
Automated Data Mapping Specification via Schema Heuristics and User
Interaction

Sebastian Bossung1, Hermann Stoeckle2, John Grundy2, 3, Robert Amor2 and John Hosking2

1Software Systems Group, Technical University

of Hamburg, Harburger Schloßstr. 20,
D-21071 Hamburg, Germany

bossung@gmx.de

2Department of Computer Science and 3Department
of Electrical and Computer Engineering,

University of Auckland, Private Bag 92019,
Auckland, New Zealand

{herm, john-g, trebor, john}@cs.auckland.ac.nz

Abstract

Data transformation problems are very common and are
challenging to implement for large and complex datasets.
We describe a new approach for specifying data mapping
transformations between XML schemas using a
combination of automated schema analysis agents and
selective user interaction. A graphical tool visualises parts
of the two schemas to be mapped and a variety of agents
analyse all or parts of the schema, voting on the likelihood
of matching subsets. The user can confirm or reject
suggestions, or even allow schema matches to be
automatically determined, incrementally building up to a
fully-mapped schema. An implementation of the mapping
specification can then be generated.

1. Introduction

Data transformation is one of the most common
problems facing systems integrators as source data is often
in an inconsistent format or structure for systems wanting to
use that data. This requires integrators to implement code
for the mapping operations required to convert the data
from one form to another e.g. from one XML document
format to another. The code to do this is often tedious to
write, consisting typically of pages of C++, Java, or XSLT
code, and, as a result, tends to be error prone.

In earlier work we have developed a range of domain
specific tools to assist in this task, with the intention of
reducing the amount of coding required, and, by choosing
appropriate metaphors for expressing mappings, to make
mapping specification more accessible to a wider group of
developers. Domains we have developed such tools for
include B2B systems for business data exchange [7] [12],
health systems for patient data exchange [10], building and
construction for design tool integration [3], and software
development environments for software model data and
view exchange [9] [17]. While the tools we have developed
have generally proved to be very useful, all of them require
element-by-element specification of correspondences
between one or more elements in a source schema and one
or more in a target schema. For large problems this becomes

extremely tedious and the tools struggle to scale when
visualising and managing the data mapping process. One
observation resulting from our work across these domains is
that many elements of a mapping specification for a
particular schema pair are “obvious” in the sense that a
perusal of the schemas along with example data quickly
suggests many obvious correspondences. These may be due
to elements having the same names, same types, their
example data values being the same, or complex type
structures may be semantically the same even though
element names differ. These heuristics guide us as
developers when developing mapping implementations.

Our motivation in this work was to make use of such
properties in our data mapping specification and code
generation tools. This paper presents a new data mapping
specification tool, VisAXSM (Visual Automatic XML
Schema Mapper), to assist in automatically determining
correspondences between source and target XML schema
elements. This tool is the visual front-end for AXSM, which
provides an extensible set of schema analysis agents that
suggest inter-element mappings using several heuristics.
These suggestions are pruned, by user interaction and/or a
multiple agent voting strategy, to identify the desired inter-
schema mapping specification. The resulting XML-based
mapping specifications can be used to generate XSLT, Java
or other data mapper implementation code. These generated
data mappers take an XML data file in the source schema
format and produce a new XML data file in the target
schema format. While developed as a standalone proof of
concept system here, a combination of this tool with other
mapping tools is an obvious extension of this work.

We motivate our research and describe related work,
then outline our approach to automated mapping
determination and illustrate the use of our prototype tool
with an example. The architecture of AXSM/VisAXSM is
described and an evaluation of its utility presented. We
conclude with a discussion of the implications of our work.

2. Background and related work

Figure 1 shows parts of two XML schemas representing
information about lists of people, illustrating the basic

jgru001
Text Box
(c) IEEE 2004. In Proceedings of the 2004 IEEE Int Conf on Automated Software Engineering. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

Figure 1: Example schema mapping problem and some correspondences between source and target elements.

issues of the schema mapping problem. Superimposed are
some mappings between the two schemas which are
“obvious” to a human reader. We should emphasise that
these are very small schema fragments, and the difficulty in
developing a mapping is typically due to the sizes of the
schema involved. In some of the domains we’ve worked in,
these can run to several hundred elements or more.
Nevertheless, even in this simple an example, considerable
difficulties are evident, including:
• Complex types can be named and declared globally (as

in schema 1) or can be declared locally and
anonymously inside the declaration of the element that
is of the type. The same applies to elements: they can
be declared globally and referenced (not used in the
example here) or locally inside a complex type.

• There can be multiple elements of the same name in
different locations. Schema 1 has two elements named
"firstname" and in this case it is quite obvious which of
them maps to the "firstname" element in schema 2.
However, the relationship is not always this obvious.

