
In Proceedings of the 2005 ACM/IEEE International Conference on Automated Software Engineering, Long Beach, CA, Nov 2005

A Generic Approach to Supporting Diagram Differencing
and Merging for Collaborative Design

Akhil Mehra
Dept. Computer Science
University of Auckland

Auckland, New Zealand
+64-9-3737-599

akhilmehra@gmail.com

John Grundy
Dept. Electrical and Computer Eng.

University of Auckland
Auckland, New Zealand

+64-9-3737-599 ext 88761

john-g@cs.auckland.ac.nz

John Hosking
Dept. Computer Science
University of Auckland

Auckland, New Zealand
+64-9-3737-599

john@cs.auckland.ac.nz

ABSTRACT
Differentiation tools enable team members to compare two or
more text files, e.g. code or documentation, after change.
Although a number of general-purpose differentiation tools exist
for comparing text documents very few tools exist for comparing
diagrams. We describe a new approach for realising visual
differentiation in CASE tools via a set of plug-in components. We
have added diagram version control, visual differentiation and
merging support as component-based plug-ins to the Pounamu
meta-CASE tool. The approach is generic across a wide variety
of diagram types and has also been deployed with an Eclipse
diagramming plug-in. We describe our approach’s architecture,
key design and implementation issues, illustrate feasibility of our
approach via implementation of it as plug-in components and
evaluate its effectiveness.

Categories and Subject Descriptors
D.2.2 [[Software Engineering]] Design Tools and Techniques –
CASE tools

H.5.3 [Information Systems] Group and Organization Interfaces
- asynchronous interaction

D.2.7 [Software Engineering] Distribution, Maintenance, and
Enhancement – version control

General Terms
Design, Human Factors

Keywords
visual differencing, merging, version control, CASE tools.

1. INTRODUCTION
Efficient management of software artefacts is a major task of any
project involving more than one person. An important goal is

maintaining versions of software artefacts as they evolve,
preventing people from accidentally overwriting each other’s
work, and allowing tracking of changes made to those artefacts
over time [1], [3], [21].
A related and important task is support for version comparison
and merging [1], [21]. Although configuration management tools
provide good support for versioning, tool support is also needed
to identify differences between versions of an artefact. The Unix
tool diff [11] is one such popular tool for comparing two text
files. Diff compares files and indicates a set of additions and
deletions. Many version control tools provide functions similar to
diff to identify changes between versions of text documents.
Initially diff tools were hard to use as users needed to manually
navigate to lines where changes were made. This led to creation
of visual differentiation tools, to improve usability and highlight
changes within IDEs. Many of these are generic working across
many text-based document types [10], [15]. Many IDEs
incorporate such differentiation facilities, often using a diff-style
tool as a component-based plug-in to do the comparison with
results presented visually in the IDE, as in the Eclipse version tree
plug-in [2]. Merge support in an IDE uses differences detected to
apply changes made in one version of a document to another.
Although good, generic support is available for differentiating and
merging text documents, limited support is currently available for
differentiating graphical objects such as UML design diagrams
and software architectures [16], [22]. Providing visual
differentiation in CASE tools is important to enhance a team’s
efficiency and effectiveness when collaborating asynchronously
using diagrams to represent information [20]. Existing diagram
differentiation tools are usually limited to a single diagram type
and hard-coded into the CASE tool. A diff-style algorithm doesn’t
work for two (or three) dimensional diagrams as the isolation of
the diagram into “islands of difference” is very difficult. Tool
developers use diagram type-centric techniques that need
recoding for different diagram types.
We have added generic visual differentiation facilities to
Pounamu [23], a meta-CASE tool which allows a user to specify
and generate multi-view visual design tools. Pounamu diagrams
are stored in XML format so visual differentiation facilities were
added by differencing this XML format. Differences are then
translated into editing events which are presented to users by
using appropriate highlighting to emphasize differences. Users
also have the ability accept/reject changes made thus enabling
partial merging of diagrams.

ACM COPYRIGHT NOTICE. Copyright © 2005 by the Association for
Computing Machinery, Inc. Permission to make digital or hard copies of part or all
of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

jgru001
Text Box
(c) IEEE 2005. In Proceedings of the 2005 IEEE Int Conf on Automated Software Engineering.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

a b

c d

Figure 1. Examples of editing tools in Pounamu.

Syntactic and some semantic conflicts are detected and presented.
Use of our technique on a range of diagram types has proven
successful, and usability evaluations demonstrate its
effectiveness.
We first present motivation for our work and related research. We
then present our approach for providing versioning, visual
differentiation and merging support in Pounamu and illustrate
user interaction with our plug-ins. An Eclipse graphical editor
plug-in for Pounamu-specified diagrams using the same
differencing and merging plug-ins is also shown. We then
describe key design and implementation decisions, evaluate our
approach, and identify directions for further research.

