
Copyright 2000 IEEE. Published in the Proceedings of 2001 Australian Software Engineering Conference, Canberra, Australia. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.

Telephone: + Intl. 732-562-3966.
Developing Software Components with the UML, Enterprise Java Beans and Aspects

John Grundy1 and Rakesh Patel2

1Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

2Hewlet-Packard Ltd
Auckland, New Zealand

Abstract

Component-based systems have become increasingly
popular approaches to developing complex systems,
offering well-formed abstractions, strong potential for
reuse, dynamic plug-and-play and sometimes end-user
application enhancement. Unfortunately the design,
implementation and deployment of components is very
challenging, particularly achieving appropriate division
of responsibility among components, designing
components and implementing components. We have
developed the Aspect-Oriented Component Engineering
method to help improve component development by the
use of aspects during component specification, design,
implementation and deployment. We describe our recent
work extending the UML to facilitate aspect-oriented
component design and the use of Enterprise Java Beans
to implement these designs.

Keywords: aspect-oriented design, component-based
systems, UML, Enterprise Java Beans, XML

1. Introduction

Developing systems with software components

involves identifying reusable "building block" (i.e.
component) abstractions, combining (i.e. composing)
multiple components in appropriate ways, configuring
components for different reuse situations, and, sometimes,
allowing end-users of applications to further plug-and-
play components at run-time [6, 23]. It turns out that
engineering component-based systems is non-trivial:
developers must identify appropriate component
abstractions, allocate responsibility to components
carefully so minimum duplication or inconsistency
occurs, and must take care when combining and
configuring components [1, 2, 5, 25]. As with other
design and programming approaches, tangling of
concerns, particularly in regard to management of non-
functional characteristics, usually occurs [14, 18, 9].

Many component technologies and development
methods have been developed to try and aid component
developers. Examples of component technologies include
Enterprise Java Beans, COM+, CORBA's C-IDLs and
JViews [4, 8, 21, 22]. While the Unified Modelling
Language (UML) has become a de-facto standard for
most object-oriented development, the standard UML
model and process lacks support for software component
development [5, 14]. This has led to the development of
component-specific engineering methods, many of which
extend the UML to incorporate component representation.
Examples of component development methods include
Select Perspective™, Catalysis™ and COMO [1, 5, 17].
Most component development methods provide limited
guidance and notational support for capturing non-
functional, cross-cutting properties of components,
however, leading (typically) to continuing tangling of
concerns at design and implementation time [9, 3, 14].

Aspect-Oriented Component Engineering (AOCE)
addresses the identification and use of cross-cutting
aspects of software components [9]. We use the concept
of component aspects (broad categories of cross-cutting
systemic properties, e.g. persistency, distribution, user
interfaces and security), to help component developers
identify and reason about provided and required aspect
details and their property value constraints during
component design and implementation. We describe our
recent research investigating the addition of component
aspects to the Unified Modelling Language (UML). We
also describe recent work investigating the
implementation of these aspect-oriented UML component
designs using Enterprise Java Beans, including partial
generation of components from the XML-encoded
Perceval aspect-oriented language.

We first present a motivating example for AOCE, a
simple E-commerce system and then explain the key
ideas of AOCE in relation to characterising components
in this E-commerce application. We describe aspect-based
extensions to the UML to facilitate aspect-oriented
component design, and describe how these designs can be
mapped onto several component implementation
technologies, including our own JViews, the Enterprise

Java Beans (EJB) architecture, and the Perceval XML
aspect language. We discuss some prototype tool support
for aspect-oriented component design and
implementation, including generation of EJBs from
Perceval specificatiopns. We compare and contrast this
work to related work in component development, multiple
separation of concerns and aspect-oriented programming.

2. Motivation

Component-based systems (or "componentware")

focus on building applications by composing discrete,
reusable components. Components provide well-defined
interfaces, embody data and processing, often provide
run-time reflection mechanisms, utilise various
interconnection mechanisms, including subscribe-notify,
are often dynamically deployable and configurable, and
ideally are highly reusable via parameterisation [1, 5, 23].

As an example, consider a video store library built
from components. This system is to provide customers
on-line search, review and reserve functionality and staff
data maintenance, reporting and rent/return functions.
Customers and staff can communicate via messages.
Figure 1 shows some of the user interfaces for such a
system. Traditional object-oriented analysis and design
identifies a set of usually domain-specific object
abstractions embodying the data and functions this system
will provide. Typically these have limited reusability, can
not be dynamically deployed and reconfigured, and
communicate via fixed method calling protocols [13, 25].

