
An architecture for generating web-based, thin-client diagramming tools

Shuping Cao1, John Grundy1, 2, John Hosking1, Hermann Stoeckle1 and Ewan Tempero1 
Department of Computer Science1 and Department of Electrical and Computer Engineering2,  

University of Auckland, Private Bag 92019, Auckland, New Zealand 
{john-g, john, herm, ewan}@cs.auckland.ac.nz 

 
 

Abstract 
Thin-client visual design tools can provide a number of 
advantages over traditional thick-client diagramming tools 
but are challenging to build. We describe a component-
based extension to a thick-client meta-CASE tool that we 
have been developing that allows any specified diagram 
editor to be realised as a thin-client tool 

Keywords: Thin-client diagramming, meta-CASE, web-
based CASE tools, component-based tool extensions 

1. Introduction 
Traditional CASE (Computer-Aided Software 

Engineering) tools use a thick-client, desktop interface and 
architecture. These work well to provide highly responsive 
diagram editing and viewing, leverage sophisticated thick-
client interaction techniques and typically manage 
information on local workstations in a distributed fashion 
[1, 3, 5]. Disadvantages of this approach include a need to 
install and update software on every user’s workstation, the 
complexity and learning curve associated with using many 
CASE tool interfaces, the complex, heavyweight 
architectures needed to support collaborative editing, and 
lack of support in most tools for modifying diagramming 
notations and semantics [6, 7, 4].  

Thin-client diagramming tools use a web browser for 
editing diagrams. Users view diagrams as content of a 
“web page” that also includes controls such as buttons and 
links for modifying the diagram or moving to other 
diagrams [2, 7]. Diagrams may be constructed with 
combinations of automatic and manual layout, resizing, 
highlighting and so on. Technologies to render the 
diagrams might include GIF images, SVG renderings, and 
VRML visualisations. Key potential advantages of this 
approach are a consistent look and feel across all web-
based diagramming tools, use of web page-based interface 
design techniques to aid interaction and learning, no need 
to install and update copies of tools on every workstation, 
and use of conventional web application architectures to 
support collaborative work by multiple users.  

We have been developing Pounamu, a meta-CASE tool 
that provides very flexible diagram and meta-model 
specification techniques. Pounamu has been developed 

with a traditional thick-client architecture. We wanted to 
experiment with thin-client diagramming support for 
Pounamu-based diagramming applications. In this short 
paper, we describe how we were able to provide an 
optional extension to Pounamu that allowed users to 
choose to access generated diagramming tools via a web-
based, thin-client interface generated from the tool 
specification.  

We begin the remainder of this paper by motivating this 
work and reviewing related diagramming tool research. We 
then outline our approach as an extension to our thick-
client meta-CASE tool and describe the architecture of our 
system. We illustrate the thin-client diagramming support it 
provides with parts of a UML CASE tool, and discuss key 
design and implementation decisions. We then summarise 
our results. 

2. Motivation 
We have been developing a new thick-client meta-

CASE tool called Pounamu. This provides a set of tools for 
designing shape and connector appearance, meta-model 
elements, views of meta-model elements using shapes and 
connectors, and event handlers for specifying semantic 
behaviour [8]. Figure 1 (a) shows some of the tool design 
facilities from Pounamu in use. These include a shape 
designer, meta-model designer view designer and event 
handler designer. Figure 1 (b) shows an example 
diagramming tool generated by Pounamu, a Unified 
Modelling Language (UML) CASE tool, being used. A 
thick-client interface is provided for all Pounamu tools, 
which includes an element tree (1), pop-up and pull-down 
(2) menus, drawing canvas (3), shape property editor, 
status window (4), and directly-manipulable shapes (5) and 
shape elements. 

Once a tool has been specified using Pounamu, the 
specification is then executed by Pounamu itself to provide 
the new tool’s behaviour. Pounamu has a traditional thick-
client architecture, and so any tools specified with it have 
the same kind of interface.  
The question we address in this work is whether we can 
use a thin-client approach, specifically whether we can 
create a web-based interface to exactly the same tool 
specification and using the existing Pounamu system as the 
execution engine for the specification. Our approach is to 

jgru001
Text Box
(c) IEEE 2004. In Proceedings of the 2004 IEEE Int Conf on Automated Software Engineering. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.



 

 

(1)

(2)

(3) 

(4) 

(5) 

 
Figure 1. (a) Pounamu meta-tool designer tool and (b) a Pounamu-specified thick-client UML design tool in use. 

 
provide a set of web components developed 
independently of the Pounamu meta-tool itself that access 
a remote API provided for Pounamu. We call the 
resulting system Pounamu/Thin. 