2. MOTIVATION
Consider two users modifying the design of a system. These
developers may work together to review and modify the design,
but at times may be working independently and need to make
design modifications. Figure 1 (a) shows part of a UML design
for a software system that may be under modification by user
“John”. John may add classes, attributes, operations and
relationships. He may modify existing classes and relationships.
He may also reposition diagram elements, change relationship
role names and arities, and possibly annotate the design diagram
with notes or other supported annotations. User “Mark” will want
to be isolated from these changes for a time, requiring versioning
of design diagrams. Eventually Mark will need to compare the
version of the design he has to that of John’s via a diagram
differencing facility, highlighting changes as shown in Figure 1
(b). Figure 1 (c) and (d) show other examples of diagram
difference presentation, in this case a Gantt chart. Mark may want

to merge some or all of John’s changes into his version, which
may include some of Mark’s own independent modifications.
Other kinds of diagrams John and Mark are asynchronously
editing will also need to be versioned and differentiated and
merged.
The diagrams in these examples are implemented using the
Pounamu meta-tool [23]. Pounamu is a meta-tool for building
domain-specific visual language diagramming tools. Pounamu
also provides a framework for realizing and using the specified
tools. Using Pounamu a user can rapidly specify visual notational
elements, underlying tool information model requirements, visual
editors, the relationship between notational and model elements,
and behavioral components [23]. Tools are generated dynamically
and can be used for modeling immediately.
Efficient asynchronous collaboration amongst groups of people
working together may be facilitated using versioning and
differentiation tools. We were motivated to improve
asynchronous collaboration in Pounamu by providing users the
ability to version Pounamu model projects via a CVS repository
[9]. The ability to version Pounamu model projects led
immediately to the requirement for generic visual differentiation
and merging tools for diagram versions.. Such a tool should
enable users to visually compare their current work with prior
versions or other user’s versions of the same diagram. It should
also provide users with information about addition, deletion,
movement or property changes in shapes or associations and users
must be able to specify changes they wish to keep and changes
they wish to discard thus enabling them to merge their current
diagram with any prior version. Syntactic conflicts should also be
presented to users for resolution, and any semantic conflicts

introduced by a merge should be highlighted. As Pounamu
supports building a huge range of domain-specific diagramming
tools, the visual differentiation and merge facilities should be
generic across any diagram type. Finally, we wanted to
seamlessly add version control, diagram differentiation and
merging to Pounamu using its plug-in API, rather than modifying
its code directly.
Much research has been done on the issue of version control,
differencing and merging support for programming language
editors and other (textual) document editors. Various version
control tools have been developed and made available as remote
services and plug-ins for many IDEs, such as CVS [7] and RCS
[21]. More complex versioning facilities are supported in some
specialized program editors, such as Mjolner [14], making use of
abstract syntax graphs to link fine-grained versions of artifacts.
Many textual differencing tools share the approach of diff [11]
and related tools, determining a set of additions and deletions to
change file A into file B [10], [15]. However, extensions to this
have been made to support binary and, more recently, XML file
differencing, such as the IBM and Stylus Studio XML Diff/Merge
tools [12], [19]. Several IDEs with diagramming tools provide
model-based differencing, some using custom approaches and
others XML-based model differencing [17] [16], [18]. The
approach of Ohst et al [17] use a model of drawings and version
histories to detect changes and present to users via diagram colour
annotation. Several tools [16], [18] use XML differencing of the
model structures to detect changes and support graphical
annotation of the XML to indicate changes between compared
versions. They provide interactive user acceptance or rejection of
changes. While comparing design diagrams at the model level has
advantages of reuse of diff-style differentiation and merging tools,
presentation of the differences textually does not give a very
satisfactory sense of actual diagram comparison to the user.
Work has been done providing custom differencing algorithms in
software tools, such as architecture design environments. These
however tend to use customized algorithms specific to one
graphical model type rather than a general approach [25], [22],
[17]. Generally there is poor support for differentiating graphical
objects such as UML diagrams at the visual, diagrammatic level.
Two exceptions are IBM Rational Rose [13] and Magic Draw
UML 9.0 [16]. Both tools convert their diagrams into hierarchical
text and then perform differentiation on this hierarchy. Changes
are shown using highlighting schemes on the text. The main
drawback of this approach is that changes are no longer visible in
graphical form and thus more difficult to comprehend. The only
tools that we are aware of that present changes graphically are a
prototype UML editor built at GroupLab [20], and a UML
diagram differencing tool we developed in earlier work that
leveraged change event objects passed between users’ CASE tools
to form a delta capturing version differences [5]. This highlighted
changes between diagrams by annotation, presenting version
differences graphically.

3. OUR APPROACH
Our aim in this work was to extend our Pounamu meta-tool to
better support asynchronous collaborative work with diagrams.
Key requirements were supporting versioning, differentiation and
merging across any diagram type using a set of plug-in
extensions. We wanted to present diagram differences graphically
and allow users to interactively select differences to accept

between versions. Figure 2 shows our approach to developing this
generic Pounamu diagram version, differentiation and merging
support.
Users create Pounamu diagrams and may check these into a
remote CVS server. This is facilitated via a plug-in added to
Pounamu to support check-in/check-out to a CVS server Another
user may check out a Pounamu diagram from a CVS repository
(1). If another user currently has a copy of the diagram, an
alternate version is created enabling both to modify it. This new
version of the diagram is then modified by the developer using
Pounamu’s graphical editing tools (2). The developer may then
make the modified version accessible to others by checking it
back into the CVS repository (3). Another user, for example the
original diagram creator, may check this alternate version of the
diagram out (4) and then apply the differencing plug-in to
compare changes between the two versions of the diagram. Our
Pounamu diagram differencing plug-in decomposes the XML
describing a model project into a Java object graph. These Java
objects are then compared to identify differences. The differences
are translated into Pounamu Command objects, each of which
embodies a set of API calls that describe editing events that take
place in a Pounamu model project (e.g. add shape, connect
shapes, move shape, set shape property, delete connector etc) (5).
These generated Pounamu Command objects represent the set of
changes that need to be made to one diagram version to convert it
into the other.
 Pounamu Meta-tool

(User #1)

CVS
Repository

Server

Diagram
versions as

XML

Diagram
XML

Pounamu Meta-tool
(User #1)

