
Experiences Integrating and Scaling a Performance Test Bed Generator with an
Open Source CASE Tool

Yuhong Cai1, John Grundy1,2 and John Hosking1

Department of Computer Science1 and Department of Electrical and Computer Engineering2
University of Auckland, Private Bag 92019, Auckland, New Zealand

{rainbow,john-g,john}@cs.auckland.ac.nz

Abstract

We report on our experiences developing a performance
test-bed generator for industrial usage by extending an
open-source UML CASE tool. This tool generates client
and server code, database configuration and deployment
scripts from a high-level software architecture description.
It automates the code generation, compilation, deployment
and performance metric result collection processes. We
identify a range of problems that arose from our previous
research on performance test-bed generation that needed
to be addressed to scale this automated software
engineering technique. We describe a range of approaches
we used to solve these problems in our new tool. We then
report on industrial deployment and evaluation of our new
tool and discuss the effectiveness of these solutions.

Keywords: experience report, architecture analysis,
software performance testing, software tool extension

1. Introduction

Non-functional software performance requirements,
such as response time and transaction throughput, are in
general very challenging to meet. For example, estimating
likely target application performance from a high-level
software architecture design is a very hard problem [1, 4,
7, 19]. A range of approaches have been attempted,
including rapid prototyping, existing system profiling,
architecture modelling and simulation, and performance
test-bed generation [11, 7, 5, 1, 12, 8].

In our previous work we developed SoftArch/MTE [8],
a performance test bed generator that generates client and
server test-bed code and deployment scripts from a high-
level software architecture design model. The tool
automatically generates, compiles and deploys the test bed
code, runs the specified performance tests on the code, and
reports the performance results to a software architect.
Initial experiences using this tool and approach were very
promising. However, when we tried to apply our prototype
tool to industrial case studies with a view to
commercialising this automated software engineering
technique, we encountered a number of problems. These
included: use of a non-standard architecture modelling

notation and prototype architecture design tool; non-
standard representation of the architecture model;
limitations on the expressiveness and maintainability of the
code generators and the simplistic code compilation and
deployment tools we had built; and unsuitability of the
performance data management and visualisation support.

The focus of this paper is to present a number of
approaches that we have used to solve these challenges and
report on our experiences with these techniques. These
have included: extending an open-source CASE tool,
ArgoUML, to provide UML-like architecture modelling
and XMI-derived model representation capabilities;
restructuring and enhancement of the XSLT-based code
generators employed; use of Ant, an open-source build
tool, to manage complex automatic process of code
generation, compilation and deployment dependencies; use
of SFTP, a widely supported file transfer protocol to
manage code deployment and performance result capture;
an MS Access database for performance test management;
and result visualisation plug-ins for the extended Argo
CASE tool. The resultant industrial-strength performance
test-bed generation tool is called Argo/MTE.

We first motivate this work by describing approaches
to performance estimation and in the process describe and
critique our original SoftArch/MTE performance test-bed
generation tool, identifying its strengths and weaknesses
for industrial usage. We then describe the approaches we
used to build our new Argo/MTE tool in order to scale-up
the capabilities of SoftArch/MTE. Each of the key
approaches we used is motivated, described and illustrated.
We then report on the deployment of Argo/MTE on two
industrial application projects and reflect on how
successful our techniques were. Based on this we discuss
applicability of techniques we used for other automated
software engineering systems with similar characteristics.

2. Motivation

Many approaches have been used for performance
estimation. These include benchmarking [1, 7] which uses
reference architectures and load-testing of simple
implementations. Relative performances of the differing
technologies used in the implementations are compared.
While accurate measures for the particular benchmark

jgru001
Text Box
(c) IEEE 2004. In Proceedings of the 2004 IEEE Int Conf on Automated Software Engineering. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

application are obtained, these only provide a rough guide
for related applications [7]. Rapid prototyping [11]
involves developing partial applications for performance-
critical parts of a system e.g. network-centric and database-
intensive. This can require significant development effort
particularly if architecture evolution requires prototypes to
be modified and tests repeated. Analysis of deployed
systems [13, 15, 17] involves studying performance
patterns and trying to extrapolate these onto new systems
with similar architectures. This approach is limited to
providing bench-mark style guidelines only for architects.
Simulation approaches model distributed applications and
simulate performance with over-head estimates based on
architecture [1, 12] or middleware [12, 19] choices.
Accuracy varies widely and it is difficult to obtain
performance models for 3rd party applications such as
databases. Performance tuning tools [14] are post-
implementation approaches to improving architecture
performance, but are limited by the architecture design
adopted as to the effect they can have. SoftArch/MTE is a
performance estimation tool we have developed which
uses a different approach: test bed generation [8]. This is
an automated form of the rapid prototyping approach that
others have recently begun experimenting with [4].