A component-oriented design tries to reuse existing
components and new components are designed for

maximal reuse (via configuration facilities, dynamic plug-
and-play and de-coupled interaction). A component-based
architecture for a prototype of this system we developed
is outlined in Figure 1. The customer user interface
includes fine-grained GUI components (buttons, text
fields etc) and a coarser-grained tree viewer, showing
search results, and reusable search panel, composed to
form the video search interface. Various middleware
components (database, communications, security,
transaction processing support) are reused. Server-side
components include generalised data management e.g.
customer and staff, "product" (configured to represent
"videos" for this application by dynamically specifying
video-specific field names and types) and "rental" (usable
in any system where a "customer" rents a "product"). A
search engine component provides retrieval of "products",
and "rental processing" is business logic encapsulation.
Groupware support includes reviews and messages.

While component-based solutions have become
popular for such E-commerce and other systems
development projects [2, 4, 6, 26], many challenging
issues arise when engineering such applications. When
designing components developers must determine
appropriate divisions of responsibility, must identify
component functional non-functional characteristics, and
must design general component inter-communication
interfaces [1, 9, 5]. When implementing components,
developers need to realise component function
encapsulation, dynamic configuration support and de-
coupled component interaction mechanisms. At run-time,
components are composed and compositions validated.

Tree Viewer
Messaging UI

Buttons TextFields

Search Panel

Composed UI

MW Communications

Database Access

Products [Video]

Catalogue

Search EngineCustomers

Staff
Rentals

Security

On-line Reviews

Messaging Server

Rentalal
Processing

Figure 1. Example E-commerce system and a possible component-based architecture.

3. Aspect-Oriented Component Engineering

We developed Aspect-Oriented Component
Engineering (AOCE) to help developers engineer better
software components [9]. Component aspects are broad
categories of annotations we use to describe systemic
system properties that components provide functions for
or require functions from other components. Examples of
component aspects (which we refer to just as "aspects"
from here) include user interface, distribution, transaction
processing, security, persistency, configuration and
collaborative work support facilities.

Aspect details describe various systemic properties
under each aspect category that some components provide
and that others require. For example, one component may
provide a button panel (user interface aspect detail)
another component may require to extend (e.g. to add its
own buttons). One component may provide event
broadcasting support, which another requires to do
distributed communications. Each aspect detail has one or
more aspect detail properties which further characterise it
e.g. event transfer rate, memory usage size, kind of user
interface affordance, synchronous vs. asynchronous group
editing, and so on. Aspect detail properties may be single-
valued or specify an acceptable value-range constraint.
Component aspect details may overlap e.g. marshalling
for persistency and distribution, feedback for user
interface and collaborative work. Several component

functions may be impacted by the same aspect detail and
a single function may be impacted by multiple details.

Figure 2 shows some example aspects for video
system components. Each component provides some
services to the overall component-based application e.g.
the Tree Viewer and Reviews provide UI parts of its user
interface; the middleware component provides
distribution services; the database connectivity
component provides persistency management and
distributed access; the on-line review components provide
collaborative work support; and the customers and
products components provide server-side data
management and processing. Most components also, in a
typical system, require various services from other
components to operate. For example, the Tree Viewer
requires distribution support and local persistency support
(for caching); the Reviews UI a collaboration server; the
middleware communications component (optionally)
requires security services; and the Products component
requires persistency and distribution services (to allow
client access). Many other aspects could be identified in
this system: threading is required by server-side search
engine and rental processing components to support
multiple, simultaneous client search requests and rentals;
in many systems memory management services are
required; caching in both client and server components
could be provided or required; communications may
require security support (encryption, access rights
management); and so on.

Tree Viewer

MW Communications

Database Access

Products [Video]Customers

On-line Reviews

<<User Interface>>
<<Persistency>>

<<Distribution>>

Reviews UI

<<User Interface>>
<<Distribution>>

<<Collaboration>>

<<Distribution>>
<<Security>>

Component

<<Aspect>>

<<Aspect>>

owned aspects

Provides->requires

<<Distribution>>
<<Persistency>>

<<Persistency>>
<<Distribution>>

<<Distribution>>
<<Persistency>>

<<Configuration>>

<<Distribution>>
<<Persistency>>

<<Collaboration>>

Figure 2. The video system components and some of their aspects.