Updated
Diagram

XML

CVS Repository
Server

Pounamu Meta-tool
(User #2)

User 2
Diagram

XML

User 1
Diagram

XML

CVS
Plug-in

Differentiation
Plug-in

Merging
Plug-in

CVS
Plug-in

CVS
Plug-in

Differentiation
Plug-in

Pounamu Meta-tool
(User #2)

User-selected of
Pounamu Command

objects

User 2
Diagram

XML

Merging
Plug-in

Pounamu Meta-tool
(User #2)

New
Version of
Diagram

CVS
Plug-in

1. User #1
checks-out
version for

update

2. User #1
edits

diagram in
Pounamu

3. User #1
checks
updated

diagram back
into CVS

4. User #2
checks-out
version for
compare/

merge

5. Differentiation plug-in generates set of
“differences”, represented by executable

Pounamu edit Command objects.

7.Merger plug-
in converts
highlighting
commands to

edit commands
and runs those

selected by
user, resulting

in new diagram
version

8. New version
checked into
CVS; other
users can

copy, merge
etc.

Pounamu Meta-tool
(User #2)

Set of changes
(Deltas) – as

Pounamu
Command objects

User 2
Diagram

with
Highlighting
of affected
elements

Group
Awareness

plug-in
6. User #2

selects
changes

wanted by
pop-ups in
diagram or

list of
Commands

dialogue

Group
Awareness

plug-in

Figure 2. Our Approach to supporting generic diagram

versioning, differentiation and merging in Pounamu.
In earlier work we have developed group awareness facilities for
Pounamu as part of the research carried out to add plug-in
collaborative editing support [9]. These facilities enable us to
provide awareness information to users while they are
collaboratively editing diagrams by highlighting other users’
additions, modifications and deletions to a diagram in near-real
time. As part of creating the group awareness component for
Pounamu we developed a core set of highlighting schemes and an

API to the plug-in for depicting changes in a visual diagram. One
of our goals while developing the visual differencing and merging
plug-ins for Pounamu was to reuse the highlighting support
provided by our group awareness plug-in to graphically decorate
one version to highlight the differences between the diagrams for
the user (6). The user is then able to see in the diagram view in
Pounamu differences between model project versions and can
interactively select the changes to accept or reject (7). Accepting
a change causes its associated Pounamu Command to be
executed, updating the diagram and thus providing selective
merging of diagrams. The merged diagram can be checked back
into the CVS repository for others to use (8).

4. ARCHITECTURE
Each Pounamu model project consists of a set of model entities
and associations. A number of diagrams, or views, are provided of
the model entities and associations allowing users to view and
edit the model information. Each view contains a number of
shapes and connectors. Shapes are linked by connectors (with
owning parent and child shape). Connectors may be visible e.g.
lines between shapes, or invisible e.g. representing containment of
a set of shapes by another, layout constraints, etc. Every
connector or shape has a number of attributes. Each shape has a
unique persistent identifier, an objectID, and also a “rootID”,
which is the objectID of the root version of a shape object. Shapes
in different versions can be identified uniquely by their objectID
and different versions of a shape derived from the same root
shape are identified by sharing the same rootID value.
We represent Pounamu model elements and view elements as
XML files for storage, as shown in Figure 3. Our experience
developing and evaluating various collaborative model-view
based diagramming tools has shown that model differencing alone
is insufficient to effectively support diagram editing, differencing
and merging [5], [6], [9]. We need to difference diagram-level
data and by merging detected changes, the underlying model is
also updated.

 Pounamu Model project

Model

Views

Entities

Entities

Associations

Diagrams

Shapes

Shapes

connectors

Models & views as
XML files

Diagram
objectID, rootID

Shape
objectID, rootID

Connector

0..* child

parent

1..1

1..1

0..*

0..*

Property
Name : Value

0..* 0..*

Figure 3. Pounamu model projects, views and the generic

Pounamu diagram data structure.

Figure 4 illustrates the key architectural components and their
interactions in our extended Pounamu environment. A CVS client
plug-in is used to check-out a diagram version (1), which is then
converted from its XML save format into Java objects (2) and
then rendered and displayed to the user. Edits to the diagram (3)
update the internal Java object structure. When comparing
diagram versions, an alternative version of the diagram is
retrieved (4) and the two versions compared by our diagram
differentiation plug-in (5). This generates a set of Pounamu
Command objects to describe the changes (delta) between the two
diagram versions (6). The diagram highlighting plug-in from our
synchronous collaborative editing system for Pounamu is used to
highlight changes in the diagram (7). A diagram merging plug-in
uses the Command objects to update one diagram version (8),
generating a new, merged version for check-in to the CVS
repository (9).

Pounamu
Diagram
Editing

Pounamu Diagram
Rendering

CVS Client
Pounamu
Plug-in

Remote CVS
Server

Remote
Collaborative
Editing Server

Pounamu
Collaborative
Editing Client

Pounamu
Diagram

Representation
- XML

Pounamu Diagram
Representation – Java
Hierarchical Objects

Alternate Version
Pounamu Diagram
– Java Objects

Diagram
Differentiation

Plug-in

Command
Objects

Representing
Deltas

Diagram
Highlighting
Plug-in for

Group
Awareness

Diagram
Merging
Plug-in

Core Pounamu Facilities

1

2

3

5

4

6

7

8 9

Figure 4. Architecture of the extended Pounamu

Environment.
Figure 5 presents pseudo code describing our view differencing
algorithm. Differences between views are determined by iterating
through all views in a Pounamu model project and comparing
each view with corresponding views in another version of the
model project. We generate a list of editing Command objects
that, when run on one version, convert it to the other version. The
set of Command objects generated correspond to line inserts,
updates and deletes in a CVS-style textual differencing algorithm.
Let us assume we are comparing two different versions of a
certain Pounamu view, view1 and view2 respectively. We
compare these two alternative versions of the same view on the
basis of shapes and connectors present in each view. We build up
a set of Pounamu Command objects that encapsulate the changes
that would need to be made to view2 to convert it to view1. The
two operations, diffShapes() and diffConnectors(), are used to
identify the differences between two views. The operation
highlightChanges() is used to iterate over the change list (made up
of generated Command objects) and highlight one version to
indicate differences to the user.