1 . H igh-lev el
arch itectu re d esigns

<architecture>
 <clien t>
 <nam e> C usto mer</name>
 … .
 < /c lient>
 <server>
 …

2 . G enerate X M L-en coded
arch itecture design

3 . R un X S LT
transfo rm ation

scrip ts

Pu blic c lass clien t1 {

 Public vo id sta tic main() {
 Server.R equest1();
… .
 }

}

4 . G enerate code, ID Ls,
deploym en t in fo , e tc

5 . C o m pile & upload to
m ultip le host m achin es

6 . R un tests &
sen d resu lts to
S oftA rch/M T E

for v isualisa tio n

C lient1 .R equest1 : 157 22
C lien t1 .R equest2 : 99 187
…

Figure 1. Outline of the SoftArch/MTE architecture

performance analysis process (from [8]).

Figure 1 illustrates how SoftArch/MTE is used to gain
an understanding of the likely performance of a software
architecture design. The architect constructs one or more
high-level architecture designs, specifying clients, servers,
remote server objects and database tables, client-server,
server-server, client/server-database requests and server
services, and various kinds of architectural connectors.
They specify properties such as client, server and database

host; number and frequency of requests (e.g. call remote
method 1000 times; call repeatedly without delay; call
every 2 seconds; etc); database table and request
complexity (e.g. one or multiple row select; 10 row update;
one row insert/delete etc); middleware protocol (e.g.
CORBA, web services message, RMI etc); and so on.
SoftArch/MTE generates an XML encoding of the
architecture model (2) which is then passed through a
number of XSLT-based (XML style sheet transformations)
scripts (3). These scripts generate, without any user
intervention, Java, C#, etc code, JSP and ASP web server
components, CORBA, COM and WSDL IDL files, EJB
deployment descriptors, database table creation and
population scripts, compilation and start-up scripts, and so
on (4). This generated code is a runnable performance test-
bed that when executed generates real client-server-
database interactions and captures performance profile
information (5). Compiled code is up-loaded to client,
server and database hosts. The generated programs are
started on all hosts and when signalled clients begin
execution i.e. send requests to their servers. Code
annotations and/or 3rd party profiling tools capture
performance measures and these are returned to
SoftArch/MTE. Diagram annotations, property sheets and
Excel worksheets are used to show performance measures.

We have used SoftArch/MTE to evaluate the
performance of a range of software architectures. The
performance results obtained have been validated against
both hand-implemented realisations of the architectures
tested and hand-implemented performance test-beds [9].
However, these experiences and our attempts to use the
tool on several other industrial projects revealed major
deficiencies in the realisation of this automated software
engineering technique. These included:
• Non-standard design tool and modelling notation.

SoftArch is an experimental proof-of-concept
architecture modelling tool which uses a non-standard
visual architecture modelling language. While it proved
suitable for experimenting with and evaluating the
performance test-bed generation concept, it has poor
usability, limited integration with other CASE tools
which causes a steep learning curve for tool users.

• Proprietary XML architecture model format: SoftArch
saves model designs in an ad-hoc XML model format
we developed only for our own experimental work.
This makes exchanging the design with other tools
difficult and excessively couples the architecture
design tool and performance test bed code generators.

• Unmaintainable code generators. Our SoftArch/MTE
code generators demonstrated that XSLT provides a
good implementation platform. However, the original
prototype XSLT scripts proved hard to maintain,
difficult to debug and impossible to reuse effectively.

XSLT Code
Generation Scripts

MS Access
Results DB

Reusable
Meta-models

XML Architecture
Models

.java, .cpp, .jsp,

.war, …

Argo/UML CASE Tool

Existing UML
Diagrams…

Architecture
Meta-model
Diagrams

Architecture
Model

Diagrams

Existing XMI-based
Model Repository

Extended XMI-based
Model Repository

Result
Visualusation

Plug-in

Xalan XSLT
Engine

Ant Script
Invocation

Plug-in

Ant Scripts

Ant Configuration
Manager Tool

Remote Hosts

Remote SFTP
Tool

.java, .cpp, .jsp,

.war, …

Remote J2EE, IIS,
RDBMS etc

Servers

Test Results

(1) (2)

(3)

Ant Script
Generation

Plug-in (4)
(6)

(7)

(8)

(3)

(5)

Figure 2. Overview of Argo/MTE architecture.

• Tool-driven code generation, compilation and
deployment. In SoftArch/MTE we had the tool itself
co-ordinate the code generation, compilation,
deployment and also result capture and visualisation
(steps 3-6 in Figure 1). When adding new target code
and scripts e.g. JSP and ASP web server components,
web services WSDL descriptions and deployment
scripts, and trying to deploy the tool on secure
networks, this approach proved very hard to maintain
and tailor to different tool deployment environments.