• Some non-obvious mappings become evident when
example XML data is available e.g. a source “ID”
element and target “UniqueValue” for a person always
holding the same value in example data files.

• Types may need conversion e.g. “shoesize” may
actually be represented as different values and require
formulaic conversion. Similarly, names, addresses,
descriptions and so on may need reformatting.

• Some elements have no correspondence in the other
schema e.g. when the source to target translation is
“lossy” or the target format does not have
corresponding data in the source.

Programming such mappings by hand is an arduous

task. Even with tool support, specifying mappings between
large schemas can be extremely time consuming due to the
size of the schemas and the number of element mappings
involved. Tools supporting this process require facilities for
elision, zooming, etc to manage this complexity.

As mapping data between different representations is a
common task, much work has been done on the subject,
differing mainly in the targeted user base (ranging from
expert-programmers to complete non-programmers) and the
degree of automation desired. Most EDI and many XML-
based messaging technologies have function libraries that
programmers use to encode and decode messages [13] [20].
Programmers thus implement message mappings manually
using these function libraries, which is time consuming,
error-prone and difficult to maintain [10]. Some message
mapping systems have been developed [1], but these
typically use a low-level representation of mappings
incapable of handling complex transformations. Message-
Oriented Middleware systems, such as MQ Integrator™
[11], provide message integration tools. These have limited
abstract message translation facilities, thus requiring low-
level programming. XML-based message encoding and
message translators include XSLT, Seeburger’s data format
and business logic converter [16], eBizExchange [14] and
Mapforce [2]. Based on XSLT, these systems lack
expressive power and modularity (especially for complex
hierarchical mappings) and tools only partially support
visual mapping and XSLT script generation. Some
Enterprise Application Integration products, such as Vitria
BusinessWare™, [19] BizTalk™ [6] and the Universal
Translation Suite [5] support message translation for
database, message and XML-encoded data. However, these
solutions are limited to simple record structures and are

difficult to use. In our own work, we have experimented
with several visual approaches to mapping specification,
using a variety of visual metaphors. These include the View
Mapping Language, which uses a UML like icon and
connector approach, the Rimu Visual Mapper, which uses
drag and drop links between hierarchical tree structures, and
the Form Based Mapper, which uses drag and drop links
between business forms [8].

Rahm and Bernstein [15] overview a variety of
approaches to schema mapping, and, in particular,
algorithms for generating automatic mappings. They
introduce notions of composite and hybrid mapper
architectures, which we have adopted in VisAXSM,
together with the use of both schema level and instance
level mapping approaches. Su et al’s Xtra system [18]
attempts to automatically determine mappings between two
DTDs. This is similar to our work, but basing the mapping
on DTDs rather than XML Schema, limits significantly the
amount of information available for matching. Mapforce,
discussed earlier, also includes facilities for automatic
discovery of matches, but this is very limited, requiring
exact name matching and for elements to be direct sub-
elements of known matched elements. It also has significant
limitation in handling types associated with the matches.

Examining the deficiencies in this prior work suggested
the following requirements for our prototype tool:
• The tool should automatically traverse the two schemas

to be matched and suggest correspondences;
• A user interface to the tool must allow the user to focus

on parts of the schema mapping at hand and be used to
constrain the automatic traversal and suggestions;

• Users should be able to accept or reject suggested
correspondences and have the tool provide an updated
list of suggestions, providing an interactive
environment in which the overall solution space of
suggestions is pruned into a usable mapping. Users may
even accept suggestions automatically if the probability
of correctness is above some user-defined threshold;

• Ideally the tool framework should be flexible enough to
incorporate an extensible set of matching algorithms
using a wide variety of different heuristics, to be
incorporated as “plug ins”;

• The ability to generate mapping implementations e.g. in
XSLT or Java from a refined mapping specification

3. Our Approach

In our new approach to supporting complex schema data
mapping determination and data mapper code generation,
source and target XML Schema data files are repeatedly
analysed by a set of “analysis agents”, each of which
applies different heuristics to elements in the schema, to
determine if one or more element in each schema are likely
to correspond. Data elements “correspond” when, if
translating data represented by the source schema to the

format described by the target, the source element(s) can be
converted into the target elements by either direct copy or a
function over their value(s). The analysis agents can be
targeted to only analyse small subsets of the two schemas to
manage complexity. The architecture permits agents to be
added or removed in a “plug and play” fashion. As it is
impossible to fully automate a mapping correspondence
determination process [15], users interactively accept, reject
or defer suggested correspondences. This re-focuses the
agents on different parts of the schemas where
correspondences are not yet determined. Eventually all
elements will have a correspondence, or the user will have
specified that none exists, and a data mapper can be
generated from the correspondences. The data mapper will
take XML data files in the source schema format and
produce XML data files in the target schema format.