 /* Differentiate two different views*/
 diffViews(view from project 1, view from project 2) {
 diffShapes(view1, view2, changesList)
 diffConnectors(view1, view2, changesList)
 highlightChanges(view2, changesList)
 }

 /* Differentiate relating to shapes in a particular view.*/
 diffShapes(view1, view2, changesList) {
 Vector view1PounamuShapes = view1.getShapesVector();
 for all (existingShape : shapes in View1) {
 /* Get shape in second view with the same shape root id */
 PounamuShape secondViewShape = view2.findShape(existingShape.getRootID());
 if (secondViewShape != null) { /* if same-rooted shape exists... */
 /* Check if all attributes match. If same do nothing; else find differences */
 if (do the two shapes have the same position) {
 /* If false add to shapes that have been moved */
 changesList.add(MoveShapeCommand(secondViewShape, dx, dy));
 } /* Check if shape has been Resized */
 if (are the two shape of the same size) {
 /* If false add to shapes that have been resized */
 changesList.add(ResizeShapeCommand(secondViewShape, dwidth, dheight));
 } /*Attributes Changed */
 if (check if shape attribute values are the same) {
 for all (prop : props of existingShape where oldValue=existingShape.getValue(prop) !=
 newValue=secondViewShape.getValue(prop)
 changesList.add(ChangePropertyCommand(secondViewShape, prop, oldValue, newValue));
 }
 } else {
 /* shape does not exist in view2 so it has been deleted… */
 changesList.add(DeleteShapeCommand(secondViewShape));
 }
 }
 Vector view2PounamuShapes = view2.getShapesVector();
 for all (secondViewShape : shapes in View2) {
 /* Get shape in other view with the same shape root id */
 PounamuShape existingShape = view1.findShape(secondViewShape.getRootID());
 if (existingShape == null) {
 /* shape does not exist in view1 so have added it */
 changesList.add(NewShapeCommand(view1, secondViewShape.getType(), secondViewShape.getRootID()));
 for all (prop : properties of secondViewShape)
 changesList.add(ChangePropertyCommand(newShape,prop,null,secondViewShape.getValue(prop)));
 }
 }
 }

 /* highlight changes in view */
 highlightChanges(view2, changesList) {
 for all (change : changes in changesList) {
 if (change == NewShapeCommand)
 shape = NewShapeEvent.getShape();
 shape.setTempProperty(“oldLineColor”, shape.getLineColor()); // remember old values...
 ...
 shape.setLineColor(red);
 shape.setBorderThickness(2);
 …
 else if (change == MoveShapeCommand)
 ...
 }
 }

Figure 5. Pseudo Code Describing the Model Project Differ.

As views are made up of shapes and connectors they are
compared on this basis. All Pounamu views, shapes and
connectors have a unique, persistent object ID (a GUID)
generated when they are created, making them uniquely
identifiable across users’ model projects. View elements are
similarly tagged with a unique object “root ID” in addition to their
own unique object ID. If a view is created from an existing view
i.e. an alternative version or revision, the new view’s elements are
tagged with the root ID of the elements they are derived from. If a
view is created from scratch, each element’s root ID is the same
as its object ID.
When comparing views the root ID is used to identify view
elements with the same common root object i.e. elements in each
view that are alternative versions of each other. This can be
thought of as a simplified form of origin analysis [24] and is a
way of implementing object uniqueness [17]. Connector
alternative versions are identified by their source/target shape root
IDs. We use a two-pass approach over the diagram’s shape and
connector elements rather than graph-based traversal [25] to
generate the Command objects representing a delta between them.
Firstly we iterate over each shape in view1 and see if it exists in
view2. If not, the shape must be deleted to convert view1 to
view2 (which will result in all of its connectors also being

deleted). A delete shape Command object is generated to
represent this action for each shape in view1 but not present in
view2. Shapes present in both view1 and view2 have their size,
location and other properties compared. Editing commands are
generated to modify any non-matching properties. We then look
for shapes in view2 not present in view1. Any found must be
added to view1 to convert it to view2, so shape addition
Commands are constructed and shape initial size, location and
property value setting commands are generated to initialize the
newly added shape. We then pass over the connectors using a
similar approach: locate connectors present in both views and
generate property change Commands to synchronise their
properties; generate connector delete Commands to remove
connectors in view1 not in view 2; and generate connector Create
and property initialization Commands to add connectors that are
in view2 but not in view1. We have found this two-pass approach
to be sufficient for Pounamu views and generally less complex to
implement and more efficient on large views than graph traversal
approaches.
The diffShapes() method iterates through all shapes in a view and
tries to find shapes with the same root ID in the view that it is
being compared to. If the shape can’t be found, it either needs to
be deleted or added to synchronize the two views. If the shape

