
End-User Oriented Critic Specification for Domain-Specific
Visual Language Tools

Norhayati Mohd Ali 1, John Hosking1, John Grundy2, Jun Huh1

1The University of Auckland
Private Bag 92019

Auckland, New Zealand

2Swinburne University of Technology
PO Box 218, Hawthorn Vic 3122

Melbourne, Australia
nmoh044@aucklanduni.ac.nz, j.hosking@auckland.ac.nz, jgrundy@swin.edu.au, designersheep@gmail.com

ABSTRACT
This paper presents a new approach to specifying critics for
domain-specific visual language tools using a visual and template-
based approach. In this paper we describe our approach for
specifying critics for domain-specific visual language tools. This
allows target end-user tool developers to design and implement
critics efficiently in a natural manner. We describe a survey that
we conducted to evaluate our new approach and the Cognitive
Dimensions approach that was applied in the survey questionnaire
design. Survey results are briefly discussed along with the issues
raised by some respondents to improve our approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
evolutionary prototyping.

General Terms
Design

Keywords
critic, critic authoring template, critic specification, critiquing.

1. INTRODUCTION
Much research has been devoted to critic tools (or critiquing
systems). ArgoUML [11] and Java Critiquer [10] and many others
are examples of computer-based critics. These critic tools produce
critiques (or critic feedbacks) that are specific to their problem
domains. The use and context of critics varies from one domain to
another. To date, critics have been applied in a wide variety of
domains including education, medicine, design, programming and
software engineering [3, 10, 11]. In general, critic tools provide
knowledge support to users who lack specific pieces of
knowledge about their problem or solution domains. Furthermore,
they detect potential problems; give advice and alternative
solutions; and possibly provide automated or semi-automated
design improvements for users.

Inspired by the existing critic tools work, we made an attempt to
apply similar ideas to our Marama meta-modeling tool. Marama is
implemented as a set of Eclipse-plugins and includes meta-
specification tools as well as modeling tools [5]. Most existing
critic tools are not developed within the environment of a meta-
modeling tool. Our meta-tools are used to generate complex
visual modeling tools, and these modeling tools could benefit
from the addition of various critics. Thus, we wanted to extend
our Marama meta-tools by embedding a critic design and
generation component. The main purpose of our work is to assist
end-user tool developers to specify and generate critics efficiently
and effectively.

2. BACKGROUND AND MOTIVATION
A critic development must involve, at some level, the authoring of
critic rules. As [10, 13] claim, critic rules are normally written in
advance by system designers to develop a critic system and it is
hard for end users to modify existing rules or add new critic rules
after a critic system is deployed. However, as [6, 13] argue,
critiquing may need to be adjusted depending on various
situations. Furthermore, [4] emphasizes that users should not be
required to have comprehensive programming knowledge in order
to perform the modification of critic rules. For these reasons it is
important to allow users to understand critic rules and be able to
modify and expand the rule set by authoring new rules to
incorporate in critic systems. In general, the capability for rule
authoring is to enable end-user designers to construct, tailor and
store their own critic rules, thus allows end-user tool
developers/customizers to contribute to the system’s feedback
process [13].

The need to specify critics in a simple way using an easy to use,
high-level language is the motivation for our research. We see the
opportunity to apply domain specific visual language (DSVL)
approaches to reduce end-user barriers. DSVLs are graphical
notations specially devised for specific needs and knowledge [12].
These visual languages enable anyone who is a domain expert to
use the application development tool for the domain [12].

3. VISUAL AND TEMPLATE-BASED
APPROACH
We propose a visual and template-based approach to support end-
user developers in critic specification tasks. We have developed
and applied this in the context of our Marama meta-tool, which
provides a range of other facilities to assist end-users to develop
modelling tools, but the concept is applicable to other types of
diagrammatic tools. In this section, we describe three main parts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

297

to our critic development approach: 1) a visual critic definer, 2) a
template-based approach and 3) critic execution-examples.
The main underlying idea in our approach is to use information
expressed in a meta-diagram (in our case the Marama meta-model
diagram) as input for critics to be realized in a diagram (in our
case a Marama diagram in the realized modeling tool specified by
the meta-model). It is important to mention that our approach is
only minimally dependent on the notation used in the meta-
diagram. The Marama meta-model diagram is expressed using an
Extended Entity Relationship (EER) notation which specifies
entities and relationships, together with their attributes [8]. If a
richer notation is used, more information can be extracted from
the meta-model diagram and, thus, be used for specifying critics
and checking user diagrams.