4. Aspect-Oriented Design with the UML

We originally extended a custom component

specification and design notation to incorporate simple
representations of aspects and developed a simple textual
aspect specification language formalism [9]. While these
proved to be effective for use in developing aspect-
oriented component designs, they are non-standard and
hence problematic for a wider audience to use. Standard
design notations like the Unified Modelling Language
(UML) are widely used, but lack both component and
aspect characterisations. Component development
approaches using the UML [1, 5] generally lack adequate
component functional and non-functional characterisation
along cross-cutting lines [3, 14, 9]. We wanted to see how
the notion of component aspects would integrate with the
UML and to explore ways of implementing aspect-
oriented UML designs using various technologies.

Unlike some approaches to extending the UML for
component development and aspect-based design [5, 14],

we extend both the UML meta-model and its visual
notation. We also introduced additional steps into the
Unified Process to include the identification and use of
component aspects. We focused our extensions on
providing concrete representations of aspect “cross-cuts”
on component functional/non-functional characteristics.
Our extensions make explicit provided and required
component aspect details, in class (software component),
sequence and collaboration diagrams.

Figure 3 (a) shows some of the notational extensions
of our extended UML. Class diagram icons representing
components are extended by adding additional
compartments underneath the standard attribute and
method ones, one for each kind of aspect. Each
compartment contains a label identifying the aspect and
aspect details, indicating provided (+) and required (-)
functional and non-functional characteristics. Each aspect
detail has one or more properties, which can be shown or
hidden. Properties have value constraints, typically
viewed in dialogues in a CASE tool.

ComponentName

<attributes>

FunctionName(s)
[+/-]AspectDetailName

<<AspectName>>

+ ProvidedDetailNames
 PropertyName(s)
- RequiredDetailNames

…

ComponentName

<attributes>

<methods>

<aspect(s)>
+ ProvidedDetailNames

PropertyName(s)
- RequiredDetailNames

…

<<AspectName>>
+ ProvidedDetailName
-RequiredDetailName

…

ComponentName

…
Uses

Belongs-to

Uses

ObjectName:CompName

<<Aspect:AspectDetail>>
ObjectName:CompName

<<Aspect:AspectDetail>>

ObjectName:CompName

operation

<< AspectDetail>>

ComponentName

… ComponentName

…
-Distribution.DataTransfer.
 Speed >= 10KB ps +UserInterface.Extensible

 Affordance = [pop-up menu]

javax.swing

Middleware

provides:
button,
frame,

Container,
text area,
textfiled,

panel,
password

mask.

provides:
data

transfer.

Data Store Application
Manager

provides:
store data,

retrieve
data

provides:
data

transfer.
provides:

data
transfer.

provides:
data

transfer.

provides:
store data,

retrieve
data

provides:
store data,

retrieve
data

provides:
transaction

Management

provides:
transaction

Management,
authenticate

user

provides:
transaction

Management

Key:

provides requires

(a) Some basic UML notation extensions. (b) Part of the video system aspect-oriented design.

Figure 3. Part of an aspect-oriented component design.

Component functions may be annotated with the
aspect details they provide and/or require. Collaboration
and sequence diagram objects may be annotated to
indicate event flows relate to particular aspects details
provided and required by the objects. Operations may be
annotated to indicate the provided aspect detail(s) being
used. Designers can specify various properties and
property constraints of provided and required details,
using UML’s Object Constraint Language (OCL)
annotations (though these are usually specified in
dialogues in our CASE tool). These provide a facility to
reason about AOCE designs. For example, if the
VideoStoreClient requires data transfer facilities that can
handle > 10,000 bytes per second data exchange, then
connecting a middleware component providing a modem
connection can be invalidated as not sufficient.

The example extended class diagram in Figure 3 (b)
shows the VideoStoreClient component, which provides
the basic customer user interface (composed from several
other components, not shown here). This provides several
aspect-encoded facilities (a window and password mask)
and requires others (user interface components and data
transfer support). Three application server components
(CustomerApp, StaffApp and VideoApp) require various
middleware facilities, encapsulated in Data Store,
Middleware and Application Manager components.

ClassElement

AOCEElement

AspectElement DetailPropertyElement

OCL Expression

ComponentElement

0..*0..*

aspects

FunctionElement

ComponentElement

AspectDetailElement

0..*0..*

detai ls

0..*0..*

properties
0..*

0..*

0..*

0..*

impacts

0..*
0..*

other comp aspects require

0..*
0..*

Figure 4. Some of our UML meta-model extensions.