exists then it checks for differences in a shape’s size, location and
attribute values. All differences are recorded as Pounamu
Command objects (NewShapeCommand, ResizeShape Command
ChangePropertyCommand etc). These Pounamu Command
objects may be executed in order to synchronise the two views
which results in view1’s diagram data structure being converted
into the same as view2’s. Any newly added shapes in view1 have
their rootID set to the rootID of their view2 shape they have been
derived from, allowing identification of common ancestors for
shapes. Complex shape structures e.g. containment and layout-
based constraints are supported by our comparison and merging
mechanism as they are driven by change events generated by the
Command object execution.
The Diagram Highlighting plug-in from our collaborative diagram
editing client provides a highlightChanges() function. This
decorates the graphical diagram rendering to indicate changes
required to convert one version to the other. The diagram
highlighter iterates through the generated Pounamu Command
objects and for each modifies the Pounamu diagram elements –
bold red for added shapes; dashed fine line around deleted; red fill
box for changed shape and connector properties; and dashed
origin and line for move/resize of shapes. The highlighter
modifies standard properties of shapes and connectors to achieve
some of these highlights and adds its own annotation shapes and
connectors to the diagram to achieve others. Upon carrying out
merging of changes (i.e. execution of editing Commands),
standard Pounamu diagram editing event propagation notifies the
highlighting component which then removes annotations.
Users may select a subset of Commands to apply to a view to
effect merging of changes by interacting with the decorated
diagram elements. Accepting a change and having its associated
Command object executed results in a change-by-change partial
merging. This may result in some commands not being able to be
applied. For example, a NewShapeCommand is not applied
meaning a subsequent ChangePropertyCommand on the shape not
being able to be applied to the view. Similarly during merging
semantic errors can be produced e.g. two classes with the same
name or an invalid type association between objects. We allow
the Pounamu tool’s semantic constraint handling to detect and
highlight these as merging proceeds. However, applying the
Command objects (i.e. modifying the syntactic structure of the
view) and providing the user a list of semantic errors introduced
into the new version could be supported in advance of user-
acceptance of syntactic merge changes.

5. EXAMPLE USAGE
We illustrate our diagram differentiation and merging algorithm
with a simple class diagramming tool example. Two colleagues,
John and Tim, are working with a Pounamu-created UML design
tool at different locations. By using Pounamu versioning
capabilities they can asynchronously collaborate on a Pounamu
model project. In order to find differences between different
versions of model project’s views they are provided with our CVS
version control plug-in, diagram differencing plug-in and
difference merging plug-in.
A CVS repository enables storing and versioning of binary and
text files and sharing of these files among distributed users.
Asynchronous collaboration in Pounamu is facilitated by
versioning Pounamu model projects and their views using a
shared CVS repository via a plug-in to the Pounamu modeling

tool. This CVS plug-In enables storing and retrieving Pounamu
model project information and individual diagram information in
their XML save file format from a shared, remote CVS repository.
Users who wish to collaborate on a model project asynchronously
are expected to check in (store) their model projects into a CVS
repository. Remote collaborators can check out (retrieve) model
projects thus enabling asynchronous collaboration.
Let us assume John creates a new UML class diagram for an
existing Pounamu UML tool model project that he and John are
working on. John adds shapes and connectors, moves and resizes
shapes, sets various properties and so on to create his class design
diagram. In order to share these changes with Tim, John “checks
in” his model project with the CVS repository. The current state
of the new class diagram checked in by John is illustrated in
Figure 6.

Figure 6. Initial class diagram view as checked in by John.

Figure 7. Tim’s alternative version of the class diagram.

Tim subsequently checks out the model project containing this
same UML class diagram from the CVS repository, thereby
creating an alternative version of it and asynchronously makes
changes to his version of the class diagram. Tim’s alternative
version of the diagram after making several changes is shown in
Figure 7. Class icon shapes have been moved, deleted and some

of their properties changed; association connectors have been
added and deleted. Tim the checks his model project back into the
CVS repository, resulting in his alternative versions of changed
diagrams being checked in as well.
In order to see any changes that might have been made by Tim,
John differentiates his model project against what Tim has
checked in. Appropriate pop-up menu items in the right-hand
Pounamu tree viewer are provided when the CVS versioning and
diagram differentiation plug-ins have been enabled. On selecting
the “Diff with Later Versions” menu item for an open diagram
view, John is presented with a differentiation dialogue box as
show in Figure 8. John chooses “Version 1.5” checked in by Tim
to differentiate his current version (“Version 1.4”) of the class
diagram against. On executing the differentiate command Tim’s
version is checked out of the CVS repository in read-only mode,
and the differentiation algorithm from Figure 5 is applied
comparing Tim’s version (view 1) with John’s version (view 2) of
the diagram. A set of Pounamu Command objects are generated
representing the delta between Tim’s alternative version and
John’s version of the class diagram. John’s diagram is then
annotated to show the differences by our diagram highlighting
plug-in iterating over the generated Command objects.

Figure 8. Differentiate Dialogue Box.

