VikiBuilder: End-user Specification
and Generation of Visual Wikis

Christian Hirsch, John Hosking
Department of Computer Science
The University of Auckland
Auckland, New Zealand

chir008@aucklanduni.ac.nz,
j-hosking@auckland.ac.nz

ABSTRACT

With the need to make sense out of large and constantly growing
information spaces, tools to support information management are
becoming increasingly valuable. In prior work we proposed the
“Visual Wiki” concept to describe and implement web-based
information management applications. By focusing on the
integration of two promising approaches, visualizations and
collaboration tools, our Visual Wiki work explored synergies and
demonstrated the value of the concept. Building on this, we
introduce “VikiBuilder”, a Visual Wiki meta-tool, which provides
end-user supported modeling and automatic generation of Visual
Wiki instances. We describe the design and implementation of the
VikiBuilder including its architecture, a domain specific visual
language for modeling Visual Wikis, and automatic generation of
those. To demonstrate the utility of the tool, we have used it to
construct a variety of different Visual Wikis. We describe the
construction of Visual Wikis and discuss the strengths and
weaknesses of our meta-tool approach.

Categories and Subject Descriptors

D.2 [Software Architectures]: Software Architectures; H.3
[Information Storage and Retrieval]: Information Search and
Retrieval; H.5 [Information Interfaces and Presentation]:
Hypertext/Hypermedia.

General Terms
Design, Documentation, Human Factors.

Keywords
Visual Wiki, knowledge management, visualization,
generation, domain specific visual language, modeling.

code

1. INTRODUCTION

Wikis have become increasingly popular for collaboratively
creating, managing and sharing knowledge. This includes both for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

13

John Grundy
Faculty of Information & Communication Technologies
Swinburne University of Technology
Melbourne, Australia

jgrundy@swin.edu.au

large scale, general purpose knowledge repositories, such as
Wikipedia, but also increasingly for corporate usage [15]. Wikis
have significant advantages in their open collaborative approach
to (often tacit) knowledge capture and manipulation (wiki
“gardening”). However, the popularity of wikis does lead to a
problem with scale: as the size of wikis increase, users
increasingly find it difficult to locate and assimilate the
knowledge they need [3]. As a result, while establishing a “wiki
culture” within an organization is readily achievable, getting
people to sustain their usage of a wiki can be problematic due to
these search and navigation issues. To mitigate these issues, we
have been exploring the concept of a Visual Wiki [13]. This
combines visualizations, providing a high level overview, and
wiki pages, providing more detailed information juxtaposed in a
focus-plus-context oriented format. Having successfully manually
developed and evaluated a variety of applications based on our
Visual Wiki conceptual model, we wanted to make the
development of Visual Wiki style applications easier, ideally by
end-users themselves. Accordingly we have designed and
implemented VikiBuilder, a meta-tool supporting the
specification and realization of Visual Wiki applications. We
begin by motivating our research, including an introduction to our
Visual Wiki conceptual model. We then provide a high level
description of our VikiBuilder approach and the meta-tool
realizing it. Following a more detailed description of the
application’s architecture and implementation, we prove its utility
by describing its use to implement a variety of Visual Wikis. This
leads into discussion of our experiences using and evaluating
VikiBuilder and we outline some areas for future research.

2. MOTIVATION

A Visual Wiki [13] is a web-application integrating a textual and
a visual representation of the same underlying body of
knowledge. Both or either of the representations may be editable
in a shared, traditional wiki style. The purpose of a Visual Wiki is
to increase the effectiveness of wikis as knowledge management
tools, via visual enhancements. As shown in Figure 1 our Visual
Wiki concept consists of four components: the problem domain,
the textual and visual representation, and a mapping in between.

Visualization Mapping Text
Domain

Figure 1. The four components of the Visual Wiki.

= Thinkbase

«

&+ ThinkFree
€ C | | % hitp:

thinkfree.auckland.acnz,

NEW ZEALAND

Cs9

&
Studant Adriitesion

Description: Peoplesoft Stud
2n ambiguous term - see htffi;

Applcations

w
wows
= UoA Application

C i ¢ htipy/thinkbase.csauckland.acnz;

Apply enroliment
s EnoinentProcass

Mapper

roductr

Description
Filvith comen]
Resources

Fil

—

Ovnership

{5t cotore]

Fhrean

&
St M Cutchean

2 me sy o oo
T S >
SI ud"nt Information lanagement. "

Aoplyenroliment

Recelva applcaton
Pasecoiion”

OraceDats owned by Org Unit: g 5{|!%
st e provided by Vendor: & o
- Margery Sinkin
= Application Type: =¥
=]
= p
St uses #c H
po.t3 Usa)
s
Puckage
) =)
P, Campus Commrity s Ty

« C # % hitpy/thinkpedia.cs.auckland.acnz, > <8232 O- &~
Orace Corporsion “’“" Database: | — THINKPEDIA P Newfeatures & Login/ create account
ot e publish Data Viiuaity Explore Wikipedia i H
Exchange: G b
dhao aoout| [snare | [Q][@] [¢][p] [[@©] 2) Atticle Discussion Read Edit ¥ |Search Q|4
5
“
N . .
- University of Auckland
(b) 'WIKIPEDIA ty -

W
e Universty of Auckiand

Teotidogy
Nt Beature

H
15ee You (Theme from_Avata)

Seral
Film

Work of Fiction
Awards
Adapted Work

eeeeeeeee

) AVATAR
. A moon of a gas giantn the Alpha Centauri star syste!
15t W cdeson by expansion of the mining colony threatens the contint

of alocaltib... More

Al Comumdlbsin by - W Read article at Wikipedia
Intal release date: Dec 16,2009
ey Directed by: James Cameron

Rating

Runtime: 2 k 42 min

Coorinaes: @) 3510
WIKIPEDIA - om ikpeai, e ee encrepada °

Foademia. Education
Uni

Not to be confused with Auckland University of Technology.
o Main page N
oy of Teo The University of

o Contents Auckland (Maor: Te The University of Auckland
22 Featured content Whare Wananga o Tamaki Te Whare Wananga o Tama akaurau
CIEnEED Makaurau) is New Zealand's

soflTa
’ Random arcle largest university and the
topranked New Zealand
university in the THES - QS
World University Rankings
Established in 1883 as a
constituent college of the
University of New Zealand,