Due to the argument made by Fischer et al. that critics should be
considered as embedded systems rather than as stand-alone
components [3], we have created a critic definer to support the
critic specification tasks. Once a tool is equipped with sufficient
information, the end-user tool developer then can specify the
required critics for that tool via the critic definer. Figure 1 (top)
shows an example of a meta-model for a simplified enterprise
modeling language tool from a business process domain and the
critic definer editor (bottom) for specifying the tool’s critics.

The visual critic definer editor has three main elements:
CriticShape, CriticFeedbackShape, and Operator, and three
connectors: CriticFeedbackConn, CriticDependencyLink, and
OperatorConn. The CriticShape (rounded square shape) allows a
target end-user developer (or tool developer) to specify critic(s),
whereas the CriticFeedbackShape (oval shape) is used to specify
the feedback for each defined critic. The Operator (AND, OR,
and XOR) supports the creation of composite critics. The

relationship between critic and feedback is supported by the
CriticFeedbackConn. In a case where one critic is dependent on
another critic, a CriticDependencyLink is used for visual
representation. The OperatorConn links critics with the logical
operator (AND, OR, and XOR) to form a composite critic. This
allows complex critics to be readily built from simpler parts.
We provide the end-user developers with a critic authoring
template to specify their own critic(s). We were inspired by the
business rule (BR) templates approach [7], adapting this concept
for use in our critic authoring templates. We chose this approach
so as to enable end-user developers with limited programming
capability to be able to specify critics for their domain-specific
visual language (DSVL) tools. Our reasoning was that as BR had
been proved useful in an end user oriented business rule
specification domain [7], it would be useful for our own domain
which had similar levels of complexity.

Our critic authoring templates are applied to a target DSVL tool’s
meta-model to review its target model instances. The critic
specification is defined by selecting a CriticShape in the visual
critic editor. The CriticShape is associated with a form-based
interface, designed to ease the task of specifying critics. The
target end-user developers specify their critics by selecting from
available templates provided in the interface and completing the
form to enter required information. The critic authoring templates
support three types of template as shown in Table 1. Attribute
constraint templates are used to specify essential properties
around uniqueness, optionality (null), and value check of an
entity’s attributes [7]. The relationship constraint templates assert
relationship type, cardinality and role constraints of each entity
participating in a particular relationship [7]. Action assertion
templates specify an action to be activated on the occurrence of a
certain event or on the satisfaction of certain conditions [7].

Figure 1: Meta-model of SimplifiedMaramaEML tool defined in the meta-model editor (top) and critic definer editor (bottom).

298

Once the critic(s) has been defined in the visual critic definer
editor, the next task is to specify feedback for the defined
critic(s). This is done via the CriticFeedbackShape which is also
associated with a form-based interface, i.e. Critic Feedback View.
The critic feedback view has the following properties: (i) critique
strategies that determine the execution mode of the critic. This
can be either active or passive. An active critic will monitor
continuously a user’s tasks and warns the user as soon as a critic
is violated and then provides feedback (a critique). A passive
critic only works when a user asks explicitly to check for a critic
violation. (ii) modalities of critiques involve the presentation of
the critique. This can be textual, graphical or a combination of
both; (iii) an explanation represents a justification of a critique;
(iv) a suggestion indicates an action to resolve the critic violation;
and (v) a critique message specifies a textual message that is
displayed for each critic that has been defined.
Figure 1 (bottom) shows critic examples, specified against a
simplified version of MaramaEML [5], a business process
specification tool. The topmost critic is a complex critic, where
two critic conditions, in this case two name uniqueness
constraints, have been connected by OR to share a common
feedback element. The bottom-most critic is an example of an
action assertion template in use. Here the tool developer wants the
service entity to have no more than four operations. A critic can
be specified for this case by defining the relevant properties for
event, condition and action in an action assertion template. Here
the event is the creation of an association link, the condition is the
cardinality is greater than 4 and the action is to delete the new
association. When the user runs the tool, a critique will be
displayed if the event occurs to warn the user, followed by
execution of the action. In a situation where one critic might be
dependent on another, this can be represented visually with a
CriticDependencyLink as shown in Figure 1.