Figure 9 shows the highlighted differences between Tim and
John’s versions of the class diagram. Solid lines denote creation
of a shape or an association (e.g. “AdminStaff” and its association
to “StaffMember”). Dotted lines denote deletion of a shape or
association (e.g. “ITStaff” and its association to “StaffMember”).
Shape movement is donated by an empty dotted box pointing to
the new place where the shape has moved (e.g.
“CreativeMember” repositioning). The background colour of the
view has changed to a darker shading to enable users to be able to
view the extent of changes to a view at a glance. A white
background denotes no change while a very rich pink background

denotes a large number of changes. Dark highlighting of entities
and attributes denote creation and modification of values. A list of
all changes is also available via a dialogue.
A user is free to accept or reject any changes presented. Pop-up
menu items are provided with each change to enable John to
accept or reject each of the changes made by Tim as he requires.
After careful analysis John has decided to accept the shape and
association created while rejecting the shape and association
deletion. The resulting view that John sees after accepting and
rejecting all change is shown in Figure 10. However note that
some changes are dependent on previous changes made e.g.
accepting the setting of AdminStaff properties and creation of its
association to the StaffMember class requires firstly accepting the
creation of the new AdminStaff class icon. If this creation has not
been accepted, the subsequent changes are marked as “not able to
apply”.

Figure 9. View after Differentiation and highlighting.

Figure 10. Merged document to be checked in by John.

6. DESIGN AND IMPLEMENTATION
One of the major design goals was to make no changes to the
existing single-user Pounamu code when adding our CVS,
diagram differentiation and diagram merging capabilities to

Pounamu. Our plug-ins were designed to use a Service Oriented
Architecture [9] where each service, collaborative editing, group
awareness, and version control, are discovered at run-time by
Pounamu environment client plug-ins. The diagram
differentiation plug-in was the major development. Design of the
visual differentiation tool was made easier by translating
differences detected between diagram versions into Pounamu
editing Command objects. We then reused the diagram
highlighting plug-in from our group awareness support plug-in to
highlight a view using these command objects. Version merging
was supported by allowing the user to selectively run all or some
of these Command objects on the target view, producing a merged
view version.
Figure 11 shows the design and interactions of our versioning,
differentiating and merging plug-ins. Assume that user John
decides to differentiate his existing model project with a later
version of Tim’s stored in the CVS repository (1). On retrieving
Tim’s checked in model project as an XML document (2) and
having its views loaded into Pounamu’s object structures (3), John
may differentiate the two (4) using the Differentiation plug-in. A
set of Pounamu Command objects (5) are generated by the
Differentiation plug-in’s diffViews() method, by traversing the
view structure of view 1 and comparing each shape and connector
to their equivalents (if they exist) in view 2.

CVSPlugin

CVSRepository

Project XML
document

View version 1a
Objects

View version 1b
Objects

PounamuView

PounamuShape

PounamuConnector

Properties

Differentiation Plugin

PounamuView

PounamuShape

PounamuConnector

Properties

PounamuCommand

Highlighter Plugin

Change Event

1

2

3

4

5
6 7

8

9

diffViews()

diffShapes()

diffConnectors()

execute()

setXXX() accept()

New Shape()
Shape.delete()
Shape.setXXX()
…

Update
model
etc

Figure 11. Design of diffing/merge plug-ins.

The sequence of events that take place within diffShapes() and
diffConnectors() are quite similar. When diffShapes() is called it
retrieves a list of PounamuShape objects in the form of a vector
from the first PounamuView (view 1). It then uses this list for
comparison. Iterating through the list of PounamuShapes it
obtains the rootID for each shape. A rootID uniquely identifies
each shape. The rootID is used to retrieve similar objects for the
previous version. If the object is not found a
NewShapeCommand and a number of SetPropertyCommands are
added to the changes list, denoting the need to add this shape if

the two versions are to be synchronised. Similar comparisons are
carried out for removal, movement, resizing and changes in shape
or connector object properties. The changes list containing the set
of PounamuCommands needed to fully convert view 1 to view 2
is then passed to the Highlighting plug-in from our group
awareness system (6).
The Highlighting plug-in examines each Command object and
sets various visual properties (colour, line thickness and style,
border, shadow position and arrow etc) of view 2’s Pounamu
view objects. The view is re-rendered once this is complete,
decorating the view to indicate the version differences. A menu
item for each Command object is added to each Pounamu view
object’s pop-up menu, allowing the user to selectively accept or
reject the difference. Accepting the difference tells the
Highlighter to run the Command, by calling its execute() method.
For each kind of Command, various changes are made to the view
e.g. add new shape, delete shape, set shape property etc (8). The
Pounamu model is updated when the view objects are thus
changed (9), updating any other views sharing the model
information.

Differentiation Plug-in Highlighter Plug-in

Adaptor classes

PounamuView PounamuShape PounamuCommand …

Eclipse view 1a Eclipse view 1b

Model.Shape

Model.Diagram

Model.Property

Model.Shape

Model.Diagram

Model.Property

1 2

3

5

4 6

Figure 12. (a) Eclipse Pounamu plug-in differentiation and (b)

adaptor objects for the differentiation plug-ins.
We have recently developed an Eclipse plug-in for Pounamu that
loads Pounamu meta-tool specifications and provides an Eclipse
Graphical Editor Framework (GEF)-based modeling tool. An
example of view differentiation with our Differentiation and
Highlighter plug-ins is shown in Figure 12 (a). As the Eclipse
plug-in does not represent view objects nor Command objects the
same way as our Pounamu modeling tool we developed a set of

Adaptor classes to map the methods of our Eclipse plug-in onto
compatible named and typed classes of our Pounamu modeling
tool. This allowed us to add our Differentiation and Highlighting
plug-ins into the Eclipse-based Pounamu environment and
support these activities. Figure 12 (b) illustrates the Adaptor
objects needed to achieve this. Our Eclipse plug-in does not store
the views as XML, hence the need for adaptation to the plug in’s
internal object structure.

