness of others’ actions and in using and
improving their software process models. We have
described several techniques that record enactment and
artefact change events generated during a development
project. We then use these event histories to help maintain
awareness of actions between developers, to enable an
environment to automatically switch work context for a

developer when appropriate, and to help developers
improve codified software process models.

We are currently working on improving the analysis
techniques used to examine work histories for developers,
in order to deduce patterns of artefact and tool usage. This
will allow us to more accurately predict usage patterns of
these artefacts and tools, thus improving the visualisations
of predicted work contexts for other developers. In addition,
the merging of determined work context information from
multiple projects promises to yield more accurate
visualisations of work context changes over time, once
again helping to keep developers better informed of others’
work and to assist in process improvement. We are porting
our process-centred environment to a new Java platform to
make its architecture more open and improve its speed of
operation.

References

[1] Baldi, M., Gai, S., Jaccheri, M.L., and Lago, P. Object
Oriented Software Process Design in E3, in Software
Process Modelling & Technology, Finkelstein, A.,
Kramer, J. and Neusebeh, B. Eds, Research Studies Press,
(1994), pp. 279-292.

[2] Bandinelli, S., Fuggetta, A., and Ghezzi, C. Process
model evolution in the SPADE environment. IEEE
Transactions on Software Engineering, vol. 19, no. 12
(December 1993), 1128-1144.

[3] Bandinelli, S., Fuggetta, A., Ghezzi, C., and Lavazza, L.
SPADE: an environment for software process analysis,
design and enactment, in Software Process Modelling &
Technology, Finkelstein, A., Kramer, J. and Neusebeh,
B. Eds, Research Studies Press, (1994).

[4] Belkhatir, N., Estublier, J., and Melo, W.L. The
Adele/Tempo Experience, in Software Process
Modelling & Technology, Finkelstein, A., Kramer, J.
and Neusebeh, B. Eds, Research Studies Press, (1994).

[5] Ben-Shaul, I.Z. and Kaiser, G.E. A Paradigm for
Decentralized Process Modeling and its Realization in
the Oz Environment. In Sixteenth International
Conference on Software Engineering, IEEE CS Press,
May 1994, pp. 179-188.

[6] Bogia, D.P. and Kaplan, S.M. Flexibility and Control
for Dynamic Workflows in the wOrlds Environment. In
Proceedings of the Conference on Organisational
Computing Systems, ACM Press, Milpitas, CA,
November 1995.

[7] Conradi, R., Hagaseth, M., Larsen, J., Nguyen, M.N.,
Munch, B.P., Westby, P.H., Zhu, W., Liu, C. EPOS:
Object Oriented Coopeartive Process Modeling, in
Software Process Modelling & Technology ,
Finkelstein, A., Kramer, J. and Neusebeh, B. Eds,
Research Studies Press, (1994), pp. 33-70.

[8] Fernström, C. ProcessWEAVER: Adding process support
to UNIX. In 2nd International Conference on the
Software Process: Continuous Software Process
Improvement , IEEE CS Press, Berlin, Germany,
February 1993, pp. 12-26.

[9] Fitzpatrick, G., Tolone, W.J., and Kaplan, S.M. Work,
Locales and Distributed Social Worlds. In 4th European
Conference on Computer-Supported Cooperative Work,
Kluwer Academic Publishers, Stockholm, Sweden, 1995.

[10] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B. Connecting the pieces, in Visual
Object-Oriented Programming, Burnett, M., Goldberg,
A. and Lewis, T. Eds, Manning/Prentice-Hall (1995).

[11] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Towards a Unified Event-based Software Architecture. In
Joint Proceedings of the SIGSOFT'96 Workshops, ACM
Press, San Francisco, October 14-15 1996, pp. 121-
125.

[12] Grundy, J.C., Hosking, J.G., and Mugridge, W.B. Low-
level and high-level CSCW in the Serendipity process
modelling environment. In Proceedings of OZCHI'96,
IEEE CS Press, Hamilton, New Zealand, Nov 24-27
1996.