3. Pounamu/Thin Architecture 
Initially a tool designer specifies a diagramming tool 

using the thick-client tool design facilities of our original 
Pounamu meta-CASE tool. These tool specifications are 
saved to an XML-based tool repository for use by the 
Pounamu tool interpreter. Pounamu and the 
Pounamu/Thin web components are deployed and the 
tool specifications loaded by Pounamu and interpreted to 
provide the specified diagramming tool. The 
Pounamu/Thin web components interact with Pounamu 
via a remote web services-based API. Users connect to 
the Pounamu/Thin web components via conventional web 
browsers if using GIF-based diagram rendering 
components. SVG-based rendering components are also 
provided, but require an SVG plug-in in the browser. As 
Pounamu is a meta-CASE tool, the tool specifications 
such as diagram element appearance, meta-model entities 
and attributes, view definitions and event handlers, can be 
changed while the tool is in use. 

Figure 2 illustrates the architecture of our 
Pounamu/Thin. The Pounamu tool runs on a host and 
behaves as the application server/database manager. Tool 
specifications are loaded from XML repositories and the 
diagramming tool configured from these. Multiple views 
of a model are provided by Pounamu, with the diagram 
views being the point of interaction. View data can be 
converted into an XML or a GIF image format. Pounamu 
uses a set of “Command objects” to represent edits to be 
made to a view (or model) elements. These have 
execute(), undo(), redo() methods which when invoked 

carry out the specified modification of Pounamu data 
structure state and re-render affected views. These 
command objects can be created and be sent to a 
Pounamu view programmatically in order to modify it. 
We have provided an RMI API to enable Pounamu views 
to be created and modified remotely via command 
objects, and lately have extended this with a SOAP-based 
web service API.  

Pounamu/Thin is a set of web components hosted by 
an Apache web server. A set of Java Servlets provide the 
diagramming interface, and include user login, view 
manipulation (create, display etc), diagram rendering and 
manipulation, and diagram shape or connector property 
editing facilities. A set of JavaBeans are used to provide 
support infrastructure, including GIF-based diagram 
rendering, SVG-based diagram rendering, diagram 
editing by Pounamu Command object construction and an 
SVG edit command cache. Multiple users can view and 
edit the same diagram simultaneously, the web 
component servlets providing co-ordination and 
sequencing of interactions to the single Pounamu tool 
acting as the shared application server. Users interact 
with the Pounamu/Thin diagramming tools via web 
browsers. If the SVG diagram rendering is wanted by a 
user, an SVG plug-in must be present in their browser. 

Integration with other software tools is provided by 
Pounamu, typically using XML-based data exchanges. In 
addition, some users can chose to edit Pounamu views 
using the existing thick-client diagram editor. In this case, 
they run a version of Pounamu on their own workstation 
with a copy of all model and view information they share. 
The SOAP API is used to synchronise their views with 
the “shared” views used by the thin-client diagram editing 
web components. 

 



Pounamu Server Host 

Pounamu Tool (acting as 
an application server) 

SOAP 
RPC 
API 

RMI 
API Pounamu 

Views 

ModelMeta-tool 
specs. 

Tool specs. 
(XML) 

Saved Data
(XML) 

Pounamu/Thin Web Server Host(s) 

Web Browsers 

Optional 
SVG Plug-in 

Apache Web Server 

Pounamu/Thin 
Diagramming Servlets 

Editing 
Command 
Processing 
JavaBeans 

GIF-based 
render 

JavaBeans

SVG-based 
render 

JavaBeans

SVG Edit Cache

SOAP 
Comms. 

HTML 
GIF 
SVG 

SOAP
XML 
GIF 

SOAP

Edit Commands

GIF 
XML 

Other 
Tools 

 
Figure 2. Architecture of Pounamu/Thin. 

4. Example Usage 
In this section we illustrate the user interface of our 

thin-client diagramming tools with an exemplar tool, the 
UML design tool shown in Figure 1. 

Figure 3 shows the web client user interface of 
Pounamu/Thin when selecting a class diagram view to 
edit (1-2) and the resultant rendered diagram (3), in this 
example using a GIF image to render the Pounamu class 
diagram view. This web browser-based user interface 
includes a set of buttons to control the project (add views, 
open views) (4); a set of buttons to manipulate the 
diagram (add shapes and connectors, move and resize 
elements, edit element properties) (5) and a diagram, 
which can be clicked on to manipulate it (6).  

Moving and resizing shapes requires several 
interactions with the diagram via the browser window. 
The user firstly indicates a desire to move or resize an 
item by selecting the Move or Resize Entity button, then 
selects the element to manipulate. The user then indicates 
the position to move the element to (or place to resize a 
selected corner to) by clicking in the location desired. 
The specified movement or resize operation is enacted by 
Pounamu/Thin and the modified diagram is redrawn.  

We have also developed an SVG-based diagram 
renderer. The Pounamu/Thin servlets providing this 
interface query the Pounamu server for an XML encoding 
of the view and transform this into an SVG 
representation. An SVG plug-in in the web browser is 
required to render the diagrams in the browser. This 
results in more crisply rendered design diagrams that look 
very close to the Swing-based diagram rendering in our 
original thick-client Pounamu tool. An additional 
capability provided by our SVG diagram rendering 
servlets is an option for buffering of edits on the diagram 
in the servlets. Users may make a number of changes to 

their diagram without immediately communicating them 
to the Pounamu application server. These are stored in 
the SVG edit cache. Once the user is satisfied with the 
changes, they can then be committed back to the server. 