Rather than use ad-hoc UML stereotypes on classes

and functions or use unstructured note annotations, as
some researchers have done [3], we introduce a concrete
set of UML meta-model extensions, outlined in Figure 4
These include Components, Aspects, AspectDetails and
DetailProperties, plus some additional inter-element links.
Aspect details may be shown as either function
annotations or in aspect compartments within class icons,
or within their own aspect icons. Aspect detail properties

include a type and optional OCL expression, used to
specify valid values and valid inter-component aspect
detail property values. Aspect extensions can be usefully
applied to other UML diagrams and meta-model entities,
such as collaboration and sequence diagrams, state
diagrams, and object and function call elements.

We have added stages to the Unified Process to
incorporate aspect-oriented component design usage.
Components are identified and then their aspects
characterised (including, where possible aspect details
and properties). Linked and composed components have
their provides/required relationships analysed to ensure
all components with required aspect details are associated
with components with one (or more) matching provided
details. Aspect detail property constraints are checked for
each provided/required detail match to ensure
compatibility. Component groupings can also have
"aggregated" aspects. These are useful for enforcing
group-wide aspect detail properties and for reasoning
about group-to-group aggregate aspect relationships.

5. Implementing Aspect-Oriented Designs

We have investigated three mechanisms for realising
aspect-oriented component designs: extensions to JViews,
a Java Beans-based component model; using Enterprise
Java Beans; and using the Perceval intermediate aspect-
oriented language.

5.1. JViews Components

We extended a component-based framework we

developed, called JViews, to incorporate a set of classes
which act as codifications of component aspects. JViews
components are built from component designs and sets of
aspect-implementing classes are reused or specialised to
provide a run-time description of component aspects and
various run-time aspect-based facilities. For example, a
JViews-implemented tree viewer component advertises
that it provides an extensible menu bar (that other
components can add items to) and it requires a remote,
data-providing component to source tree information
from. A messaging server-side component requires
database connectivity (to store messages in), a
communications component (to send/receive message
events to/from), optionally requires a security encoding
aspect detail (if a component providing this is linked to it,
messages are encrypted, if not they aren't), and provides
an implementation of a user registration collaborative
work aspect detail.

Figure 5 shows some of the JViews components we
built to realise a prototype of the video library aspect-
oriented design, along with an indication of some of their
aspect details. Aspect detail objects are advertised by each

owning component, with other components accessing
these to discover and make use of other component
services. For example, the tree model component
discovers the search component has a menu bar that can
be extended and it uses functions associated with this
provided aspect detail to extend the menu in a very de-
coupled way [8]. The server-side TCP/IP communications
component discovers the security component (if present)
has encoding/decoding functions which it envokes to
encrypt and decrypt transferred data. Each aspect detail
class has several aspect detail properties and constraints
that are checked at run-time to validate a component
configuration e.g. check all required aspects details for
components are met and are consistent with matching
provided aspect details.

Tree Model

Tree Viewer

Search Model

Search View

Buttons Fields

TCP/IP Comms (server-side0

Simple Security

TCP/IP Comms
(client-side)

Custom protocol across network

Customers

RDBMS (ODBC) Accessor

Products (Videos)

Video Server

Component

Aspect Detail
Objects

Owned aspects

Simple Security

Provides/requires

Figure 5. Some of the JViews components

implementing the video system.

5.2. Enterprise Java Beans

While our JViews framework extended with aspects

is a powerful implementation mechanism for AOCE it
suffers from being non-standard and only JViews
components can (easily) be used within the framework.

We have recently been investigating the use of Enterprise
Java Beans (EJBs) to implement aspect-oriented
component designs. The basic EJB architecture is
outlined in Figure 6 [21]. Server-side components
("Beans") provide a "home" interface through which they
are located and accessed. Beans are managed by Bean
containers, which are in turn managed by Enterprise Java
Beans servers.

Beans typically do not manage their own distributed
communications, transaction processing, persistency,
security or threading, but these systemic services are
provided by containers. Some limited load-balancing and
distributed Bean management is provided by EJB server
implementations.