[13] Grundy, J.C., Hosking, J.G., Mugridge, W.B., and
Amor, R.W. Support for Constructing Environments
with Multiple Views. In Joint Proceedings of the
SIGSOFT'96 Workshops, ACM Press, San Francisco,
October 14-15 1996, pp. 212-216.

[14] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Supporting flexible consistency management via
discrete change description propagation. Software -
Practice & Experience, vol. 26, no. 9 (September 1996),
1053-1083.

[15] Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B. Coordinating collaborative work in an
integrated Information Systems engineering
environment. In Proceedings of the 7th Workshop on
the Next Generation of CASE tools, Crete, 20-21 May
1996.

[16] Grundy, J.C. and Hosking, J.G., Serendipity: integrated
environment support for process modelling, enactment
and improvement, to appear in Automated Software
Engineering: Special Issue on Process Technology,
Kluwer Academic Publishers, vol. 5, no. 1, January
1998 (in press).

[17] Grundy, J.C. and Hosking, J.G. Constructing Integrated
Software Development Environments with MViews,
International Journal of Applied Software Technology ,
vol. 2, no. 3-4, 1996.

[18] Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F.,
and Wilner, W. The Rendezvous Architecture and
Language for Constructing Multi-User Applications.
ACM Transactions on Computer-Human Interaction
vol. 1, no. 2 (June 1994), 81-125.

[19] Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and
Tolone, W.J. Shooting into Orbit. In Proceedings of
Oz-CSCW'96, DSTC Technical Workshop Series,
University of Queensland, Brisbane, Australia, August
1996, pp. 38-48.

[20] Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama,
T., Osterweil, L.J., Penedo, M.H., and Rombach, H.D.
Software Process Modelling Example Problem. In
Proceedings of the 6th International Software Process
Workshop, (Ed), T.K., IEEE CS Press, Hokkaido, Japan,
28-31 October 1990.

[21] Krant, R.E. and Streeter, L.A. Coordination in Software
Development. Communications of the ACM vol. 38,
no. 3 (March 1995), 69-81.

[22] Medina-Mora, R., Winograd, T., Flores, R., and Flores,
F. The Action Workflow Approach to Workflow
Management Technology. In Proceedings of CSCW'92,
ACM Press, 1992, pp. 281-288.

[23] Di Nitto, E. and Fuggetta, A. Integrating process
technology and CSCW. In Proceedings of IV European
Workshop on Software Process Technology, LNCS,
Springer-Verlag, Leiden, The Nederlands, April 1995.

[24] Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle,
B.R. Dora - a structure oriented environment generator.
IEE Software Engineering Journal, vol. 7, no. 3 (1992),
184-190.

[25] Reiss, S.P. Connecting Tools Using Message Passing
in the Field Environment. IEEE Software, vol. 7, no. 7
(July 1990), 57-66.

[26] Roseman, M. and Greenberg, S. Building Real Time
Groupware with GroupKit, A Groupware Toolkit. ACM
Transactions on Computer-Human Interaction, vol. 3,
no. 1 (March 1996), 1-37.

[27] Schmidt, K. and Bannon, L. Taking CSCW seriously:
Supporting Articulation Work. Computer Supported
Cooperative Work (CSCW): An International Journal,
vol. 1, no. 1-2 (1992), 7-40.

[28] Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari,
B., and Irwin, K. A Business Process Environment
Supporting Collaborative Planning. Journal of
Collaborative Computing, vol. 1, no. 1 (1994).

[29] TeamWARE, I. , T e a m W A R E F l o w , 1996.
(http://www.teamware.us.com/products/flow/).

[30] Wasserman, A.I. and Pircher, P.A. A Graphical,
Extensible, Integrated Environment for Software
Development. SIGPLAN Notices, vol. 22, no. 1
(January 1987), 131-142.