Source and
Target
XML Schema

VisAXSM 1. User chooses
and imports into
VisAXSM

[Optional] XML
data files using
Schema

5. VisAXSM
Visualises Schema

+ mappings

XML Schema
and Data

Analysis Agents

2. VisAXSM Represents
Schema/Data in XML

DOMs
3. Analysis

agents
traverse

schema/data
DOMs

4. Agents build
up candidate

mapping
correspondences

6. User accepts/rejects
suggestions; agents run again

using user feedback to focus on
sub-parts of schema

Mappings
in XML

XSLT, Java,
Rimu, … code 7. Mappings saved to XML format;

data mapping implementation code
generated from this XML

AXSM

Figure 2: TheVisAXSM mapping process.

The way our VisAXSM automated data mapping tool is
used is illustrated in Figure 2. The user first selects a source
and target XML Schema (1). We could also use DTDs or
other specifications of data formats e.g. RDBMS schema,
but XML Schema definitions provide a good range of
information on the structure of their XML data files. The
user may also optionally specify one or more example data
files that are based on the definition in each source and
target schemas. VisAXSM parses the schemas and data files
and loads them into an extended form of XML Domain
Object Models (DOMs) where they can be traversed by the
analysis agents (2). The analysis agents examine the
schemas using the root nodes as their initial context and
generate suggestions of candidate mappings (3). These
candidates are also represented using an XML DOM-based
structure in the tool (4). The VisAXSM user interface
displays the schemas and mappings, using the current

context to elide (often large) parts of the schemas not
currently of interest (5). Users indicate mappings they
accept, reject or haven’t decided on yet, and may refocus
the agents on different parts of the schemas manually. This
causes the re-execution of the agents (6) and subsequent
update of the schema mapping correspondences. This
process (3-6) continues until the user is satisfied and saves
the mappings to an XML file (7). This file can be reloaded
to continue the mapping refinement process or used as input
to code generators which produce data mapper
implementations. These generated data mappers take XML
data files in the source schema format and generate XML
data files in the target schema format.

4. Mapping Agent Heuristics

The core of VisAXSM is a set of mapping agents that
traverse the source and target schemas and determine
possible element correspondences. Because of the
complexity of the data mapping problem, these agents can
very seldom fully automatically determine correct
mappings. Similarly, because of the size of some schemas
to be mapped, the heuristics used by agents to determine
possible mappings need to be restricted to a (often very
small) subset of the overall schema structures.

We have identified a wide range of heuristics that can be
applied to XML Schemas or example XML data files based
on those schemas, to identify likely element matches. Our
approach incorporates these heuristics into “agents”, each of
which in our VisAXSM tool applies a single heuristic to its
input and suggests possible element mappings with
differing levels of weighting i.e. probability of correctness.

VisAXSM combines the suggested mappings from all
available agents when comparing two schemas portions,
giving each distinct mapping a “ranking weight”.
Combination of individual weights is done using a voting
and ballot system with each agent suggesting a weighted
vote for candidate matches, with different agents providing
different ranges of weights depending on the likely quality
of the agent heuristic. All weights for suggested
corresponding elements are ranked and the highly likely
schema element mappings are highlighted and displayed
more prominently. The user can request that rankings above
a high threshold be automatically accepted by the tool
without showing the user. Similarly, low ranking mappings
e.g. suggested by a single agent which uses a heuristic of
low quality, can be automatically rejected and not shown.

Some of our VixAXSM mapping agents are listed below
with a brief description of their input, heuristic technique,
i.e. things they look for in schemas or data structures, and
“quality” of resultant mapping correspondence suggestions.

Exact Name Matcher. This agent compares element
names in one schema to those in another, suggesting
mappings when two have the same tag name. This works
well when tag names are the same and unique across each

document e.g. PrimaryPatientID in both schemas. It
produces many false matches when the same tag name
occurs many times e.g. DateValue, although if focused on a
small subset of each schema again can work reasonably
well.

Partial Name Matcher. This looks for a substring that
matches in each name, e.g. PatientName to
PrimaryPatientName. Often element tag names for
corresponding elements are similar in two documents but
not always the same. This agent can use upper/lower case
delineation to recognise similarly named items, but if it
looks for too small a sized substring many false matches
occur e.g. DoctorName and PatientName match on “Name”
but are highly unlikely to correspond. The likelihood of
correspondence is thus less for this agent, but again focused
comparison can reduce false matches.

Levenshtein Name Matcher. This computes a function
that works out the “Levenshtein distance” between two
names, which is the number of edit operations needed to
convert one name into another: the smaller the distance, the
closer the match [15]. Again, focusing the agent on
subschema produces a better likelihood of matches.

