
In Proceedings of the 2005 ACM/IEEE International Conference on Automated Software Engineering, Long Beach, CA, Nov 2005.

A Visual Language and Environment for Composing Web
Services

Na Liu
Dept of Computer Science

University of Auckland, Private Bag
92019, Auckland, New Zealand

+64 9 3737599

karen@cs.auckland.ac.nz

John Grundy
Dept of Electrical & Computer Eng
University of Auckland, Private Bag

92019, Auckland, New Zealand
+64 9 3737599

john-g@cs.auckland.ac.nz

John Hosking
Dept of Computer Science

University of Auckland, Private Bag
92019, Auckland, New Zealand

+64 9 3737599

john@cs.auckland.ac.nz

ABSTRACT
Implementing complex web service-based systems requires
tools to effectively describe and co-ordinate the composition of
web service components. We have developed a new domain-
specific visual language called ViTABaL-WS and built a
prototype design tool to support modelling complex interactions
between web service components. ViTABaL-WS uses a “Tool
Abstraction” metaphor for describing relationships between
service definitions, and multiple-views of data-flow, control-
flow and event propagation in a modelled process. The tool
supports the generation of Business Process Execution
Language (BPEL) definitions from a model, directly deploys a
generated model to a workflow engine, and supports dynamic
visualisation of a running BPEL process.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and techniques –
CASE, modules and interfaces
D.3.2 [Programming Languages]: Language Classifications –
dataflow languages, design languages, high level languages.

General Terms
Design, Languages

Keywords
Web services, tool based abstraction, visual languages.

1. INTRODUCTION
Web services are reusable, extensible, platform- and language-
independent components that are used over web protocols. An
abstract definition of a web service contains two parts: messages
and operations [12], each service described using the Web
Services Description Language (WSDL). Running web service
operations are bound to ports and run on a host. Web services
composition is an approach that integrates individual services to

make up a web service-based distributed system. A web service
composition language (either textual or visual) is needed to
specify a composite web service, using existing service
components defined or looked up from a services registry. The
composed web service can then be described using WSDL,
registered and invoked, and thus added to the network as a new
web service component.

One common web service composition language is the Business
Process Execution Language for Web Services (BPEL4WS [8]),
an XML-based service composition language. It describes web
services compositions, or orchestration, by defining a set of
service partnerships and structured invocation schemes. It also
supports specifying concurrency and transaction failure
recovery schemes for composed web service components.

Various visual modelling notations have been developed to
support web service composition. UML state-charts can be used
to specify implementation aspects of a service composition [1].
These incorporate event handling schemes where states
represent services, transitions are constrained by Event-
Condition-Action rules, and an occurrence of an event fires a
transition to execute a target action. UML-WSC [11] uses class
diagrams with stereotypes to model static structure and activity
diagrams to model dynamic aspects of web service
compositions. Service states call operations from components
and transform states perform structural transformation on
messages. Message Sequence Charts (MSCs) are compiled into
a Finite State Process notation (FSP) to concisely describe and
reason about concurrent programs [3]. Petri-Nets have been
used to model both offline analysis tasks, such as web service
composition, and online execution tasks, such as deadlock
determination [6], [9]. These approaches describe the
capabilities of web services in terms of a first-order logic
language. Biopera Flow Language [10] is a generic visual flow
language for coordinating software components, with a
development tool tailored for web service composition. This
focuses on data flow, execution sequence and fault handling and
all can be specified with a simple visual syntax. The Web
Service Modelling Framework [2] is a methodology for
describing and developing web services and their compositions.
The integration framework defines a conceptual model for the
web services integration (complex web services) and provides
services for mediating differences in data structures and
message exchange patterns among services.