7. EVALUATION
We used a combination of the Cognitive Dimensions framework
[4], Gutwin’s groupware assessment framework [8], and a user
survey to assess the effectiveness of our Pounamu plug-ins for
asynchronous diagram version control, differentiation and
merging. The Cognitive Dimensions framework provides a
generic approach to measuring various usability characteristics of
notations and their environments [4]. We were particularly
interested in assessing our plug-ins’ support for the dimensions of
visibility of changes, hidden dependencies, viscosity (i.e. ease of
change of content), error-proneness, hard mental operations,
consistency and closeness of mapping (i.e. how close a
representation matches a user’s mental model). From our analysis,
key results were that a major benefit of our approach is that
differences are highly visible, being presented as graphical
annotations to one of the compared diagram versions. Unlike
approaches using comparison of models or textual versions of
diagrams there are no hidden dependencies between the
differences presented and accepted by the user and the resulting
merge operation. Interactive acceptance of changes in the diagram
by the user reduces both error-proneness and hard mental
operations during merging of versions. Our approach to
presenting changes is consistent, using colour (red) to denote
change, though the difference between some change types is
minimal e.g. set property vs create vs move shape. The graphical
mark-up of changes in a diagram our approach adopts is similar to
the way textual and XML differencing tools [2], [19] present
changes providing an element of consistency.
Gutwin’s framework [8] provides a groupware-specific set of
usability and assessment criteria. As our work is an asynchronous
groupware extension to Pounamu, we evaluated our
differentiation and merging plug-ins using the presence,
authorship, identity, gaze, action, intention and location criteria
of the framework. Key results from this analysis are that users can
identify other’s presence and authorship of changes as these are
annotated with the author’s name and represented in the dialogue
view of changes (with changes by multiple authors represented
differently in the graphical presentation through tool tips).
Changes to diagram content are explicitly and clearly represented
and user interaction is explicitly with a graphical representation of
changes via pop-ups to accept/reject them. Partial support for
intention awareness is supported as the differentiated and
visualized changes represent another’s (intended) actions for the
merged diagram.
We conducted a formal user survey of our group awareness plug-
ins for collaborative editing [9]. This involved 10 users carrying
out a combination of synchronous and asynchronous design tasks
with a Pounamu UML tool over multiple sessions. These were
mainly UML diagram review, creation, editing and discussion.
Users performed various asynchronous UML diagram editing
tasks with our versioning, differentiation and merging plug-ins.

They also performed synchronous UML diagram editing tasks
with other Pounamu groupware plug-ins. Feedback on our
asynchronous editing support features was very positive,
including their response time, approach to presenting changes,
support for incremental change accept/reject and overall support
for asynchronous diagram-based design activities. Some users
requested control over the way changes are presented by the
highlighting plug-in. Some requested the ability to have multi-
version merges, like in MS Word, where tracking of changes by
several users on the same document is supported with different
coloured highlighting.
Most existing diagramming tools with versioning support provide
model-based differencing using diff or XML diff-based tools [18],
[19]. Those that provide diagram differencing utilize textual
comparison of diagram content. For example Rational Rose and
Magic Draw convert diagrams into a hierarchical textual
representation which is diffed and then changes between diagram
versions presented as highlighting schemes on the text. The main
drawback of this approach is that changes are no longer visible in
graphical form and thus more difficult to comprehend (or
introduce hard mental operations in Cognitive Dimensions
terminology) [20]. In contrast our plug-ins provide in-situ
presentation of differences within diagrams and interactive
accept/reject by users with immediate visualization of the
accepted merged change. The generic nature of our differencing
algorithm and use of Pounamu Command objects to represent
differences between versions means it can be applied to any
Pounamu-specified diagramming tool; for example, Figure 1 (c)
and (d) show application to a Gantt chart tool generated using
Pounamu. As the architecture of our plug-ins uses Pounamu’s
view representation objects and Command objects to update view
content on merging, it is compatible with other Pounamu core
features and plug-ins. These include semantic constraint checking
via event-driven rules, model-view consistency across multiple
diagrams when changes are merged into a diagram, and seamless
integration with our synchronous editing plug-ins for Pounamu. In
addition, because of this architectural approach we have managed
to integrate our differentiation plug-in into our Eclipse modeling
plug-in for Pounamu, using the Eclipse plug-in’s object adaptors
without modification of either.
Our approach has some limitations. As indicated above from our
user survey and assessment against Gutwin’s framework, users
cannot control how changes detected by the differentiation plug-
in are presented. As Pounamu is a meta-tool allowing very
flexible definition of diagrammatic forms and meta-models, this is
somewhat frustrating to users. Similarly, we currently only
support batch-oriented comparison of one diagram version to one
other, without tracking changes in a diagram across multiple
versions or supporting several-version diagram merge. Semantic
errors can be introduced easily when merging versions e.g. same-
named method or class; type-mismatch, invalid association.
Currently we allow Pounamu’s constraint mechanism, which is
driven by event handlers detecting diagram and model object
changes, to detect these and present them using the user-specified
mechanism in the meta-tool. Ideally semantic conflicts that may
be introduced by accepting a change should be indicated in the
annotated diagram similar to syntactic changes. Conflicting
syntactic changes e.g. one user has deleted shape while another
moves it or sets its properties, are detected by our differentiation
algorithm. However no attempt is currently made to re-order

changes or indicate to the user that accepting one change may
invalidate another. The scalability of our diagram highlighting
approach is limited, with a very complex diagram with a large
number of changes resulting in very complex, over-lapping
highlighting. We need support for users to see a subset of changes
and be able to interact precisely with change highlights in views.
Future work includes providing users with the ability to change
the highlighting used by the highlighting plug-in. This can be
done using Pounamu’s meta-tool to specify individual event
handler plug-ins (dynamically loaded Java script) for each
highlighting scheme but requires re-engineering our highlighting
plug-in. Semantic conflict detection and presentation before and
during version merging could be supported using Pounamu event
handlers that generate events indicating a conflict. Currently these
implement a user-defined conflict presentation strategy
themselves via arbitrary plug-in Java scripts. All semantic
constraints for a Pounamu tool would instead need to be encoded
in a uniform way.