Element Type Matcher. This compares the data type
name of elements e.g. PatientID:Integer and
UniqueIdentifier: Integer, or PatientRecord:TPatient and
ThePatient:TPatient. Like the Partial Name Matcher, it must
be focused on a small subset in each schema to avoid large
numbers of false positive matches. This matcher ignores the
name of elements but if results are combined with those of
the Partial Name Matcher better suggestions can result.

Record Type Matcher. This compares record types (sets
of elements) rather than leaf element types (single types).
For example, Patient:TPatient and ThePatient:PatientRecord
may correspond if the complex (multi-valued record types)
TPatient and PatiendRecord are the same or can be
converted. The agent compares the sub-types of the record
type to determine if a match is likely. Because records can
contain a large number of elements, some of them also other
record types, this matching agent produces lower quality
suggestions the more complex the record type.

Synonym Matcher. This can be applied to element tag
names or element type names. The Synonym Matcher
compares names, or parts of names, to see if they are
synonyms of each other e.g. DOB and DateOfBirth are
likely to correspond in some way. Similarly, Address and
StreetName correspond but the latter target element is part
of the source element data, needing a formula to parse and
extract the street from the address value in the final mapper.

Domain-specific Matchers are similar to the Synonym
Matcher but each uses a set of specific domain knowledge
e.g. accounting, finance, motor trade, health etc to identify
names or types with similar meaning. For example,
identifying that TreatmentProvider and Hospital are likely
to be the same. Their accuracy can be high depending on the
commonality of the corresponding names in the domain.

Exact Data Value Matcher. This looks at XML data
records rather than the schema and identifies a
correspondence between a single source and target element
if their values are the same. This can be generalised to
applying simple formulae to the source or target e.g.
applying different number or date formatting functions to
find a match. Like all data matchers, this must be
constrained heavily as XML data files can have hundreds or
thousands of records using even very restricted schema.
Simple number values can throw false positives but this
agent is usually very accurate.

Partial Data Value Matcher. This looks at XML data
values from one or multiple elements and computes a
likelihood match, similar to the Name Closeness Matcher
for element and type names. It must be heavily constrained
to a very small subset of source and target elements and the
example XML data used must also have a very small
number of records to apply to, otherwise it quickly becomes
computationally infeasible to use.

When a mapping suggestion from agents is identified by
the user as “correct”, the matched elements may require
data conversion in the generated data mapper. Some agents
associate a conversion function suggestion with their
mapping suggestions. The user can also specify a
conversion function name with the source schema elements
as its arguments. This formula is used by the data mapper
code generator to implement the required type conversion.

5. An Example

In this section we illustrate how VisAXSM is used on an
example data mapping problem. Two fairly simple XML
schemas are used but they illustrate many of the

complexities that occur when trying to map data from one
format to another. Figure 3 shows two different notations
for information about auctions. We use these to show
VisAXSM specifying a mapping between the schemas [4].

Firstly a user selects the source and target XML schema
to map. These are then parsed and a visual representation
displayed. This representation is simple and easily
understood even by non-technical professionals. Currently it
uses a tree-based representation for XML schemas but could
be adapted to use other visualization techniques (e.g. form-
based). Each notation element of the XML schema is
presented as an element in the source or target schema tree
as appropriate. Each also has a pop up menu facility (a),
providing user access to all mapping and display
manipulation actions and information for the element.

To distinguish between external (b) and internal (c) data
types VisAXSM uses different colours, in this
representation external types are highlighted in yellow and
internal types in white. Because every schema element in
VisAXSM has its own tree node renderer, it is
straightforward to develop different kinds of visual
appearances for elements. For example (d) represents a
reference element using a more graphical form instead of
textual. As every element visualisation has its own menu,
this allows navigation between different views by selecting
hypertext links.

Our example in Figure 3 demonstrates an unfiltered
view of both auction system schemas. However in general
showing all information can quickly result in information
overload. To prevent this, VisAXSM has several options
controlled by context sensitive menus. Figure 4 illustrates
several of these. Some are actions across the entire
VisAXSM environment.

(a)

(b)

(c)

(d)

Figure 3: Two sample schemas for an auction system.

Those in (a) are actions for opening schemas, showing a
high-level mapping overview, display preferences e.g.
arrows to indicate schema element correspondence, and
changing other AXSM options e.g. which mapping agents
to enable/disable. Example operations at the schema level
are shown in (b). The VisAXSM environment provides a
view to show all elements of a schema, which can be useful
if the developer is familiar with the schema or is looking for
a specific element to manually map. Another view of the
schema only shows elements for which AXSM mapping
agents can provide mapping suggestions using the current
mapping context. The opposite view showing which
elements in the focus sub-schema AXSM so far have no
suggestions available is also useful. Other views can show
only elements which are resolved by the developer in this
schema or only those not resolved.