Table 1: Constraint and Action Assertion Templates [7]
Types Templates

<entity> must have | may have a [unique]
<attributeTerm>

Attribute

Constraint
<attributeTerm1>must be | may be
<relationalOperator> <value> |
<attributeTerm2>
[<cardinality>]<entity1> is a/an <role> of
[<cardinality>]<entity2>

[<cardinality>]<entity1> is associated with
[<cardinality>]<entity2>

<entity1> must have | may have
[<cardinality>]<entity2>

Relationship

Constraint

<entity1> is a/an <entity2>

Action
Assertion

When <event> [if <condition>] then <action>

Once a critic and feedback are specified and defined, these two
elements are linked to indicate that a critic comes with a fix
action. Although [4] stated a critic does not necessarily solve a
user’s problem, in our approach we expect the end-user
developers to indicate a fix action, where possible, for each critic
defined for their DSVL tool. All critics and feedbacks that have
been defined are saved in an XML format in the meta-tool’s
repository. Critics and feedbacks are instantiated when the tool is

started by a user. Figure 2 shows an example of specifying a critic
(top) and its execution after triggering (bottom).

We wanted end-user tool developers to be able to specify their
own critics. In a case where the available template does not
support the desired critic specification, we allow the developer to
construct a new critic template via a Critic Template editor. The
end-user developer initially needs to construct the new critic
statement. Based on the critic statement, the developer selects the
necessary properties to form a new critic template that represents
the new critic statement that has been defined. Our critic
authoring templates are not as highly expressive as natural
language rule statements, but provide sufficient expressiveness to
allow end-user developers to understand, modify and possibly
author critic rule expressions without expert tool developers.

Figure 2: Action assertion critic specification (top) and

execution (bottom) after the trigger event occurs
The critic rule templates also leverage the rich meta-model
diagram facilities, allowing experienced end-user developers to
author moderately complex domain specific templates. After
specification, new critic templates are listed in the available
templates and can be used to specify critics. Thus, the available
templates list can be expanded according to the new critic
templates created in the critic template editor.
End-user developers can construct single critics based on one
preference. They can also construct complex critics which extend
the expressive power, while still retaining the relative simplicity
of the BR template approach. A complex critic is a critic that has

299

multiple features that need to be measured. This can be done
using the action assertion templates and logical operators AND,
OR and XOR. This allows users to specify complex critics by
building them from parts and also facilitates reuse of simple critic
parts.

4. EVALUATION
To evaluate our approach we conducted a user evaluation with ten
volunteer researchers and students who had basic background
knowledge of the Marama meta-tools and who were interested in
modeling and the development of modeling tools to support their
work. We adapted the questionnaire designed by [1] based on the
Cognitive Dimensions of Notations framework [2]. This provided
questions targeted at each of the cognitive dimensions as we were
interested in the tradeoffs amongst those dimensions that
respondents observed.
The Marama Critic Definer provides good visibility and viscosity
for the target end users. Nine out of total 10 respondents answered
that it is easy to see various parts of the tool and make changes.
The only respondent who doubted the easiness to see various
parts of the tool commented that due to a lack understanding of
meta-tool concept and as a novice user it was hard to see the
function of various parts of the tool. Diffuseness refers to the
verbosity of language, i.e. the number of symbols required to
express the meaning. Eight respondents answered that the
notation is succinct and not long-winded. The Marama Critic
Definer suffers from a hard mental operations (degree of demand
on cognitive resources) problem as four respondents claimed that
they have to concentrate and think carefully to use the critic
templates for specifying a critic. This may be because users were
unfamiliar with the critic authoring templates. Three respondents
disagreed and three were undecided as to whether using the tool
required hard mental effort. The Marama Critic Definer is likely
to be less error prone as five respondents claimed that the notation
is very straightforward and supported by a form-based interfaces
which is familiar to most users. The respondents that answered it
is easy to make mistakes raised the issue that unfamiliarity with
the templates can cause users to make mistakes in specifying
critics. The Marama Critic Definer offers good closeness of
mapping. All of the respondents agreed that the Marama Critic
definer view provides a notation that closely related to the
domain. Role Expressiveness for the Marama Critic Definer is
obvious where seven respondents answered it is easy to tell what
each part is for when reading the notation. Eight respondents said
that the dependencies are visible and two respondents are
undecided. Hidden dependencies are primarily between the visual
critic definer view and the form based template views. Moody
argues that this type of hierarchical dependency is of positive
benefit in his Principal of Complexity Management [9]. The critic
definer supports progressive evaluation well. Nine respondents
answered it is easy to stop and check work progress. Critics and
feedbacks properties can easily be edited and any new changes
will take effect during the model execution of the tool. All of the
respondents agreed that there are no premature commitments in
the Marama Critic Definer view. The user can freely specify a
critic using any critic templates. However, the user needs to
define a critic first before a critic feedback can be specified and
linked with the defined critic. The user can add a critic as well as
the critic feedback for the Marama tool incrementally as he/she
encounter new critics.