~ Interaction
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Donate to Wikipedia

7Y Help the university is now made
up of eight faculties over six
» Tooloox
campuses, and has more
» Prntiexport than 39,000 students at
April 2006171 Over 1300
< Hotto Latin: Ingenio et labore:
e s doctoral candidates were
Deuisch vl at the Unnersy of | MO0 By natura abiity and hard
E=E] Auckland in 2004
Established 1863
It offers a wide range of . o
programmes including Arts, | *°° e
Business, Education, Chancellor Roger France

nmaw

Music, Teacher Training Vice- Stuart McCutcheon

200 Soecial Education Chancellor

MaepoHck

Figure 2. Visual wiki applications: (a) Thinkbase (b) Thinkpedia (c) ProcessMapper (d) ThinkFree.

The domain component describes the purpose and content of the
Visual Wiki. For example, it could be meant for tasks such as
search and exploration, or creation of information. The content
specifies the problem domain information the application
supports. The text and visualization components are similar and
provide textual and visual interfaces to surface and interact with
the domain content. The mapping component determines how
the two representations are coordinated. This includes both the
navigation behavior and consistency management policies. A
more thorough discussion of our Visual Wiki concept can be
found in [13].

Figure 2 shows several of our previously developed Visual Wiki
applications. Thinkbase' (a) [11-13] is a visual navigation tool
for Freebase®, an open semantic wiki. The frame at the left
shows a force-directed interactive graph of the relationships
between the currently selected Freebase page (on the movie
Avatar) and other semantic entities (nodes). Different icons
represent different types of entities, aggregation nodes (in grey)
collect entities related in a similar semantic way. Nodes can be
expanded or collapsed. The frame on the right displays the
Freebase wiki page for the currently selected topic. Users can
navigate and explore the information space via the visualization.
Additional search capabilities, accessible through context
menus, are provided. We have also adapted Thinkbase for use in
modeling and displaying software architecture documentation in

! http://thinkbase.cs.auckland.ac.nz
2 http://www.freebase.com

14

KaitoroBase [24]. Thinkpedia® (b) [12] provides similar
functionality for Wikipedia. As Wikipedia is less structured, we
have used the SemanticProxy* web service to “semantify” the
wiki page content to produce the relationship graph. The width
of edges specifies the strength of the semantic relationship as
evaluated by the SemanticProxy. ProcessMapper (c) [13]
visualizes business processes specified using BPMN and
coordinates the visualization with wiki pages documenting
process stages and organizational information and web
applications realizing them. ThinkFree (d) is a Visual Wiki,
deployed as an enterprise application, describing Enterprise IT
assets at the University of Auckland. The asset descriptions are
maintained in Freebase, but the visualization coordinates both,
these descriptions as well as corporate wiki pages (in
Confluence) and SharePoint documents relevant to an asset.

These applications, their evaluation and corporate deployment
(in case of ThinkFree), have together demonstrated that the
Visual Wiki concept provides considerable value for knowledge
management [12, 13]. However, constructing each of the
applications involves significant programming. While we have
leveraged industrial strength components, such as the
Thinkmap5 visualization toolkit, to reduce development, each
application has still required substantial programming efforts.

3 http://thinkpedia.cs.auckland.ac.nz
* http://semanticproxy.com
> http://www.thinkmap.com/

Many applications deal with visualizations of some kind of data
or information and the display of those in (coordinated) multiple
views. Much of this has focused on fields related to
visualization (data, scientific, information) and much of it is
based around dataflow through a pipeline of processing stages
and tools that allow specification of processing elements (source
selectors, filters, mappers, renderers) and pipelines connecting
them. The “animation production environment” (apE) [21] and
AVS [5] permit scientific visualization workflows to be
specified and realized using direct manipulation visual
programming interfaces. ConMan [9] and VTK [22] provide a
similar approach for graphics applications. In information
visualization, the “data state model” [4], which represents
workflow as a series of data transformations, has been
influential and has been adopted by popular information
visualization toolkits such as Prefuse [10].

Coordinated Multiple Views (CMVs) have the premise that
users understand their data better if they interact with the
information and view it through different perspectives [20].
They add the need for a coordination model [2] to the dataflow
to permit users to interact in a coordinated way across a range of
different visualizations. Snap [18], has a more data-centric
approach to coordination, but provides a direct-manipulation
visual language for building visualizations. Similar approaches
include: GeoVISTA [23], GeoAnalytics [14], and VisTrails [1].

A number of meta-tools have been developed over many years
to enable rapid development of graphical design environments
[7, 8, 16]. Typically these are desktop tools themselves and are
used to generate desktop IDE-hosted visual design tools rather
than web-based visualization tools. However, the concept of
such visual specification of visual language tools has proved
useful in this domain.

Other types of application using dataflow and visual languages
for manipulation are mashup generators like Yahoo Pipes® and
(the now discontinued) Microsoft Popfly’. These applications
allow various public feeds (e.g. RSS news feeds) and services
(search engines, photo sharing sites, etc.) as data sources. Data
manipulation uses operators such as filters or unions. The output
consists e.g. of RSS feeds or mashups (for instance a map
combined with geotagged images).

3. OUR APPROACH

To reduce the programming overhead of constructing Visual
Wiki applications, we were motivated to develop a toolset
through which we could straightforwardly specify and generate
new Visual Wiki instances: the VikiBuilder meta-tool. We were
attracted to the dataflow metaphor of much of the work
described above as we felt this had a good closeness of mapping
to the problem domain. We also felt the visual language based
approaches, such as apE, AVS and Yahoo Pipes provided good
productivity enhancement, and the base dataflow and co-
ordination elements were appropriate for our domain.