Element-level pop-up menus display focused
information to a developer. In example (c), the developer
has selected a schema element. VisAXSM displays for each
possible corresponding element detailed information about
which matcher agent voted for this element and the
likelihood of the correspondence. This match is voted very
likely (vote 1.0) by the three matchers shown (Same name,
Partial name and Levenshtein) giving a total vote of 3.0.

Elements can be hidden from the current view to provide
better focus for the user. Elements can later be revisualised
by the redisplay all hidden elements functionality at a
schema level or as required as the user re-focuses on
different schema elements after accepting or rejecting
suggestions. In our experience the ability to selectively
hide/show multiple elements and sub-elements is more
helpful than in many other tree-based representations. It is
common to still show collapsed place-holders in these
approaches, but we found such approaches still disturb the
user’s view of relevant information. Hidden elements are
not considered by AXSM matching agents when searching
for mapping suggestions. This technique focuses the tool on
displayed elements, producing “sub-schemas” for the agents
to narrow their search on. As previously discussed, this can
greatly improve the performance of many matching agents
and prevent AXSM from giving suggestions for elements
which are known by the developer not to be relevant.
Typically previously mapped elements, whether displayed
or not, are not given to matching agents for further
suggestions (though this behaviour can be over-ridden by
the user if desired). If a target element has more than one
source elements the developer can indicate this to
VisAXSM by enabling multiple sources. As long as this
option is enabled, VisAXSM/AXSM will not remove this
element correspondence from its internal search and will
use its agents to find more correspondence candidates for
this target element. The same functionality is available on
the source element to indicate multiple target schema
elements.

Figure 5 illustrates the process of defining element
matches between two schemas with VisAXSM. First the
developer has to select a source element. Then VisAXSM
runs its mapping agents over the target schema elements in
the current mapping context (the displayed elements) to
produce a set of element mapping suggestions. VisAXSM
highlights the correspondence candidates according to their
weighting (by colour ranging from red for low weighting to
green for high weighting). Additionally, the developer can
switch on drawing of arrows to highlight possible
correspondences, however this can be confusing if a large
number of possible correspondences are detected. In the
example shown, the developer has selected the source
schema ‘title’ element and the matching agents have
identified several possible target schema correspondences.
In this example, possible mappings include the elements
‘title’, ‘description’, ‘shdescription’ under ‘auctionType’
record, and other items under other target schema elements.

(a)

(b)
(c)

Figure 4: Context sensitive menus and weight

information provided by VisAXSM.

The developer can now request information from one or
more of the correspondence candidates by selecting their
menu (a). VisAXSM displays available matcher agent
information and possible actions. In this example the user
has selected the target schema ‘auctionType.title’ element.
AXSM reports that the matchers Levenshtein, Partial Name,
Same Type have voted strongly for this element as a
correspondence. The developer can indicate the correctness
of this mapping or notify AXSM that the mapping is wrong.
In the former case, the source and target elements are
specified as “mapped”, changing the next mapping context
for the matching agents. If the user rejects the suggestion,
AXSM records this information and uses it to refine its
other suggestions. In our example the developer decides this
is the correct mapping and uses the menu entry correct rule
(b).

VisAXSM visualizes this unidirectional mapping by
drawing both elements in the same colour and an arrow is
drawn from source to target. It automatically removes the
selected correspondence from its list of possible
correspondences for other elements.

(d)

(b)

(c)

(a)

Figure 5: Assigning elements in VisAXSM.

The developer may also specify a formula to apply to
convert the source value to the target value if required. The
developer may also specify a mapping is “bi-directional”
i.e. source may be mapped to and from target. This is shown
in example (c). Several source elements may map to a
single target element and a single source element to
multiple target elements respectively. The user can specify
multiple source or target mappings by saying an accepted
suggestion is not the only source or target element for the
mapping (multiple sources/targets). The matching agents
are then re-run and the user may accept another target
element for an already-mapped source, or may specify for a
different source element the same target element as already
mapped to another source element. The multiple source
mapping is used in our example for ‘auctionType.

shdescription’, containing the target schema merged
information of ‘location’, ‘shipment’ and ‘payment’.

The final result of this mapping process can be shown in
one of VisAXSM’s different views, for example displaying
only all resolved elements in both of the XML schemas (d).
These mappings can now be stored in AXSM’s XML-based
format and then be used by external tools to generate
mappers between the two schemas.

6. Architecture and Implementation

A high-level illustration of VisAXSM’s architecture is
shown in Figure 6. XML Schemas and data files are parsed
and stored within the environment in an extended DOM
data structure. Similarly, a data structure holds mapping

correspondences i.e. what elements in the source schema
correspond to those in the target. This data structure also
provides the context for the analysis agents i.e. what parts of
the source or target schema they should focus on. Each
mapping item in this data structure records not only which
source and target schema elements are related but also: the
weighting of the mapping (via votes from multiple agents);
whether the user has accepted or rejected the suggested
mapping; and display information (shown, hidden,
hide/show if another element is hidden/shown, etc).