EJBs would seem a reasonably amenable component
model for AOCE: container services provide many
systemic, aspect-related services to components,
providing an architectural isolation mechanism for these
aspects in component implementations. Figure 6 shows
some of the EJB components we used to realise a
prototype of the video system aspect-oriented design.
Entity Beans (EB) manage data while Session Beans (SB)
manage business processing logic. The container manages
Entity bean persistency, transactions, threads and client-
server communications. OCE-designed components
translate reasonably well into EJB-realised component
implementations, particularly if the basic EJB architecture
is sufficient for the application being developed. Often
our AOCE designs include "middleware" components
providing facilities that EJB containers provide and thus
these components "disappeared" in our EJB
implementations (whereas they were mostly realised by
multiple JViews reusable components in our previous
example). Aspects aid in dividing responsibility between
EJB components and we used them to help identify
functions that need to be expressed in an EJB’s interface
to support component configuration and de-coupled
interaction (i.e. not tying EJBs to other specific EJB
types). This enhances reusability and flexibility of the
EJB components.

Unfortunately the EJB model, while suitable for
some applications and reasonably flexible, makes some
architectural decisions difficult to achieve e.g.
decentralised processing, object caching and client-side
distribution, caching and persistency functionality. The
EJB model is also solely a server-side component model
and thus component-based clients must use an alternative
implementation model, resulting in a heterogeneous
implementation. EJBs provide quite limited run-time
introspection and dynamic discovery mechanisms,
compared to aspect codifications in JViews. Consequently
we have found it much harder to develop truely
dynamically deployable, reusable and de-coupled
components in EJBs than in JViews.

Middle-tier

EJB Server

Bean Containers

Web Browser
Servlets

JSPs

Applets

Applications

Home IFs
Beans

Client Apps

EJB Server/Containers

Customers (EB) Products (EB)Rentals (EB)

Rent Processing (SB) Search Engine (SB)

Messages (EB)

Message Server

EJB Home IFs

Search UI

Tree Viewer Messaging UI

Figure 6. EJB model architecture and some of the EJBs implementing the video system.

The EJB model doesn't defer all aspect-related
services to containers, resulting in some components or
being developed using custom models e.g. for
collaborative work, component configuration and
synchronised processing, meaning 3rd party EJBs using
different solutions may not be readily combined.

5.3. Perceval

We have briefly investigated using and extending
Perceval to encode aspect-oriented component designs.
Perceval is an XML-based encoding of aspect-oriented
designs which can be generated by CASE tools and which
can be translated by other tools to generate various
aspect-oriented implementations [3]. Figure 7 shows parts
of our extended Perceval specifications of two video
system components and three aspect details. These can be
translated into various (partial) implementations.

<perceval2:component id="VideoStoreClient">
 <perceval2:functionDefn id="constructUI">
 …
 <perceval2:functionDefn id="addMenuItem">
 …
 <perceval2:functionDefn id="rentVideo">
 …
</perceval2:component>

<perceval2:component id="TCPSocketClient">
 <perceval2:functionDefn id="write">
 …
 <perceval2:functionDefn id="read">
 …
</perceval2:component>

<perceval2:aspect id="extensible video menu"
 kind="user interface"
 detail="extensible affordance"
 provided="true">
 <perceval2:class>
 <perceval2:classref ulink="VideoStoreClient">
 </perceval2:class>
 <perceval2:method>
 <perceval2:and>
 <perceval2:methodref ulink="constructUI">
 <perceval2:methodref ulink="addMenuItem">
 </perceval2:and>
 </perceval2:method>
 <perceval2:property name="kind" value="pulldown menu">
 </perceval2:property>
 <perceval2:property name="allowable">
 <perceval2:or>
 <perceval2:value>insert item</perceval2:value>
 <perceval2:value>append item</perceval2:value>
 </pereval2:or>
 </perceval2:property>
 <perceval2:action>
 …
</perceval2:aspect>

<perceval2:aspect id="video data transfer"
 kind="distribution"
 detail="data transfer"
 required="true">
 <perceval2:class>
 <perceval2:classref ulink="VideoStoreClient">
 </perceval2:class>
 <perceval2:method>
 <perceval2:methodref ulink="rentVideo">
 </perceval2:method>
 <perceval2:property name="kind" value="synchronous">
 </perceval2:property>
 <perceval2:property name="protocol" value="custom">
 </perceval2:property>
 <perceval2:action>
 …
</perceval2:aspect>

<perceval2:aspect id="socket transfer"
 kind="distribution"
 detail="data transfer"
 provided="true">
 <perceval2:class>
 <perceval2:classref ulink="TCPSocketClient">
 </perceval2:class>
 <perceval2:method>
 <perceval2:and>
 <perceval2:methodref ulink="write">
 <perceval2:methodref ulink="read">
 </perceval2:and>
 </perceval2:method>
 <perceval2:property name="kind">
 <perceval2:or>
 <perceval2:value>synchronous</perceval2:value>
 <perceval2:value>asynchronous </perceval2:value>
 </pereval2:or>
 </perceval2:property>
 <perceval2:action>
 …
</perceval2:aspect>

Figure 7. Extended Perceval descriptions of some video system components and aspects.