Accordingly, we began by examining each of the Visual Wiki
applications we had developed, abstracted from them a set of
reusable generic processing elements, and defined “standard”

8 http://pipes.yahoo.com
" http://www.popfly.com

APIs and parameters that could be used to integrate them
together and customize them for specific purposes. Based on
these generic elements, we derived a Domain Specific Visual
Language (DSVL) for specifying combinations of elements with
dataflow based workflow connections linking them together.
An environment for this DSVL was then realized which
supported the specification of Visual Wiki applications. From
these specifications, code generators supported their realization
reusing the generic elements and generated “glue code”. This
VikiBuilder Visual Wiki meta-tool is itself realized as a Visual
Wiki application, providing its specification DSVL and textual
information to users as a Visual Wiki.

4. VIKIBUILDER
4.1 A DSVL for Visual Wikis

From analysis of a range of our Visual Wikis, the generic types
of processing element we identified are:

e Data Source: a data base, web service, flat file, etc.

e Adapter: describes how a data source is accessed. For
example a web service could be accessed via its APIL. In
that case the data access module describes this AP

e Data Representation: describes how the data is represented
after access (or transformation).

e Transformation Agent: describes criteria e.g. for filtering a
data representation or for merging data sources or data
representations.

e View: describes the views within the frames.

e Coordination Object: sits between a view and another
element; describes how events impact related elements.
Each of these generic processing element types correspond to a
visual language element in the VikiBuilder DSVL. Instances of
these elements are connected via dataflow connectors to specify
a Visual Wiki application. Figure 3 shows these various visual
language elements, together with VikiBuilder DSVL
specifications of two of our Visual Wiki applications.

Thinkbase Thinkpedia

ﬂwwn
Read

APl Access

Semantic

MediaWiki Proxy

Freebase Adapter

Semantic

Extraction

Representation

Raw Graph
Representation Freebase
Representation

MediaWiki
Representation

Filter

Filtered Graph
Representation Navigation
Coordination

Thinkmap Freebase MediaWiki Thinkmap
Graph View View view Graph View

A0 0[] e

Data Data Transformation View Coordination
Source Representation Agent Object

Figure 3. Thinkbase (left) and Thinkpedia (right) described
using a dataflow metaphor.

Navigation
Coordination

Adapter

At left is the Thinkbase specification. This has one data source,
the Freebase (Metaweb) data base. A data access adapter
element uses an API to access the source (left side of flow)
resulting in a “raw” graph representation of the source. This is
filtered using a transformation agent (e.g. filtering out specific
node types) and the result displayed in a Thinkmap graph view
(i.e. data in graph format is passed to Thinkmap to create a
visual representation). On the right side of the flow is the
standard web access to the Metaweb data through the Freebase
view. A navigation coordination element specifies that a
navigation event in the Thinkmap view influences the Freebase
view (e.g. handing over the ID of the new center node object).
Data

Adapter Representation View
LN\ L
Data Source
L——
. Coordination
Transformation Object

Agent
Figure 4. Overview of the VikiBuilder meta-model.

The Thinkpedia example in Figure 3 right uses two data sources,
a MediaWiki and the SemanticProxy. A transformation agent
specifies how the MediaWiki data is “semantified” using the
SemanticProxy. The outcome is again a graph representation,
which is displayed using a Thinkmap view. Additionally the

[VikiBuilder

€ C'| | ¥¢ hitpy//localhost:8080/VikiBuilder/

VikiBuilder v DEEE

& Visual Wiki Models
VW Lostpedia
&4V Thinkbase I
;“VWThmkbasepedia

& VW Thinkpedia Il (1) %

e

& Tools)
1 New VW Wikipedia VAN SemanticProxy
wop_url: hty fen wikipedii...
* [Run Example] l ¢
= Preview rd
ror WIHpE A AR SemanticPr oxy Adapter
prop_pageurl: fwikifindexht.
prop_queryprefic: fw
TTEE eTe gl l
(3) {}
Semantic Extractions

rnstru:mred Representation

prop_ditype: unstructured

prop_type! semantifer

! !

-

Thirlpedia web view
prop_viewposition: right
prop_viewtype: web

Graph Representation

prop_drtype: graph

\‘

| navigation coordination

http://lecalhost:8080/VikiBuilder/sidebar.jsp#

MediaWiki web representation is displayed in a second view.
Generalizing from these and other examples, Figure 4 is an
overview of the meta-model for the VikiBuilder DSVL,
expressed using the same DSVL notation. For clarity, many
details, e.g. element parameters and properties, are omitted.

4.2 VikiBuilder: a Visual Wiki meta-tool

Figure 5 shows our VikiBuilder meta-tool in use. The tool
provides an environment for designing Visual Wikis using our
DSVL, together with code generation and preview facilities that
allow users to generate Visual Wikis from the specification and
preview them as changes to the specification are made.

In Figure 5, VikiBuilder is being used to specify a Thinkpedia
style tool using a visual specification similar to Figure 3 (right).
A DSVL editor (1) allows modeling and visualization of the
Visual Wiki design, with a tool bar (2) and project management
facilities (3) at left. Details of the visual elements (specific
element values, parameters, etc.) used in the DSVL model are
specified in a Freebase view (4). The DSVL and Freebase views
are coordinated, meaning the application is itself a Visual Wiki.
As one can see we have had to make some compromises in the
appearance of the DSVL (1) due to limitations in the Thinkmap
visualization engine, e.g. use of icons instead of shapes
(compare with Figure 3).

The modeling application uses Freebase as data storage and
Thinkmap for the visual interface. The tool allows the creation,
storage and editing of Visual Wiki architectures which are

VW Thinkpedia Il

4)

has data source: VW Wikipedia
VW SemanticProxy

Facts from the Communi

m,

From the vwmt base

data source 2

adapter: L
from data source to adapter

VW Wikipedia Wikipedia Adapte
VW SemanticProxy SemanticProxy Ac

adapter 2 data
representation:

from adapter to data represe

Wikipedia Adapter Unstructured Rep

data representation 2
transformation

agend:
from data representation to transformatic
Unstructured Representation Semantic Extractii

transformation agent
a
representation:
from transformation agent to data represe

Semantic Extractions Graph Represent _

< 0] ’

Figure 5. VikiBuilder meta-tool in use.