VisAXSM

XML Schema
Parser

XML Data
Parser

Source Schema
DOM

Target Schema
DOM

Source and Target
XML Data DOMs

Mapping
Correspondences

DOM Plug-in automated XML
Schema and data
analysis agents

Visualisation of Schema
and Mappings

Mapping XML
Generator

Data mapper code
generators

Mappings in XML

XSLT, Java,
Rimu, … code

Mapping Co-
ordinator

Source and Target
XML Schema

[Optional] XML
data files using
Schema

Figure 6: High-level VisAXSM architecture.

The plug-in analysis agents take schemas and/or data
information as input, along with the current schema
mapping information, and update the schema mapping data
structure with their suggested new mappings as necessary.
They associate a “weight” against each suggestion they add,
along with, where possible, the formula they think may be
needed to convert the source to target value. A mapping co-
ordinator determines the order in which to invoke the
agents, the parts of the source and target schema to offer the
agents, and aggregates the results produced by all agents to
form an overall “vote” for each suggested mapping. The co-
ordinator requests the schema visualisation component to
display the current focus sub-schema and associated
mapping correspondences to the user after all agents have
processed this “mapping context”. User interaction updates
the mapping context e.g. accepting or rejecting suggestions,
changing the elements to focus on, etc and the co-ordinator
re-runs the agents to update the mapping correspondences.

We used Java to implement the VisAXSM environment.
The Java XML parser and XML DOM APIs were used to
manage XML-based import, export and data management.
We implemented a wrapper around the standard DOM
management functions to provide a range of additional
searching and information access functions to simplify the
matching agent implementation . We designed an API for
matching agents and also for the extended DOM functions
to make implementing and adding new agents as easy as we

could. Agents are each given the same current mapping
context as DOMs which hold source and target schema
subsets. However, data value matching agents must query
the source and target XML data files loaded by VisAXSM
as they need, as pre-computing the parts they want to search
is too expensive and varies between different agents.

The VisAXSM GUI is implemented using Swing
components with overlay lines drawn to represent the
mapping correspondences. We also developed a prototype
HTML-based user interface using Java Server Pages, to
experiment with delivering the mapper functionality via a
web browser rather than as a desktop application. The
mapping specification XML file format produced by
VisAXSM is currently a bespoke representation. We
developed this as we could not find any current standard
XML representation that captures the range of information
about mappings we need i.e. source/target elements,
formulae to convert source value(s) to target value(s),
whether the mapping is accepted or rejected by the user, and
its ranking weight. We have experimented with data mapper
code generation by using XSLT transformation scripts to
convert the saved schema mapping correspondences to data
mapping code. This code implements a data mapper
program, which takes an XML data file in the source
schema format and converts it to an XML data file in the
target schema format. We used Java as the target data
mapper programming language, but could use XSLT itself
or a third-party data mapping engine [10].

7. Discussion

7.1 Evaluation

We have applied our VisAXSM prototype to several
data mapping problems, using XML Schema with both
small (a couple of dozen) and larger (well over one
hundred) elements. We have also applied the tool both to
XML Schema that are very similar i.e. many close
correspondences, and to those that are quite different i.e.
with elements that are more difficult to determine matches
between and with many items that do not map between
source and target data formats. For smaller tests we used
schemas representing auction items and order invoices.

In our largest test we used two different approaches that
specify Bibtex records in XML Schema, from
bibtexml.sourceforge.net and www.authopilot.com/xml/
respectively. The schemas are large (400 and 1000 lines).
However, these two schemas are quite similar, especially in
the choice of element names, which makes it easier for the
mapper to find mapping candidates. There is one big
structural difference: the source schema has an element
called "nonStandardField" that can store name-value pairs
that do not belong to the basic set of fields for each entry
(e.g. ISBN numbers for books are stored this way). The
target schema doesn’t use such a generic approach but has

specific elements to hold these values. This difference
occurs often (in each type of publication) but is always
exactly the same. There are also some minor differences in
representation between both schemas and a complete
mapping is not possible. One example of this is that the
editors of a publication are a string in the target schema but
a nested structure (with each name having its own element)
in the source. As there is no matching agent that
automatically detects lists, this has to be mapped manually.

 source.xsd to

target.xsd
nyberg.xsd to
bibtexml.xsd

auction.xsd to
ebay.xsd

Stat. Absolute Relative Absolute Relative Absolute Relative
1. 73 - 5689 - 63 -
2. 3 - 8 -
3. 9 0.50 72 0.80 8 0.57
4. 9 0.64 72 0.36 8 0.40
5. 11 0.78 430 1.00 10 0.90
6. 12 0.67 190 1.00 11 0.50

1. Total number of candidates: Total number of initial matching suggestions

(candidates) the system has generated.
2. Covered elements without correct mapping: Elements from either source or

target that have suggestions, but none are correct. This is disturbing to the
user as it requires consideration of many options without benefit.