Perceval offers the potential advantages of
describing aspect-oriented component designs in a
"common exchange format", allowing developers to
generate this format from a wide variety of tools (or
simply by hand), and generating a variety of component
implementations direct from the specification. Perceval
XML encodings could form the basis of run-time
component introspection and interaction mechanisms, a
little like the JViews ones. However, a set of run-time
functions in the target Perceval implementation
language(s) would be required to use these encodings.
Unfortunately Perceval doesn't directly encode the
concept of a component, nor provide any explicit UML
aspect-based extensions.

6. Tool Support

We originally extended a CASE tool, JComposer,

designed to generate JViews component implementations
with aspect description facilities [8], adding code
generation support to generate aspect codifications
specifically for JViews components. More recently we
have extended JComposer to provide UML-compliant
representations of component-based designs, including
adding UML meta-model extensions to represent aspects.
OCL expressions are used to specify aspect detail
properties and basic inter-aspect detail constraints. We
modified JComposer to generate XML-encoded extended
perceval documents, describing aspect-oriented
component designs. Code generators take the Perceval
encodings and respectively generate parts of JViews or
EJB component implementations. Developers use
programming environments like Jbuilder or Visual Age to
complete these implementations and deploy components.
Figure 8 shows the basic support for aspect-oriented
component design and implementation provided by our
toolset.

We have developed a component repository for
JViews components, which queries them for their aspect
encodings for indexing. We are extending this to provide
support for storing and retrieving EJB components,

encoding aspects in EJB deployment descriptors for run-
time access. Some run-time support for deploying
components includes user-browsable aspect descriptions
and simple validation functions. These dynamically check
all required component aspect details have matching
provided details in related components. Some basic aspect
detail property constraint checking is also supported.

We implemented our extended JComposer using
JViews itself. JComposer component repository data is
extracted to generate the Perceval XML encoding. XSLT
(XML Stylesheet Language Transformations) scripts are
used to implement extensible code generation facilities.

7. Discussion

A great deal of work has been done in recent times
to address the problem of separation of concerns in
software development [12]. Examples of such work
include viewpoint-based requirements, designs and tools
[7, 8], subject-oriented programming [11], hyper-slices
[24] and aspect-oriented programming systems [15, 16,
14]

Viewpoints have been used for various purposes,
including requirements engineering, specification and
design, user interface construction and in various software
tools [7, 12]. Aspects are a specialisation of the general
notion of a viewpoint i.e. a certain perspective on a
software system.

Viewpoints of one form or another are used in all
development methods, including component development
methods like Catalysis™ and SelectPerspective™ [1, 5].
Unfortunately the viewpoints used by almost all current
development methods are oriented towards functional
decomposition, not addressing the cross-cutting concerns
inherent in most system designs and implementations
[24]. Current component design methods and
implementation technologies adopt this function
decomposition-centric approach, resulting in tangling of
systemic, cross-cutting concerns in both component
designs and implementations [9].

requ

requ

requ

requ

Extended Jcomposer
CASE Tool

Perceval XML
encoding of AOCE

design

generate
<perceval:comp>
 <perceval:aspect>
 …

</perceval:comp>

JViews tools:
generate

JViews classes

EJB classes

Deployable
Components

Deployable
Components

Further edit,
compile

EJB tools:
generate Component

Repository

Aspect info…

Aspect
info…

Figure 8. An outline of our prototype tool support for AOCE, UML and EJB implementation.

Hyper-slices and subject-oriented programming are
similar to aspect-oriented design and programming in that
they attempt to provide developers with alternative views
of cross-cutting concerns [11, 24]. In fact, our aspect-
oriented component engineering views are specialised
kinds of hyper-slices deployed to assist component
development. Some component development methods
have introduced specialised views of component
characteristics, notably security and distribution issues
[10, 1].