8. SUMMARY
We have developed a set of plug-in components for the Pounamu
meta-tool that seamlessly support asynchronous diagram
versioning, differentiation and merging. Any diagram type
defined with Pounamu may make use of these capabilities to
compare versions of the same diagram, the differentiation plug-in
generating a set of generic Pounamu Command objects to
represent the delta between the versions. A reused view
highlighting plug-in visually annotates the diagram to indicate the
changes between versions and supports interactive, selective
accept/reject of changes by the user. By use of a set of adaptor
classes our plug-ins provide similar support within Eclipse
graphical editors derived from Pounamu meta-tool specifications.

9. REFERENCES
[1] Conradi, R. and Westfechtel, B. Version Models for

SoftwareConfiguration Management. ACM Computing
Surveys, vol. 30, no. 2, p. 232-282,1998.

[2] Eclipse Version Tree plug-in for CVS,
http://versiontree.sourceforge.net/

[3] Ellis, C.A., Gibbs, S.J., and Rein, G.L., Groupware: Some
Issues and Experiences, CACM, vol. 34, no. 1, 1991.

[4] Green, T. R. G., Burnett, M. M., A Ko, J., Rothermel, K. J.,
Cook, C. R., and Schonfeld, J., Using the cognitive
walkthrough to improve the design of a visual programming
experiment, 2000 IEEE Conf. on Visual Languages, pp. 172-
179.

[5] Grundy, J.C., Hosking, J.G. Mugridge, W.B. and Amor, R.
Support for collaborative, integrated software development,
7th IEEE Conf. on Software Engineering Environments,
Nordwijkerhout, The Netherlands, 4-5 April 1995.

[6] Grundy, J.C., Hosking, J.G. and Mugridge, W.B.
Inconsistency management for multiple-view software
development environments, IEEE Transactions on Software
Engineering, vol. 24, no. 11, November 1998, 960-681.

[7] GNU, CVS - Concurrent Versions System,
ww.gnu.org/software/cvs

[8] Gutwin, C. and Greenberg, S., A Descriptive Framework of
Workspace Awareness for Real-Time Groupware, Computer
Supported Cooperative Work, vol. 11 no. 3, 2002, 411-446.

[9] Mehra, A. Grundy, J.C. and Hosking, J.G. Adding Group
Awareness to Design Tools using a Plug-in, Web Service-
based Approach, 6th International Workshop on
Collaborative Editing Systems, CSCW, Nov 2004, Chicago.

[10] Heckel, P. A technique for Isolating Differences Between
Files, CACM, vol. 21, no. 4, April 1978, pp. 264-268.

[11] Hunt, J.W., and McIlroy, M.D., An Algorithm for
Differential File Comparison., Computing Science Technical
Report No. 41, Bell Laboratories, 1975.

[12] IBM. XML Diff and Merge Tool.
http://www.alphaworks.ibm.com/tech/xmldiffmerge.

[13] IBM, IBM Rational Software, http://www-
306.ibm.com/software/rational/.

[14] Magnusson, B., Asklund, U., and Minör, S., “Fine-grained
Revision Control for Collaborative Software Development ,”
1993 ACM SIGSOFT Conf. on the Foundations of Software
Engineering, Los Angeles CA, Dec.1993, pp. 7-10.

[15] Miller, W. and Myers, E.W., A File Comparison Program.
Software - Practice and Experience, vol. 15, no.11,
November 1985, 1025-1040.

[16] No Magic Inc., 9.0 ed: MagicDraw UML, 2005.
[17] Ohst, D., Welle, M. and Kelter, U. Difference tools for

analysis and design documents, 2003 IEEE Conf. on
Software Maintenance.

[18] Sparc Systems, The Compare Utility (Diff),
http://www.sparxsystems.com/resources/diff/.

[19] Stylus Studio, XML Diff tool,
http://www.stylusstudio.com/xml_diff.html.

[20] Tam, T., Greenberg, S. and Maurer, F., Change
Management, Western Computer Graphics Symposium,
Panorama Mountain Village, BC, Canada, 2000.

[21] Tichy, W. F. 1985. RCS-a system for version control.
Software-Practice & Experience, vol. 15, no. 7, 637-654.

[22] van der Westhuizen, C. and van der Hoek, A. Understanding
and Propagating Architecutural Changes, 3rd IEEE/IFIP
Conference on Software Architecture, pp. 95-109.

[23] Zhu, N., Grundy, J.C. and Hosking, J.G.. Pounamu: a meta-
tool for multi-view visual language environment
construction, 2004 IEEE Conf. on Visual Languages and
Human-Centric Computing, Rome, 25-29 Sept. 2004, 2004.

[24] Zou, L. and Godfrey, M. Detecting Merging and Splitting
using Origin Analysis, 10th International Working
Conference on Reverse Engineering, Victoria, B.C., Canada ,
11-13 Nov, 2003.

[25] Zündorf, A., Wadsack, J.P., and Rockel, I. Merging Graph-
Like Object Structures. 10th International Workshop on
Software Configuration Management. 2001.