3. Source elements covered: All source elements for which the
correspondence with the highest certainty is the correct one. This means
that processing the set of suggestions for this element just involves
marking the first one as correct.

4. Target elements covered: same for target elements. Note this number can
only be different from source number if multi-element rules are involved.

5. Source elements covered manually: number of source elements covered
by the largest possible mapping that is achievable using manual tools.

6. Target elements covered manually: The same for the target side.

Table 1: Example mapping results [4].

Table 1 shows some examples of mapping statistics with
the invoice, auction and bibtex example schemas. The
relative column shows the percentage of covered elements
compared to the total number of elements in the schema. In
the large bibtex case study, manually starting by making the
root level “entry” elements correspond reduces the search
space of 5689 down to 2327, with a large number of source
and target elements able to be automatically mapped.

While VisAXSM is a proof-of-concept prototype, trial
users have found the tool effective and straightforward to
use. The ability to selectively hide and show different parts
of source and target schemas to manage complexity is
useful whether or not the mapping agents are used. Both a
Swing-based GUI interface and JSP-based web interface
were prototyped. The former has proved to be more
effective for larger schema, as it provides better control of
schema elision and higher-level visualisation of
correspondences between schemas. Further refinement of
the user interface is looking to provide more automated
display and hiding of schema items and mappings.

7.2 Advantages and Disadvantages

Our experiences with VisAXSM have shown that
mappings between schemas with many close
correspondences can be done surprisingly quickly, even if

the schemas are very large. A business example with over
one hundred elements in each source and target schema is
able to be completely mapped within minutes using
VisAXSM. If agents that determine matches with a high
weighting repeatedly find good matches, users can reduce
the search space rapidly. This is because most agents work
best when restricted to small schema subsets. Typically,
after a few high-level record matches are made, the large
number of remaining matches are found accurately.

Experiments with VisAXSM have shown that the user
can allow the tool to automatically accept suggested
matches from agents when even a moderately high
correlation is reached between the agents. However, the
quality of suggested mappings can vary greatly depending
on the current mapping focus, similarity of the schemas, and
weightings of mapping agents in use. The user can always
review some or even all of the mappings using the visual
display at any time, hence they can reject any they find that
have been inadvertently marked “correct” when in fact the
user knows they are not, and this forces VisAXSM to re-run
agents on the new subsets of unmapped elements. We found
the approach of having plug-in agents worked well, and we
were able to add new agents from time to time to the tool
with no impact on the tool or other agent implementations.
The overall approach appears very promising for data
mapping problems where there is reasonable closeness
between the schemas being mapped (i.e. most elements in
each schema map to the other and names, types and record
structures are substantially similar or the same).

Our approach encounters problems in expected
circumstances – when most schema names, types and record
structures are very different. We found that the agents either
couldn’t make any suggestions or their correlation was very
low, particularly when generated and non-generated
schemas were compared (e.g. mapping element “Field027”
and “PatientName” fails for all agents except the data
matchers, which can’t be suitably focused on subset schema
elements). We argue that mapping schemas that contain
generated names is beyond the scope of our approach. Other
problems were encountered with schemas with huge
variations in naming conventions and record organisational
structure. However, it is important to realise that our tool
can still be successfully used to manually visualise parts of
the schemas and to specify accurate mappings. We found
the agents provide little useful suggestions in these
circumstances and the user ends up manually specifying
most of the correspondences. This was one of the problems
we were trying to overcome so our approach could be
considered unsuccessful in this case.

7.3 Future Work

Our plug-in approach to extending the matching agents
proved successful. However, the agent co-ordinator
currently has little knowledge of the characteristics of
available agents and the ordering of agent invocation could

be enhanced. This would have the advantage that if an agent
determines candidate mappings of good likelihood, agents
executing after it can use this to inform and constrain their
own processing, improving the quality of their weights.

We have only experimented with fairly basic data
mapper code generation from these mapping specifications
to date, using XSLT transformation scripts. This needs
further investigation to demonstrate that very complex data
mapping implementations can be successfully generated
from the specifications produced by VisAXSM.

The current version of VisAXSM does not directly
support more complex mappings or operations, (e.g.
merging of strings and converting numbers to strings cannot
be easily expressed or represented). Instead, the user must
provide a formula which will carry out the required data
conversion but the mapping correspondence looks the same
as any other. As these kinds of mapping operations are
common, the tool should provide some higher-level
representations of such field-level transformations.