VikiBuilder meta tool

Instance of a Visual Wiki

Applet HTML Applet HTML
5 s TM Display Manager o TM Display Manager
= E

@ E TM Position Manager & % TM Fosition Manager
= £ o=

= § TM Graph Manager z E ISP TM Graph M anager
=a TM Source Manager Interface TM Source Manager

Parser
TM Custom Data Freebase | IRk Irnats;-
Source Interface s)

VikiBuilder Meta-Tool Model

Freebase Adapter

Data (Freebase Database)

Data Source(s)

Figure 6. The production of a Visual Wiki instance (right) based on a model developed in the meta-tool (left).

stored in a Freebase domain. The schema of the Freebase
domain represents the meta-model of the DSVL, elaborating the
model shown in Figure 4. In designing the application our aim
was to (1) make the application as easy to use as possible and
(2) to use a metaphor for construction that would appeal to
Visual Wiki designers. Constructing the application as a Visual
Wiki itself supported both of these design aims.

Once a Visual Wiki application has been specified, the meta-
tool can automatically generate the Visual Wiki instance. This
takes the visual specification and compiles it to appropriate code
and wiki templates to construct the application. The VikiBuilder
tool also provides Preview support for generated Visual Wikis.
In Figure 7 we can see the preview facilities in use. Here a
Visual Wiki, similar to Thinkpedia, is being developed for the
Lostpedia® wiki, a wiki about the Lost TV show. The visual
specification for the Visual Wiki is shown at left (1).
The other design views (Freebase and toolbar) have

(VikiBuilder

Step 1 is similar to previous implementations (e.g. Thinkbase)
and will be described first. This will also include a brief
description of the architecture as well as the directory system, as
those will be extended in step 2.

Figure 6 left shows the different layers of the pipeline
architecture of the meta-tool (for step 1). From bottom to top:
Freebase is the data source for the application. A customized
“domain” in Freebase supports modeling Visual Wikis. The
Freebase adapter makes use of the Freebase API and provides
access to the data in a convenient way. The Visual Wiki meta-
tool model is an internal representation of the model retrieved
from the Freebase database. The model is turned into an
interactive visual representation using Thinkmap (left side).
This includes a custom data source layer, which translates the
Model into the format required by Thinkmap. The remaining

been elided to provide screen space for the preview.
The “VW Lostpedia” Visual Wiki preview is shown
in the frames at the right. This Visual Wiki has a
Thinkmap visualization at the top (2) and a Lostpedia
wiki view at the bottom (3). The preview can be used
to test out the design decisions made in the Visual
Wiki design prior to deployment of the new Visual
Wiki application.

4.3 Architecture and implementation
The functionality of the meta-tool can roughly be
divided into two main areas or steps:

1. Functionality to allow a user to model a Visual
Wiki. This includes an interface to create,
change, and save models.

2. Functionality to transform this model into an
instance of a Visual Wiki: process models
(from 1) to automatically create code, property
files, etc, and compile and present them.

8 http://lostpedia.wikia.com

€ C M Y¢ htip;//localhost8080/VikiBuilder/ x

VikiBuilder v mmmEEEEE

B<8 32 0 &

SR RETSS I Open in new Window.

(D

focking gase

VW Lostpedia

al@l[dr]E)

(2)

Waiting for lostpedia wikia.com,

B Tabistory * Folow ¢

P oo |

Article | Discussion | Theory |

Q8 with Damon Lingel

The Looking Glass
=

drecizd from Looking gass

Lostpedia
Forum

Blog

Facebook

Twitter
Community Portal

>

>

The Looking Glass is an underwater DHARMA.
Initiative station used as a beacon to help guide in

% || submarines approaching the Island. A secondary

Cuse - Co-exciuaive ine

the ol Lo

3)

Figure 7. VikiBuilder preview for Lostpedia.

17

Thinkmap layers (Source, Graph, Position, and Display) are
provided by the Thinkmap SDK. However, they are customized
via XML files (e.g. their behavior and appearance). To the right,

Section 2, Thinkpedia is a visual exploration tool for Wikipedia.
It uses the SemanticProxy service to extract semantically
enriched concepts out of Wikipedia articles, visualizes those in

a JSP interface accesses the Visual Wiki meta-tool Model to
create parts of the application’s user interface. The default
Freebase interface is currently used to edit the model.

an interactive graph, and therefore provides a visually appealing
way to browse and explore the vast Wikipedia contents. To
realize a re-implementation of Thinkpedia, we started by
describing the model of the application in our VikiBuilder visual
language. The final model (described theoretically in Figure 3)
is shown in Figure 8.

Step 2 takes the model of a Visual Wiki (stored in Freebase) and
turns it into an actual instance of a Visual Wiki. This is
implemented using Servlets, which parse the model, create code
and compile the new instance. A Parser Servlet (Figure 6, .

centre) is used to generate the new Visual Wiki instance :\/WThimkpedia i

(Figure 6, right) as follows: /
N

— L
VW Wikipedia

1. The model is traversed and all the needed directories and
files are created based on the properties of the model
entities. These include: User interface specifications, e
including JSP and XML property files; back-end logic code 1 l
such as data source access and data transformation; and an
XML build specification file.

2. After all the necessary files have been created, an
automatically invoked build tool uses the XML build file to
construct the new Visual Wiki instance (compile and
deploy the code, etc).

WW SemanticProxy

prop_dstype: semanticproxy

prop. Wikipedia Acapter -
prop_pageurl: fwiki/index.ht...
prop_queryprefix: fw

eI paﬁeap\‘pnp‘ caan l

Unstruchured Representation

SemanticProxy Adapter

7
Semantic Extractions

prop_drtype: unstructured

! l

prop_type: semantifier

This process generates all of the darker components shown in
Figure 6 (right) and links them to the other preexisting
components, such as the data sources.

Thinkpedia web view

prop_viewposition: right
prop_viewtype: web

Graph Representation

prop_drtype: graph

5. EXAMPLES N

. . navigation coordination ™ Thimkped}a _qr?tph view
5.1 Thinkpedia II =

prop_viewposition:
prop_initizlsearch: The Depa...