ACM COPYRIGHT NOTICE. Copyright © 2005 by the Association for
Computing Machinery, Inc. Permission to make digital or hard copies of part or all
of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

jgru001
Text Box
(c) IEEE 2005. In Proceedings of the 2005 IEEE Int Conf on Automated Software Engineering. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

Loan Approval process

Loan Approval request

IN

Invoke
Loan Approver

WS

Loan Approval response

OUT

Invoke
Loan Assessor

WS

 Request<1000 Request>=1000

 Risk=’low’

 Risk! =’low’

Loan Assessment
Criteria WS

Loan Approval
Audit WS

Criteria Query

Loan Data

Figure 1. Conceptual model of the loan approval process

Most of these current approaches to modelling web service
compositions lack full modelling capability: i.e. are not able to
model all types of operations (one-way, request-response, solicit-
response, notification). A common drawback is that a web service
interface can not be fully expressed; some model web services
operations only; and some can not model invocation constraints in
control flow. Most use static binding rather than event-based
mechanisms to integrate services. Many cannot separate or
combine control-flow and data-flow for modelling.

2. ViTABaL-WS
Consider a simple loan approval process, as used in the
description of IBM’s Business Process Web Service for Java
(BPWS4J) process execution tool [7]. This loan approval process
is composed of two main web services: a Loan Assessor web
service and a Loan Approval web service. As illustrated in Figure
1 when a loan request is received, the new Loan Approval process
firstly needs to determine whether the requested amount of the
loan is under one thousand dollars or not. If the amount is under
one thousand dollars, the Loan Assessor web service is invoked;
otherwise the Loan Approver web service is invoked. After the
Loan Assessor web service is invoked, the process continues by
determining whether the risk for the request is low or high: if the
risk is high, the control flows to the Loan Approver web service;
otherwise an approval message is generated as the response to the
user’s loan request. Additional web services might also be used
e.g. to provide Loan Assessment Criteria (from a persistent
storage mechanism), and to record a Loan Approval Audit trail
(storing the loan and approval information in a persistent form for
later reporting). Relationships between services in such business
process models can become very complex: some send messages
and wait for replies; some send messages and continue execution;
some provide data while others consume it; synchronisation
between concurrently executing services may be needed; service
failure may occur and needs to be handled appropriately; and
transactional behaviour may be required over services.

We aimed to specify a language and tool that meet the following
key requirements:

• Uses a visual metaphor for composing web services that fits
the users’ mental models of service interaction;

• The visual language for composition must be able to specify:
web service interfaces, i.e. abstract message types and
operations; variables; and different types of connections (i.e.
data flow, control flow, and event flow) between web
services in a process;

• The support tool should permit modelling of specifications
using the metaphor/visual language; generation of WSDL
and BPEL4WS (or other executable business process
modelling languages), and easy deployment of generated
process models to 3rd party process engines, e.g. BPWS4J;

• The support tool should permit visualization of running
systems by annotating high-level visual specification views
from events generated by the process engine, for debugging
of compositions and understanding of others’ specifications.

We chose to use the “Tool Abstraction” (TA) paradigm [4], [5] as
our metaphor for web service compositions and to support
reasoning about different relationships between compositional
primitives. The TA paradigm is a message propagation-centric
approach describing interconnections between “toolies” (the
encapsulation of functions) and “abstract data structures” (ADSs:
the encapsulation of data) which are instances of “abstract data
type” (ADTs: typed operations/messages/events). Connection of
toolies to other toolies and ADSs is via typed ports. The TA
paradigm supports modelling data flow, control flow and event
flow relationships. Reusability, extensibility and expressiveness
are key advantages possessed by TA [4]. We have found that the
TA paradigm is well suited for web services composition domain
by specifying an abstract model involving a series of co-ordinated
invocations to web services operations. We adapted our earlier
work ViTABaL [5] to develop a new visual language and
environment, ViTABaL-Web Services (ViTABaL-WS),
specializing the ViTABaL visual composition language to the
domain of web services composition. It supports modelling of
both event-dependency and dataflow in designing complex web
service compositions using a visual notation.

Figure 2 shows various ViTABaL-WS diagrams illustrating
examples of compositional primitives in the Tool Abstraction
paradigm. Toolies (web services - shaded, green ovals)
encapsulate data processing and interact with each other through
both direct and indirect operational invocations using shared data
structures (message ADT instances: rectangular, shaded icons);
and event-driven dependencies indicating state changes to a Data
Store ADS (data storage service). A system of typed input and
output ports on toolie and ADS services provide message sources
and sinks. Services are wired together using these ports with ports
supporting only certain kinds of connection and message ADTs.
Messages generated by a service output port are distributed to
connected web service input ports. Many interconnection schemes
are supported including one-way flow, request-response,
asynchronous flow, and subscribe-notify. Additional controls
support conditional flow, dynamic type checking,
synchronisation, iteration etc.