Little attention has so far been paid to applying
aspects to component-based systems development.
Adaptive plug-and-play components utilise components
that implement something similar to the concept of an
aspect, being mixed to realise the separation of various
concerns from component implementations [18]. While
component design methods provide very limited ability to
identify overlapping concerns between components the
isolation of systemic functions e.g. communications,
database access and security, into reusable components
(or component containers, as in EJBs) is common in
component technologies [2, 21, 25]. This partially
addresses the problems of components encapsulating
these systemic services, and enables isolation of these
services and access via well-defined, component-based
interfaces. However, not all component aspects can be
suitably abstracted into individual components, due to
overlaps and the eventual over-decomposition of systems
(every component function being very small and every
function having its own component, producing massive
numbers of tiny components).

We have found aspect-oriented component
engineering offers the ability to identify, codify and
reason about aspects during specification and design of
software components. This greatly increases the
developer's ability to document and reason about the
cross-cutting concerns impacting on components, but also
allows reused component's overlapping concerns to be
quickly identified and analysed. AOCE designs can be
realised in various ways: using dedicated aspect-extended
component framework (e.g. our JViews), using a standard
component technology (e.g. EJBs or COM+), using an
aspect-oriented programming language like Perceval or
AspectJ, or even without using component technologies at
all. The advantage of using JViews is its codification of
aspects in component implementations and the ability of
components to discover these at run-time and interact
with other components via standardised, highly de-
coupled aspect object functions, similar to the composite
adaptors concept [19]. The disadvantage is the need to use
a non-standard component architecture that is difficult to
combine with 3rd party components. The advantage of
implementation with EJBs is the production of more
generally sharable components, at a cost of losing out on
JViews-style run-time access to component aspects and

highly de-coupled component interaction support. Using
languages like AspectJ, Perceval (to generate AspectJ or
other component implementations) or a standard
programming language, means an aspect-oriented design
is not actually realised by software component
technology. In some situations this is acceptable, but
dynamic system configuration and end user enhancement
are usually not possible. Aspect-oriented designs cost
developers more effort in terms of identifying,
documenting and using component aspects. However, we
have found this effort is well justified on the component
development projects we have undertaken as the extra
richness in the designs and ability to use aspects to guide
more effective component implementation results in
much better component implementations.

Various future research directions exist in extending
our AOCE-based extensions to the UML. This includes
further aspect-based constraint representation, other
notational models for aspects, adding aspects to dynamic
design diagrams, and further process enhancement. We
are interested in incorporating aspect information in EJB
and COM+-based component implementations, in ways
that integrate seamlessly with their standard introspection
and interface management mechanisms, to provide
JViews-style run-time configuration and interaction
mechanisms using aspect ojects. Many possibilities exist
for improved tool support. These include further
enhancements to our JComposer UML diagramming,
improved constraint checking using aspect property
values, the extension of our use of aspect-enhanced data
exchange formats between tools, improved code
generation from aspect-based designs, and run-time usage
of aspects in deployment and component configuration
tools.

8. Summary

We have added some basic extensions to the Unified

Modelling Language to incorporate aspects, aspect details
and aspect detail properties for software components.
These allow designers to codify systemic, cross-cutting
concerns between components using these additional
design viewpoints. Inter-component provision and
requiring of services and service non-functional
compatibility can be specified and checked using these
aspect encodings. We have explored implementing
aspect-oriented UML component designs using our
JViews component framework, Enterprise Java Beans and
the Perceval XML aspect design encoding. JViews
provides framework support for component aspects,
including run-time support for accessing and using
aspects to support component configuration and
interaction. EJBs provide a more standard implementation
for aspect-oriented component designs. Aspects assist in

identifying EJB component divisions of responsibility and
interface definition which help improve component reuse
and run-time configuration support. Perceval provides an
intermediate, tool data exchange format for aspect-
oriented designs. We have built prototype code generation
tools using Perceval component design encodings that
produce JViews or EJB component interface and class
skeletons. These can be further extended using 3rd party
component implementation tools. We are investigating
further aspect-based extensions to the UML and encoding
mechanisms for aspects in EJB implementations.

Acknowledgements

Support for this research from the University of

Auckland Research Committee and the Public Good
Science fund are gratefully acknowledged.

References

1. Allen, P. and Frost, S. Component-Based Development for
Enterprise Systems: Apply the Select Perspective™, SIGS
Books/Cambridge University Press, 1998.