In order to test the VikiBuilder meta-tool and prove the concept s

of our tool, we have modeled and created several Visual Wiki Figure 8. The Thinkpedia IT model created in VikiBuilder.

instances. As a first example, we have re-built our Thinkpedia The key entities of the model are: Wikipedia and

prototype (see Motivation section) in the form of Thinkpedia II, SemanticProxy as the data sources; adapters, which access them

i.e. a Visual Wiki, which has the same basic design features as

one of our originally hand-crafted applications. As described in

(through their respective APIs); a transformation agent, which
combines the “raw” content from Wikipedia with the

Fle fdt View Hitory Delcious Bookmarks Tools Help

Fie Edt View Hitory Defcious Bookmarks Tools Help

@— ENe] cdER - <] [#9 thinkpedia 2 @'— S e & b B B (# repininkpedacsavckingacoy | [#8- thinkpedia 5
| L vwmt x| peww X | g« Thinkpedia x| - | vwmt x| pewW % e Thinkpedia X [
Tyoen 3 Login/ create account - Tryben 3 Login/ create account
T VW Thinkpedia i || edire | [ey E sl THINKPEDIA i | [| [e e | vy E
s I Auckland o] [| RIRL 4| (B0 Auckland
Auchlond From Wikipedia,the free encyclopedia Auckland 4l From Wikipedia, the free encyclopedia
e il At a0 & :
R WIKIPEDIA This article is about the Auckland metropolitan area. For the e WIKIPEDIA This article is about the Auckland metropolitan area. For the
The Free Encyclopedia territorial authority within the metropolitan ares, see The Free Encyclopdia teritorial authority within the mefropoiitan ares, see
ALY Cobty P | Auckiand City. For the region encompassing the Auckland ickare; Covdy Dishan, B Auckiand City. For the region encompassing the Auckland
i metropoltan aree, see Auckiand Regio, For al fher usss, " i metropoltan ares, ses Auckand Region. Foral oher uses
see Auckland (disambiguation). N e see Auckland (disambiguation).
The Auckland Auckland The Auckland Auckland
metropolitan ‘Tamaki-makau-rau (sor) metropolitan ‘Tamaki-makau-rau (Miori)
area area
o — Manurban rea — o — Mamurben ares —
pronounced pronounced
Ioklend), in Iaklend), in
the Noth the North
Island of New Island of New
Zealand, is the Zaaland, s the
largest and largest and
most populous most populous
urban area in urban area in
the county the courtry
with a with a
popultion T population
approaching u R approacing
1.4 millon Lo el 14 million
residents, 31 = Upload fie residents, 31
percent of the = Specalpages percent of the
country's = Printabl version country's
u Pemanent ink population = Permanert ink population
« cteepage Demogiaphic - cteths pege Demographic
[trends indicate Nciname(s): iy ofSais, ipiags rends indicate Nicknanme(s): Cy ofSais,
= Aftkaans s SRR CH Dowest e o AiRases that it will Queen Cy (now rrely used)
it continue to - o continue to
o s grow faster - grow faster
» B than the rest W Eis than the rest
u Calh of the country. b & Catals of the country. 5
o Cesly Increasingly i A = Cesky Increasingly e
Done WiEE 1 # zotero Done wiE3 # zotero

Figure 9. Thinkpedia II (left) and the original hand-crafted Thinkpedia (right).

18

SemanticProxy; aresulting structured data representation; a
Thinkmap view, which further processes and visualizes this data
representation; a standard Wikipedia view; and a coordination
object, which defines the navigation behavior. All of these
entities have properties which describe the specifics of
Thinkpedia II. For instance the Wikipedia data source and the
adjacent adapter entities describe how the application makes use
of Wikipedia. Properties include e.g. the URL of the wiki and
the MediaWiki API (e.g. search API and its parameters).
Properties of the view entities include, amongst others,
definitions of the type of view (e.g. Thinkmap) and the
positioning of the frames. The creation of this model can be
done without any need for programming through the form-based
editing interface of Freebase (see Figure 5).

After the model has been created, we can hit the “Run” button,
and Thinkpedia II is automatically created as a new Visual Wiki
instance. As described in Section 4.3, this is done by parsing the
model which will automatically create code and property files
based on the entities and their parameters in the model. Finally,
the code is compiled. The outcome is a new stand-alone instance
of a Visual Wiki, which is accessible through its own URL. The

C | #i | % npsfocainost

) Viiider

application specification can be loaded into the VikiBuilder
again and further refined.

Figure 9 shows the final Thinkpedia II Visual Wiki adjacent to
our original hand-crafted Thinkpedia. The new Thinkpedia II
can be used in just the same way as the original application. An
interactive graph of a selected Wikipedia article is visualized
next to that article. A user can explore and navigate the wiki
space via the graph, by clicking on nodes, which will update the
visualization as well as the wiki view. All the basic features,
such as navigation, search, and browsing history are the same as
in the original Thinkpedia. Some of the more advanced features
of our customized Visual Wikis are not possible to specify and
implement in the current version of the VikiBuilder. In the case
of Thinkpedia II, these include the visualization of semantic
relevance (reflected in edge thickness), advanced filtering
mechanisms, and a sharing feature for the graph view.

5.2 Lostpedia Visual Wiki

After showing the feasibility of re-implementing one of our
original prototypes, we explored modeling and automatically
creating different variations of Thinkpedia II style Visual Wikis.
One of these is VW Lostpedia, which can be seen in Figure 10.