(a)

1. Web service - Loanapprover 3. Web service - Loandefinition 4. Web service – Loan-approval 2. Web service - Loanassessor

Figure 2. Examples of various webv service specifications from ViTABaL-WS.
ViTABaL-WS permits multiple views for complex processes and
sub-processes, allowing a service in one process to invoke via
ADS messages and ports another service or a sub-process.
Different views allow both static specification of web service
interfaces and dynamic specification of messages between
processes in different views, with consistent references managed
by the specification environment. Orthogonal views allow
different kinds of interaction e.g. event-driven and data-flow, to
be modelled separately if desired. The specified web services are
linked together by composition rules enforced in the ViTABaL-
WS tool.

2. Alternative
audit trail
process flow

1. Process definition -
loanApproval

Figure 3.Process definitions in ViTABaL-WS.

Our exemplar process comprises two main information processing
toolies (“PT” suffix): loanApprovalPT and riskAssessmentPT.
The composite process defines roles performed by all
participating services, i.e. “loan approver” service fulfils an
“approver” role and “loan assessor” service fulfils an “assessor”
role. Figure 2 (1) and (2) show the interfaces for the
loanApprovalPT and riskAssessmentPT processing toolies. An
abstract web service interface is visually represented using
input/output dataflow links, parameter decomposition links, and
transition links to support association of a toolie’s web service
port types and message ADSs. We attach operations to a port type
to represent the port bindings of a web service. For example, in
the “loan approver” web service definition in . Figure 2 (1) the
“loanApprovalPT” toolie has one port providing an “approve”
operation with “creditInformationMessage” as input message type
(indicated by a data flow link with the arrow pointing to the
operation) and “approvalMessage” as output message type
(indicated by a data flow link with the arrow pointing out of the
operation). The approvalMessage contains one message part,
“accept” (shown by the parameter decomposition link). In the
case of an error occurring when the toolie is invoked, the
operation “approve” transits to the “loanProcessFault” fault
handler (via a one-way operation link) which generates a fault
message of type “loanRequestErrorMessage”. The
“loanApprovalPT” toolie may also invoke via a one-way
operation a “loanApproval Audit” ADS to record an audit trail of
approvals. Toolies may provide multiple ports for other toolies to
bind too. Bindings may be data flow in/out, subscribe/notify
event-based interaction, one-way async invocation, bi-directional
synchronous invocation etc. Toolies may also have more than one
fault handler for operations.

A business process model is built up by composing web service
toolies using appropriate link types. Figure 3 shows the basic loan
approval process. Note other overlapping views can be defined to
add extra information about a process model e.g. extra: toolie
links driven by event notification of asynchronous message flow;
fault handling; message data storage/retrieval etc. The “loan
approver” process defined in Figure 3 (1) expresses the semantics:
the “loan approver” service receives a loan request. The process’
control flows to a decision point, which retrieves the amount of
the loan requested. The conditional is specified by labelling the
outgoing links with an XPath expression specifying the
comparison. If the requested amount is less than $1,000 the
process control invokes the “risk assessment” service, else it
flows back to invoke the “approve” operation of the “loan

approval” service. The “risk assessment” service takes the loan
request as input and decides if the loan is a low risk. It retrieves
loan criteria information from the “loanAssessmentCriteria ADS”
tor use in the assessment task. If risk is low the loan is approved,
otherwise the process model invokes the “approve” method in the
“loan approval” service to do a more thorough check. Both toolies
invoke data storage activity on the “loanApprovalAuditADS” to
record an audit trail of approvals. Once a loan is either approved
or rejected, an approvalInfo message is returned to the invoking
client. Figure 3 (2) shows a different approach to generate an
audit trail, with asynchronous flow from the generated “approval
Info” message via an adapter converting its format to the “loan
ApprovalAudit” service and generation of a “loan AddedEvent”
notification subscribed to by a “print audit trail” service.

request: creditInformationMessage

firstname: John
lastname: Doe
amount: 100

1

2

3

Figure 4. Generated BPEL and visualisations.