5. Implementation Issues 
Pounamu is implemented in Java and little effort was 

required to define and implement the SOAP-based API 
extension to its existing RMI interface. Java Swing was 
used to implement Pounamu’s thick-client view editors. 
Swing provides a mechanism for generating GIF images 
of views of diagram components. This facility is used for 
both printing Pounamu diagrams and copying them to 
other applications by the thick-client tool, and is also 
used for the GIF-based version of Pounamu/Thin. 

Pounamu views are saved to an XML format by the 
tool in order to support both saving and loading views 
and also to support thick-client editing of views via heavy 
weight distributed message passing between multiple 
instances of Pounamu. In addition, Pounamu view editing 
Command objects can also be converted to and from an 
XML format. We used both of these facilities to support 
the editing of Pounamu views and to support SVG-based 
view rendering. The Pounamu/Thin diagram editing 
facilities convert user interactions with diagrams and 
property forms into XML-format Pounamu Command 
objects. Our SVG diagram renderer and editor behaves 
quite differently to the GIF renderer. The latter simply 
requests that Pounamu return a GIF image of a view each 
time a view is changed. The SVG renderer instead 
requests an XML-encoded version of the view from the 
Pounamu server, which it then traverses to generate the 
SVG. We implemented the SVG translator in Java rather 
than using XSLT transformation scripts as we found 
using Java to provide much faster performance and 
because this process required quite complex algorithms. 



 

 

(1)

(2)

(3)
(4) 

(5) (6)

 
Figure 3. Web client user interface of the Pounamu/Thin UML tool.

6. Summary 
We have developed a thin-client diagramming 

extension for a meta-CASE tool, allowing any specified 
tool to have either the original thick-client editing or a 
web-based thin-client editing approach. Our extension is a 
set of Java servlets implementing thin-client diagram 
rendering via GIF images with page-based diagram display 
and editing interaction, or SVG rendering with optional 
drag-and-drop move/resize and edit buffering. We use the 
original meta-tool interpreter to provide a shared 
application server for the thin-client tools, and multiple 
user diagram viewing and editing is supported using this 
conventional web-based architecture. Evaluation of our 
thin-client and thick-client tools indicates both provide 
equivalent diagramming facilities and the thin-client 
versions do provide acceptable response-time and user 
interaction, with limited advantages in the areas of no 
installation overhead, less of a learning curve and web-
based multiple user diagram editing support. 

References 
1. Ferguson, R.I., Parrington, N.F., Dunne, P. Hardy, C., 

Archibald, J.M. and Thompson, J.B. MetaMOOSE - an 
Object-Oriented Framework for the construction of CASE 
tools, Information and Software Technology, vol. 42, no. 2, 
January 2000. 

2. Gordon, D., Biddle, R., Noble, J. and Tempero, E. A 
technology for lightweight web-based visual applications, In 
Proceedings of the 2003 IEEE Conference on Human-Centric 

Computing, Auckland, New Zealand, 28-31 October 2003, 
IEEE CS Press. 

3. Graham T.C.N., Stewart, H.D., Kopaee, A.R., Ryman, A.G., 
Rasouli, R. A World-Wide-Web architecture for 
collaborative software design, In Proceedings of the Ninth 
International Workshop on Software Technology and 
Engineering Practice (STEP '99), IEEE CS Press, 1999, 
pp.22-29. 

4. Grundy, J.C., Mugridge, W.B. and Hosking, J.G. 
Constructing component-based software engineering 
environments: issues and experiences. Information and 
Software Technology 42, 2, January 2000, pp. 117-128. 

5. Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully 
configurable Multi-User and Multi-Tool CASE Environment, 
In Proceedings of CAiSE'96, Lecture Notes in Computer 
Science 1080, Springer-Verlag, Heraklion, Crete, Greece, 
May 1996, pp. 1-21. 

6. Khaled, R., McKay, D., Biddle, R. Noble, J. and Tempero, 
E., A lightweight web-based case tool for sequence diagrams, 
In Proceedings of SIGCHI-NZ Symposium On Computer-
Human Interaction, Hamilton, New Zealand, 2002. 

7. Mackay, D., Biddle, R. and Noble, J. A lightweight web 
based case tool for UML class diagrams, In Proceedings of 
the 4th Australasian User Interface Conference, Adelaide, 
South Australia, 2003, Conferences in Research and Practice 
in Information Technology, Vol 18, Australian Computer 
Society. 

8. Stoeckle, H., Grundy, J.C. and Hosking, J.G. Approaches to 
Supporting Software Visual Notation Exchange, In 
Proceedings of the 2003 IEEE Conference on Human-Centric 
Computing, Auckland, New Zealand, October 2003, IEEE 
CS Press.   

 