VW Lostpedia

Article | Discussion | Theory

) e W Lostpedia

v 1@
N

3
VW Lostpedia
prop_urls hitp/flastpedia ...

prop_dstype: mediawiki

B
rop_pageur: fuikifndexht...
A e

3
WW SemanticProxy

prop_dstype: semanticpraxy

SemanticProxy Adapter

€ C i | ¥ hitp//localhost8080/V I REE2 D -
VW Lostpedia

QlQl[«]r &l

(d)

navigation coor dination TM Lostpedia graph view
Prop_viewposition: top

prop_initialsearch: lock
e

nstructured Representatio Semantic Extractions
(5]
prop_dype: unstructured prop_type: semantifer -
Ocean near Bal, and all passengers were presumed dead. In eality, however,the discovered wreckage was staged. The
l l teal plane had suffred a mi-zi break-up 2nd crashed on an uncharted Isiand, with more than 70 passengers suviing the Oceanic Airlines Flight 815
4 crash isef. Later, sx o those sunivrs made it offthe Iland and became known as the Oceanic Six. 4
— By late 2007, the treacherous conditions of the island and the violent battles between passengers, the island's inhabitants,
Lostpedia web view Graph Representation and other factions have killsd nearly every passenger of the plane. As of Lot inale episods, only Kate Austen, Hugo
prop_viewpesition: bottom . “Hurlsy" Reyes, James "Sawyer" Ford, Rose Nadler, Berard Nadler and Claire Littlaton are confirmed to stil be alive
prop_viewlype: web LT
l Contents srov)
\‘- — Crew and passengers

Mein artcle: Oceanic Flight 815 Crew and Passengers
There were 324 peopls on the plane, including fight crew (one ofUs?) Frank Lapidus later claimed that he was originally
supposed to pilot Oceanic Fiight 815 on that day, but overslept and was replaced by Sath Norrs. ‘Confrmed Dead)(r. Lnus')

Some of the passengers’ seat numbars have bean revealed during the show, and many of the main characters' o numbers
seem to comespond vith the Numbers. Other seat numbers have also baen revealed on ABC-sponsorad websites such as

Figure 10. Lostpedia: The complete building process from (a) the model, to (b) the specification of the
model, to (c) a preview of the Lostpedia Visual Wiki, to (d) the final stand-alone instance of the new Visual

19

VW Lostpedia is a visual exploration tool for
Lostpedia, a wiki about the Lost TV show. We
started modeling this Visual Wiki instance by
taking the model from Thinkpedia II as a starting

[} VikiBuilder

«

VikiBuilder 1

& Visual Wiki Models

point: models can be copied and renamed to | vwissi

. . & VW Thinkbase Il
support simple reuse. Figure 10 (a) shows the 39 Tt

. . . . VW Thinkpedia Il

final model for VW Lostpedia. It is similar to | & visien
Thinkpedia II as it uses a MediaWiki-based wiki | .
as a data source, extracts semantic meaning out of B e
it utilizing the SemanticProxy, and visualizes | »wneema

information with Thinkmap. The main difference
is that we are using a different wiki. As a user this
can be realized by specifying different URLs and

C i ¥ nttp//localhost8080/V

Jal=[<[r[=]a]v]

kiBuilder; >

R<*8 32 0 &

VW Thinkbase Il

Facts from the Community

VW Thinibase 1T

I

VW Freebase
prop_dstype: fresbase

From the vwmt base

has data source: VW Freebase

data source 2
adapter:
from data source to adapter

VW Freebase W Freebase Adapter API

© Preview VW Freebas

e Adapter APT

VW Freebase VW Freebase Adapter WWW

1w Freebase Adapter wva

Raw Giaph Represertation
prop._dype: gaph

View entire co

adapter 2 data
representation:

from adapter

reebase Doc Iepresentatio

prop_ditype: unstructured to data representation

API parameters for the data source and adapter
entities. Furthermore, we changed several

W Freebase Adapter

Freebase Docrepresentation

!

W Freebase Adapter API Raw Graph Representation

View entire co

parameters of the view entities so that they would
be displayed in different frame locations. The
complete production life-cycle of the VW
Lostpedia can be seen in Figure 10: After
specifying (a) and editing the model in the

data representation 2
transformation
agend:

from data representation to transformation agent

Raw Graph Representation Filter A
transformation agent
2 data representation:

from transformation agent to data representation

Filter A Filtered Graph Representation

Freebase view (b), we can preview the application
(c), and finally produce the stand-alone instance

data representation 2
view:
from data representation to view

Filtsred Graph Reprasentation Thinkmap araph view to

Freebase Doc representation Freebase viewto

of a new Visual Wiki (d). By modeling and

hitp://localhost8080/VikiBuilder/sidebarjsp?

< i] ’

implementing VW Lostpedia, we have shown that
we can also produce a new Visual Wiki rather
than just replicating an existing one. Currently we
are able to rapidly model and automatically create

Figure 11. The Thinkbase II model in VikiBuilder.

=

similar customized Visual Wiki variations with — JDvisuse 5 o withnkoasen
Virtually any MediaWiki-based Wlkl il'l typlcally €« C A 1% httpy/localhost:8080/VWThinkbasell_envw_thinkbase_i » gEeE 3 O- ’i
— i 2
less than a day. ez I‘I’V\’Th'”Kbase
Qll@l[«[v]&l =
5.3 Thinkbase II A e J
As a third example we re-modeled another one of & . o8,
) . A . s B .
our prior Visual Wiki implementations, A e e A\ — G
. . . . Robert Stromberg PG-13(UsA) \Welington .
Thinkbase (see Figure 2), which allows visual | AVATAR
exploration of the semantic wiki Freebase by e i sonone s i
extracting topics and their semantic relationships | e s e o A
using the Freebase API and Ylsuahzmg them in an J ot
interactive graph representations. Our goal was to Runtime: 2142 in
. . . . & Produced by: Jon Landau, James Cameron
model and automatically create a Visual Wiki [™ e Sctoonlaby: James Cameron
. H Gefies . Stephe Also known as: Avatar: An IMAX 3D Experience
with the same basic functionality: Thinkbase II. |m= @ ’
We have created the necessary dataflow model |}y gt Film
for Thinkbase II inside the VikiBuilder, see | = gy e S—
Figure 11. The application has only one data Y - PV e B H ve James Cameron
. Caln sl (- James Francis Cameron (born August 16, 1954) is a Canadian
source, the Freebase Metaweb database, which on . % " e e L
the one hand is accessed through the standard 07 g sl ot SO orss (1950 Teminator 2 Judament Day (1991, True L
. . Robert Bavin LA iameSStmer) ‘M;Aax (1994), Titanic (1997), and Avatar
Freebase user interface, and on the other side e LI H
. . . . Nick Bassett 3D fim Cast Members of Avatar
through its API. The raw graph which is retrieved St
from that API is first filtered (certain entities will E sam oringon _ 2oe sane
be filtered out) and then handed over to the e ol

Thinkmap framework to create the visualization.