We are developing a concept of schema element
“rendering plug-ins”, similar to matcher agent plug-ins but
providing new visual element representational and
manipulation support. The idea is to allow these rendering
plug-ins to be placed on the screen and be used to represent
complex mapping operations, different kinds of schema
elements, to provide context-sensitive tailored interaction,
etc. The benefit of using plug-in rendering units is both
improved direct visual feedback to the user and support for
extensible schema element presentation and manipulation
within VisAXSM. An example of using this approach
would be in developing matching agents with real-time
simulation, where developers can create mappings, add
mapping functions and see the results of their mapping
correspondences live on the screen with example data.

8. Summary

Identifying data mapping correspondences between two
complex schemas and implementing a data mapping system
to convert between them is very challenging. We have
developed a proof-of-concept prototype, VisAXSM, which
uses a combination of automated schema analysis agents
and user interaction to address some of the problems in this
domain. XML Schema are inspected by a number of agents,
each incorporating a different heuristic and producing a set
of candidate mapping correspondences from elements in the
source schema to elements in the target. The user reviews
these suggestions, presented in a high-level graphical form,
accepting or rejecting them as necessary. These user
interactions constrain the remaining search space and focus
the agents on unmapped subsets of the schemas for further
analysis. Once this process is complete, data mapper
implementation program code can be generated from the
final mapping specifications. These programs convert XML
data in the source schema format to the target schema

format. Applying our prototype to several example data
mapping problems has shown it to be a promising approach
to data mapping specification.

References

[1] Aditel Corp. ETS for Windows™, www.aditel.be, viewed
June 2001.

[2] Altova, http://www.altova.com/products_mapforce.html
[3] Amor, R.W., and Hosking, J.G. 'Mappings: the glue in an

integrated system'. In Scherer, R.J. (ed) Product and process
modelling in the building industry, Rotterdam, The
Netherlands, A.A. Balkema Publishers, 117-123, 1995

[4] Bossung, S., Semi-automatic discovery of mapping rules to
match XML Schemas, Department of Computer Science, The
University of Auckland, 71pp

[5] Data Junction Corp, Universal Translation Suite™ General
Information, www.datajunction.com, viewed May 2001.

[6] Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies & Solutions, Sept.
1999, pp.10-14

[7] Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and Amor,
R. An Architecture for Efficient, Flexible Enterprise System
Integration, Proc 2003 Intnl Conf on Internet Computing, Las
Vegas, June 23-26 2003, CSREA Press, pp. 350-356.

[8] Grundy, J.C., Hosking, J.G., Amor, R.W., Mugridge, W.B.,
and Li Y., Domain-Specific Visual Languages for Specifying
and Generating Data Mapping Systems, JVLC, 15:3-4, 243-
263, 2004.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
Inconsistency Management for Multiple-View Software
Development Environments, IEEE Transactions on Software
Engineering, 24(11), November 1998, 960-981.

[10] Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P.,
Generating EDI Message Translations from Visual
Specifications, Proc 2001 IEEE ASE Conf, San Diego, CA,
26-28 Nov 2001, IEEE CS Press.

[11] IBM Corp, MQ Series Integrator, www.ibm.com, viewed
May 2001.

[12] Li, Y., Grundy, J.C., Amor, R.A., and Hosking, J.G., A data
mapping specification environment using a concrete business
form-based metaphor, Proc IEEE HCC’02, Arlington, USA,
3-6 September, 2002, IEEE CS Press,158-167

[13] Lincoln, T., Spinosa, J., Boyer, S., Alschuler, L., HL7-XML
progress report. In Proceedings of XML Europe '99,
Alexandria, VA, USA, 1999, pp.733-736.

[14] OnDisplay, CenterStage eBizXchange, www.ondisplay.com.
[15] Rahm, E., Bernstein, P.A., A survey of approaches to

automatic schema mapping, The VLDB Journal 10: 334-350
2001, Springer Verlag

[16] Seeburger Corp, SEEBURGER data format and business
logic converter, www.seeburger.de/xml/, viewed May 2001

[17] Stoeckle, H. , Grundy, J.C. and Hosking, J.G., Approaches to
Supporting Software Visual Notation Exchange, Proc 2003
IEEE HCC, Auckland, New Zealand, Oct 2003, IEEE, 59-66.

[18] Su, H., Kuno, H., Rudensteinern, E.A., Automating the
Transformation of XML Documents, Proc Workshop on Web
Information and Data Management, 2001.

[19] Vitria Technolgy Inc, Vitria BusinessWare, www.vitria.com.
[20] Wallin, G., A new look at EDI healthcare. Health

Management Technology, vol.20, no.5, June 1999.