In order to execute our web service process model we translate
our model into BPEL4WS. A BPEL4WS composition
specification contains XML records specifying web services
receiving messages, the service being invoked and reply message
being generated (i.e. constructs <receive>, <reply>, <invoke>,
<assign> etc). The ViTABaL-WS model contains TA-based
modelling constructs that can be mapped onto BPEL4WS
constructs. Processing and data storage/retrieval toolies map onto
web services, with ADTs in ViTABaL-WS mapping onto
BPEL4WS messages. Toolie ports map onto BPEL4WS ports
with typing from ADT messages. Fault toolies and links to ports
map onto BPEL4WS fault handlers. Synchronisation control,
asynchronous message flow and subscribe/notify relationships in
ViTABaL-WS map onto BPEL4WS process model script code to
implement these behaviours. Concurrent operations in ViTABaL-
WS map onto concurrently run BPEL4WS service invocations.
Type checking toolies, conditional execution and iteration map
onto BPEL4WS script to carry out these operations. Figure 4 (1)
shows an example of some generated BPEL4WS code that is then
run by the BPWS4J workflow engine.

Our dynamic visualization tool includes service invocation (by
flashing the service representation node); invocation path into the
service (by highlighting the path). Examples are shown in Figure
4(2) and (3). The user can double-click on a link or message and
see its contents as XML. The traditional “debug and step into”
metaphor is used to support step-by-step visualization. During
each step of service execution, the states of all variables
(messages) in the process are displayed in a debugging panel.
Sub-processes invoked in the process are visualized similarly.

3. SUMMARY
We have developed several process models with our ViTABaL-
WS tool and run these using the BPWS4J engine. We have carried
out two evaluations of the visual language and support tool, one
using Cognitive Dimensions and the other a usability user survey.
These have demonstrated both the feasibility and suitability of our
tool for developing web service composition models.

4. REFERENCES
[1] Benatallah, B., Dumas, M., Fauvet, M.C. and Rabhi, F.

Towards Patterns of Web Services Composition, In Patterns
and skeletons for parallel and distributed computing,
Springer, 2003.

[2] Fensel, D. and Bussler, C. The web service modeling
framework WSMF, Electronic Commerce Research and
Applications, vol. 1, no. 2, pp. 113--137, 2002.

[3] Foster, H., Uchitel, S., Magee, J. and Kramer, J. Model-
based verification of web service compositions. In Proc. 18th
IEEE ASE, 2003, Montreal, Canada.

[4] Garlan, D, Kaiser, GE, and Notkin, D, Using tool abstraction
to compose systems, Computer, 25(6) 30-8, 1992.

[5] Grundy, J.C. and Hosking, J.G. ViTABaL: A Visual
Language Supporting Design by Tool Abstraction, In Proc
IEEE VL’95, Germany, IEEE CS Press, pp. 53-60.

[6] Hamadi, R., Benatallah, B. A petri-net based model for web
service composition, Proc 14th Australasian Database
Conference, Adelaide, Australia, Jan 2003, CRPIT Press.

[7] IBM, Business Processes Web Services for Java,
http://www.alphaworks.ibm.com/tech/bpws4j

[8] IBM, Specification: Business Process Execution Language
for Web Services Version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/

[9] Narayanan, S. and Mcllraith, S.A. Simulation, verification
and automated composition of web services. In Proceedings
of the 11th World Wide Web Conference, 2002.

[10] Pautasso, C. and Alonso, G. Visual Composition of Web
Services, Proc IEEE HCC’03, Auckland, 2003, pp. 92-99.

[11] Thone, S., Depke, R. and Engels, G. Process-oriented,
flexible composition of web services with UML, Proc ER-
Wkshp on Conceptual Modeling Approaches for e-Business,
Tampere, Finland, LNCS, 2002.

[12] W3C. Web Services Description Language (WSDL) 1.1,
2001, http://www.w3.org/tr/wsdl