Issues that raised by some respondents to improve the tool are: i)
consider using more artificial intelligence (AI) techniques; ii)
transform the critic templates into visual entities; iii) give a more
detailed explanation of templates; iv) consider coloring to
differentiate different types of critic; v) add a more explicit visual
representation of the relation between critics and the tool’s meta-
model elements; vi) consider highlighting the design item that
triggered a critic; vii) add feedback information into a visual critic
element with connection and layout automatically generated.

5. REFERENCES
[1] Blackwell, A.F. and Green, T.R.G. 2000. A Cognitive

Dimensions questionnaire optimised for users. In
Proceedings of the 12th workshop of the Psychology of
Programming Interest Group, Cozenza Italy, April 2000.

[2] Blackwell, A.F et al. 2001. Cognitive Dimensions of
notations: design tools for cognitive technology. Cognitive
Technology 2001 (LNAI 2117). Springer-Verlag, pp. 325-
341.

[3] Fischer, G., Lemke, A.C. and Mastaglio,T. 1991. Critics: an
emerging apporach to knowledge-based human computer
interaction. International Journal of Man-Machine Studies,
1991(35), pp. 695-721.

[4] Fischer, G. et al. 1999. The role of critiquing in cooperative
problem solving. ACM Transactions of Information Systems,
Vol.9, No.3, April 1999, pp. 123-151.

[5] Grundy, J.C., Hosking J.G., Huh, J. and Li, N. 2008.
Marama: an Eclipse meta-toolset for generating multi-view
environments. Formal demonstration paper, ICSE 2008,
Liepzig, Germany, May 2008, ACM Press.

[6] Irandoust, H. 2006. Critiquing systems for decision support.
DRDC Valcartier TR 2003-321.
http://pubs.drdc.gc.ca/PDFS/unc44/p524782.pdf.

[7] Loucopoulus, P. and Wan Kadir, W.M.N. BROOD: Business
rules-driven object oriented design. Journal of Database
Management, 2008, 19(1), pp. 41-73.

[8] Markowitz, V. Extended Entity Relationship Diagram,
http://sdm.lbl.gov/OPM/DM_TOOLS/OPM/ER/ER.html.

[9] Moody, D.L. The “Physics” of Notations: Towards a
scientific basis for construction visual notations in software
engineering. IEEE TSE 2009.

[10] Qiu, L. and Riesbeck, C.K. 2008. An incremental model for
developing educational critiquing systems: experiences with
the Java Critiquer. Journal of Interactive Learning Research,
2008(19), pp.119-145.

[11] Robbins, J.E. and Redmiles, D.F. Cognitive support, UML
adherence, and XMI interchange in Argo/UML. Journal of
Information and Software Technology, January 2000, vol.
42, issue 2, 25, pp. 79-89.

[12] Sprinkle, J. and Karsai, G. 2004. A domain-specific visual
language for domain model evolution. Journal of Visual
Languages and Computing, June-August 2004, vol.15, issues
3-4, pp. 291-307.

[13] Oh,Y., Gross, M.D. and Do, E.Y.-L. 2008. Computer-aided
critiquing systems, lessons learned and new research
directions. In Proceedings of the 13th International
Conference on CAADRIA, Chiang Mai (Thailand) 9-12
April 2008, pp. 161-167.

300