Detailed parameter specifications in the case of

Thinkbase II include the way the Freebase API is

accessed, how the data format of the source is converted into an
internal representation, and on what criteria entities are filtered
out. Figure 12 shows the final Thinkbase II Visual Wiki
instance. The application has the same basic features as the
original hand-crafter version of Thinkbase. The Freebase
contents can be explored visually by navigating along the graph.
The filter element even provides a new and more rapid way of
altering the appearance of the graph. For instance, Figure 12

20

Figure 12. Thinkbase II Visual Wiki.

shows the application where all entities which are not related to
the type “Movie” are filtered out. However, there are also still
some limitations compared to the original version. For instance,
some specific types of nodes (e.g. URL nodes) are currently not
displayed.

Our experience with these three exemplar Visual Wiki
instances, which we are able to model and generate, has, we
believe, successfully proven the concept of the VikiBuilder. We

were able to rapidly re-create previously hand-crafted Visual
Wiki instances including all of their core functionalities, as well
as new variations of them. Both our visual language to model
Visual Wikis as well as the code generator are flexible and
readily extendible, so that they can be easily refined in our
future work to allow a broader range of Visual Wikis to be
specified and generated.

5.4 VikiBuilder II

As a final example we attempted to model our own VikiBuilder
(which is itself a Visual Wiki) inside the VikiBuilder meta-tool.
The outcome of this VikiBuilder II model can be seen in
Figure 13. As with our Thinkbase tool, the VikiBuilder II model
specifies Freebase as its data source. On the one side, this data
source is access via the API, split up into two flows, filtered
using different criteria, and finally displayed in two different
views, a menu view (for navigating and managing the different
Visual Wiki models) and a Thinkmap graph view. On the other
side, the Freebase content is shown using its default web
interface. The three views are coordinated. In case of
VikiBuilder II, the model is not yet able to automatically
produce a finished Visual Wiki instance, as the VikiBuilder is
much more complex compared to our other applications. This is
especially the case for the code generation functionality, which
we are not yet able to model in our VikiBuilder visual language.
Extending our modeling language as well as the code generator
in order to support these and similar advanced features will be
part of our future work.

it focsihos:0s0 Vi i

Figure 13. VikiBuilder II modeled inside VikiBuilder.

6. DISCUSSION

Our prior work developing hand-crafted Visual Wikis and their
evaluations have successfully demonstrated the usefulness and
appeal of the Visual Wiki concept [12, 13]. VikiBuilder
provides the ability to develop Visual Wiki applications rapidly
with minimal hand-crafting. This has been demonstrated by the
success we have had in replicating implementations of our
earlier Visual Wikis, together with additional new Visual Wiki
applications, such as the Lostpedia Visual Wiki, using
VikiBuilder. In each case, the time taken for implementation
was of the order of days (or shorter), rather than the weeks or
months of the prior applications. Rather than having to focus on
technical programming issues, we were able to focus on more

21

creative issues, such as placement of frames and so on, with
rapid feedback on changes to the design possible via the
preview facilities.

We feel our decision to design VikiBuilder as a Visual Wiki
itself was a valid one. This approach provides good “closeness
of mapping” [6] to the pipeline metaphor that most information
visualization designers use. In addition, as with most maturing
frameworks, having identified a library of reusable
computational artifacts, the bulk of the effort in constructing a
Visual Wiki application is in configuring parameters for these
components, instantiating them, and writing “glue code” to
connect them together [19]. The choice of Freebase for
underlying data representation and storage suited these needs
well. The frame based representational model of this semantic
wiki lends itself naturally to describing templates for
parameterized artifacts, and instantiations of them in a readable,
readily editable format as Freebase pages. The usual
disadvantage of such an approach, the hidden dependencies [6]
created by such a plethora of small artifact descriptions, is
obviated via the context view of the visual language
specification, which provides both an overview, and the primary
mechanism for specifying and understanding the “glue code”
connections between artifacts. This is an example of Moody’s
Principle of Complexity Management, which advocates such a
hierarchical decomposition of notational views [17]. The
coordination mechanism between the visual and Freebase views
supports Moody’s Principle of Cognitive Integration; providing
explicit linkages between the different notational diagrams [17].

Weaknesses of our current VikiBuilder implementation include
the following. Firstly, and most importantly, the range of Visual
Wiki elements is currently limited. We would like to expand
VikiBuilder to permit Visual Wiki implementations using other
components, e.g. other visualization interfaces, such as Prefuse’,
other semantifier services, various analysis services and
additional data sources, such as adaptors for other wiki and
database APIs. These are all straightforward programming tasks
and will require minimal change to the existing tool
architecture, and some minimal change to the code generation
facilities.

Secondly, we have had to make some compromises in
implementing the DSVL due to limitations in the Thinkmap
visualization engine. For example, Moody argues that shape is
one of the most important distinguishing characteristics for
visual notational element design. We adopted this in the draft
DSVL design, as seen in Figure 3, but were forced to use other
visual channels, such as iconic annotations and color, in the
Thinkmap realization. Other minor usability issues also result
from such compromises. Expansion of the range of components
noted above opens up the possibility of re-implementing
VikiBuilder using itself, to effectively port VikiBuilder to other
front-end technologies obviating some of these issues.

In future work, we plan to extend the range of components
available to implement Visual Wikis. This includes
incorporation of new instances of existing component types, as
outlined above, but also extensions to the VikiBuilder DSVL to
accommodate new types of element, such as a more refined
ability to express and realize semantic analysis workflows, and a

? http://prefuse.org/

broader range of annotations, such as the semantic strength link
widths in the original Thinkpedia. These latter extensions are
obviously more complex and will require extensions to the
VikiBuilder meta-model, editing tools and code generation
facilities. We also plan to ameliorate various minor usability
issues we have identified in the existing implementation.