2. Allen, P. Realising E-Business with Components, Addison-
Wesley, October 2000.

3. Ariniegas, F.A. Introduction to Perceval: Aspect-oriented
Design using XML Schema and Groves, In Proceedings of
the 5th International Conference on Parallel and
Distributed Processing Techniques and Applications:
Special Session on Aspect-oriented Programming, Las
Vagas, June 26-29 2000, CSREA Press.

4. Bichler, M., Segev, A., Zhao, J.L. Component-based E-
Commerce: Assessment of Current Practices and Future
Directions, SIGMOD Record Vol. 27, No. 4, 1998, 7-14.

5. D’Souza, D.F. and Wills, A., Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison-
Wesley, 1998.

6. Fingar, P. Component-Based Frameworks for E-
Commerce, Communications of the ACM, October 2000.

7. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and
Nuseibeh, B., “Inconsistency Handling in Multiperspective
Specifications,” IEEE Transactions on Ssoftware
Engineering, vol. 2, no. 8, 569-578, August 1994.

8. Grundy, J.C., Mugridge, W.B. and Hosking, J.G.
Constructing component-based software engineering
environments: issues and experiences, Journal of
Information and Software Technology, Vol. 42, No. 2,
January 2000, pp. 117-128..

9. Grundy, J.C. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000.

10. Han, J. Zheng, Y. Security characterisation and integrity
assurance for component-based software. In Proceedings of
the 2000 International Conference on Software Methods
and Tools, IEEE CS Press, pp.61-6. Los Alamitos, CA,
USA.

11. Harrison, W. and Ossher, H. Subject-oriented
programming (a critique of pure objects). In Proceedings
of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA),
September 1993.

12. Harrison, W., Ossher, H. and Tarr, P. Software Engineering
Tools and Environments: A Roadmap, The Future of
Software Engineering, Finkelstein, A. Ed., ACM Press,
2000.

13. Herzum, P. and Sims, O. Business Component Factory : A
Comprehensive Overview of Component-Based
Development for the Enterprise, Wiley, December 1999.

14. Ho, W.M., Pennaneach, F., Jezequel, J.M., and Plouzeau,
N. Aspect-Oriented Design with the UML, In Proceedings
of the ICSE2000 Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering, Limerick,
Ireland, June 6 2000.

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.M., Irwin, J. Aspect-oriented
Programming, In Proceedings of the 1997 European
Conference on Object-Oriented Programming, Finland,
June 1997, Springer-Verlag, LNCS 124.

16. Kiczales, G. and Lopes, C. Recent developments in
AspectJ, In Proceedings of the ECOOP’98 Workshop on
Aspect-oriented Programming, Brussels, Belgium, July
1998.

17. Lee, S.D., Yang, Y.J., Cho, F.S., Kim, S.D., and Rhew,
S.Y., COMO: a UML-based component development
methodology, In Proceedings of the Sixth Asia-Pacific
Software Engineering Conference, Takamatsu, Japan, 7-10
Dec. 1999, IEEE CS Press, pp. 54-61.

18. Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play
Components for Evolutionary Software Development, In
Proceedings of OOPSLA’98, Vancouver, WA, October
1998, ACM Press, pp. 97-116.

19. Mezini, M., Seiter, L. and Lieberherr, K. Component
Integration with Pluggable Composite Adapters. Software
Architectures and Component Technology: The State of the
Art in Research and Practice, Mehmet Aksit, editor,
Kluwer Academic Publishers, 2000.

20. Mahmoud, Q. Securing Component-Based E-Commerce
Applications, Component Advisor Magazine, March 2000.

21. Monson-Haefel, R., Enterprise JavaBeans, O'Reilly, 1999.
22. Sessions, R., COM and DCOM: Microsoft's vision for

distributed objects, Wiley, 1998.
23. Szyperski, C.A., Component Software: Beyond OO

Programming, Addison-Wesley, 1997.
24. Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M. N

Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the International Conference
on Software Engineering (ICSE 21), May 1999.

25. Vogal, A. CORBA and Enterprise Java Beans-based
Electronic Commerce, In International Workshop on
Component-based Electronic Commerce, Fisher Center for
Management & Information Technology, UC Berkeley,
25th July, 1998.

26. Zhao, J.L. and Misic, V.B. Toward Component-Based
Electronic Commerce: A Workflow Perspective, In
International Workshop on Component-based Electronic
Commerce, Fisher Center for Management & Information
Technology, UC Berkeley, 25th July, 1998.