We are obviously keen to use VikiBuilder to construct new
Visual Wiki applications. The success of our earlier Visual Wiki
exemplars has led to strong commercial interest in our approach.
To satisfy this interest, we need to be in a position to move from
craft to production: VikiBuilder provides us the mechanism to
do so. In addition we are keen to further explore the broader
potential of the Visual Wiki concept and we see VikiBuilder as
a platform for us to more rapidly realize this, in the same way
that our work on meta-tools for Visual Language design and
implementation [7, 8] have assisted us in that latter domain.

7. CONCLUSIONS

We have introduced VikiBuilder, a Visual Wiki application
which permits rapid specification and realization of Visual Wiki
tools. The latter combine visualizations, to provide a context
overview and contextual navigation, with complex wikis, where
individual wiki pages provide more focused detail on topics of
interest. Our prior work has demonstrated the utility and appeal
of such applications. VikiBuilder provides a meta-tool to more
rapidly design and implement them. We have demonstrated the
utility of VikiBuilder by recreating several of our prior Visual
Wiki applications and implementing new ones. This showed a
very significant productivity gain over hand-crafted solutions.
By extending the range and type of components able to be
instantiated we will extend the range of Visual Wiki
applications we can support.

ACKOWLEDGEMENTS

The authors acknowledge the assistance of the BuildIT Doctoral
Scholarship fund and the FRST Software Process and Product
Improvement project.

REFERENCES

[1] Bavoil, L., et al., VisTrails: Enabling Interactive Multiple-View
Visualization. In Proc. of IEEE Visualization, 2005.

[2] Boukhelifa, N. and P.J. Rodgers, A model and sofiware system
for coordinated and multiple views in exploratory visualization.
Information Visualization, 2: 258-269, 2003.

[3] Buffa, M. and F. Gandon, SweetWiki: Semantic Web Enabled
Technologies in Wiki. Proceedings of International Symposium
on Wikis, 2006.

[4] Chi, E.H., 4 Taxonomy of Visualization Techniques using the
Data State Reference Model. Proc. of InfoVis, 2000.

[5] Dyer, D.S., 4 Dataflow Toolkit for Visualization. IEEE
Computer Graphics and Applications. 10: 60-69, 1990.

[6] Green, T.R.G. and M. Petre, Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions'

Framework. Journal of Visual Languages and Computing, 7:131-
174, 1996.

[7] Grundy, J.C., Hosking, J.G., Li, N. and Huh, J. Marama: an
Eclipse meta-toolset for generating multi-view environments,
Formal demonstration at the 30th International Conference on

22

Software Engineering (ICSE 2008), Leipzig, Germany, May
2008, ACM Press.

[8] Grundy, J.C., Hosking, J.G., Zhu, N. and Liu, N., Generating
Domain-Specific Visual Language Editors from High-level Tool
Specifications. Proceedings of the 2006 IEEE/ACM International
Conference on Automated Software Engineering, Tokyo, 24-28
Sept 2006, IEEE.

[9] Haeberli, P.E., ConMan: a visual programming language for
interactive graphics. ACM SigGraph Computer Graphics,
22:103-111, 1988.

[10] Heer, J., S.K. Card, and J.A. Landay, Prefuse: a toolkit for
interactive information visualization. ACM, 2005.

[11] Hirsch, C., Grundy, J.C., and Hosking, J.G., Thinkbase: A Visual
Semantic Wiki. Demo Session of the 7th International Semantic
Web conference, 2008.

[12] Hirsch, C., Hosking, J.G., and Grundy, J.C., Interactive
Visualization Tools for Exploring the Semantic Graph of Large
Knowledge Spaces. 1st Int'l Workshop on Visual Interfaces to the
Social and the Semantic Web, 2009.

[13] Hirsch, C., Hosking, J.G., Grundy, J.C., Chaffe, T., MacDonald,
D., and Halytskyy, Y, The Visual Wiki: A New Metaphor for
Knowledge Access and Management. Proc. of the 42nd Hawaii
International Conference on System Sciences, 2009, IEEE CS
Press.

[14] Johansson, S. and M. Jern., GeoAnalytics visual inquiry and
filtering tools in parallel coordinates plots. Proc. of the 15th
Annual ACM International Symposium on Advances in
Geographic Information Systems, 2007.

[15] Majchrzak, A., C. Wagner, and D. Yates., Corporate wiki users:
results of a survey. Proceedings of International Symposium on
Wikis, 2006.

[16] Mazanek, S., S. Maier, and M. Minas, Auto-completion for
Diagram Editors based on Graph Grammars. Proc. of the 2008
IEEE Symposium on Visual Languages and Human-Centric
Computing. IEEE CS Press, 2008.

[17] Moody, D.L., The 'Physics' of Notations: Toward a Scientific
Basis for Constructing Visual Notations in Software Engineering.
IEEE Transactions on Software Engineering, 2009.

[18] North, C., et al., Visualization schemas and a web-based
architecture for custom multiple-view visualization of multiple-
table databases. Information Visualization, 2002.

[19] Roberts, D. and R. Johnson, Evolving Frameworks: A Pattern
Language for Developing Object-Oriented Frameworks. Proc. of
PLoP, 1996.

[20] Roberts, J.C., State of the art: Coordinated & multiple views in
exploratory visualization. ETH, Switzerland, IEEE Press, 2007.

[21] Schroder, F., apE—the original dataflow visualization
environment. ACM SigGraph Computer Graphics, 1995.

[22] Schroeder, W.J., K.M. Martin, and W.E. Lorensen, The design
and implementation of an object-oriented toolkit for 3D graphics
and visualization. IEEE Visualizations 1996.

[23] Takatsuka, M. and M. Gahegan, GeoVISTA Studio: A codeless
visual programming environment for geoscientific data analysis
and visualization. Computers and Geosciences, 28:1131-1144,
2002.

[24] Ting, M.S., Hirsch, C., and Hosking, J.G., KaitoroBase: Visual
Exploration of Sofiware Architecture Documents, Formal
demonstration at ASE, 2009.