• Proprietary code deployment tool. We built our own
Java deployment tool client and server for
SoftArch/MTE. This worked well but again proved to
be too difficult to adapt to different tool deployment
environments, hard to maintain and lacked fundamental
code deployment and test control facilities.

• Result capture and visualisation. We added bespoke
code to SoftArch to visualise performance results in
various ways. This proved difficult to extend to capture
other kinds of results and visualisation facilities
provided were poorly integrated with other facilities.
Managing and comparing multiple architecture design
results was particularly poorly supported.

Scaling up automated software engineering techniques

for use on large industrial problems has long been of
interest [2]. Techniques adopted include integration with
Commercial Off-The-Shelf (COTS) tools [6], developing
more robust implementations for large-scale problem
domains, and adopting widely used standards, enabling
reuse of industrial-strength tools developed by others [16].

3. Overview of Argo/MTE

To solve the problems we encountered with SoftArch/

MTE and produce an “industrial strength” performance
test-bed generation tool we developed a new tool,
Argo/MTE. ArgoUML is a widely-used open source
CASE tool [20, 21] incorporating other open source
packages such as novosoft UML, java XML and java GEF.
It provides well organized source files and documentation.
We extended ArgoUML to incorporate our performance
test-bed support in an integrated UML-based CASE tool.

Argo/MTE is an integrated development environment
for software architecture design and architecture
performance evaluation. Figure 2 provides an overview of
the Argo/MTE architecture and its usage. Multiple
Argo/MTE domain-specific meta-models can be defined
using a new tool we added, each providing a different set
of architecture modelling abstractions and code generators
e.g. for web-based or real-time systems, etc (1). These
meta-model abstractions are stored using an extended form
of ArgoUML’s XML Meta-data Interchange (XMI)-based
XML model representation format within the ArgoUML
environment. Argo/MTE allows tool users to draw,
modify, refine, and revise software architecture designs,
again using a new architecture modelling tool we added to
ArgoUML (2). Architecture models are developed using
one or more meta-models and multiple design views. Each
Argo/MTE design encodes enough data to generate a test
bed (normally a distributed software system) for a given
level of abstraction. The test bed not only implements
fundamental functional requirements of the intended
system, but also carries performance evaluation
information. Meta-models and architecture models are
saved in an XML file format (3). A set of Ant
configuration management tool scripts are generated to
perform code-generation, compilation, deployment, test
initiation and results capture (4). The XML-encoded
software architecture model is transformed into a range of

files and scripts (5). A set of XSLT scripts and the Xalan
XSLT engine perform this work under Ant script control.

The generated test-bed code is compiled and deployed
to multiple host machines (6). Performance tests are then
run producing text files capturing the performance
profiling results (7). The results are downloaded and
captured in an MS Access database, producing an archive
of architecture model/performance results over time. The
result database is queried and performance results for a
single or multiple performance test runs visualised using
various graphs and architecture model annotations (8).

In the following we examine in more detail the
architectural and design decisions made when developing
Argo/MTE to solve the scalability of SoftArch/MTE.
These include: the architecture modelling and meta-
modelling capabilities; architecture model representation
and management; co-ordination of code generation,
compilation and deployment; and performance test
execution, data management and visualisation.

4. Architecture Modelling

User evaluation of SoftArch/MTE identified several
enhancements needed for architecture modelling support
[9]. These included software architects’ desire for a more
conventional UML-based modelling language, integration
of our technique into a “standard” UML-based CASE tool,
and ability to modify and extend the architectural design
tool’s meta-model types. To achieve this we chose to
extend ArgoUML with SoftArch/MTE-style capabilities.
We chose ArgoUML instead of other UML CASE tools
for several reasons: it is open source; well-structured and
extendable at both diagramming and model levels; uses
common data representation standards such as XMI; and
its cognitive support could be used to provide architecture

design process support [20]. We made three fundamental
extensions to ArgoUML to support architecture modelling:
• extending ArgoUML’s data structures to support

architecture-specific meta-model types and model
instances using these domain-specific types

• adding a visual meta-model type specification tool
• adding a visual architecture design tool

We designed modelling elements at UML meta-model

level to support Argo/MTE-style architecture modelling.
We extended ArgoUML’s existing UML meta-model data
representation to capture these software architecture
designs. Figure 3 shows our design of modelling elements
at UML meta-model level. Modelling capabilities added
include representing host machines, nodes (processes),
operations, attributes and various parameters. We tried to
ensure this design followed logically from existing Argo
meta-model types. An Argo/MTE domain-specific meta-
model provides a modelling framework for a particular
domain, which specifies available modelling types,
properties and their relationships available to define an
architecture model’s structure and semantics.

Each architecture design model in Argo/MTE must use
one or more previously defined meta-models. Meta-models
can be defined for e.g. “web-based applications”, “real-
time applications”, “mobile device applications”, etc.

Each component in an architecture design model is
typed by a meta-type (a meta-modelling element) which
specifies allowable properties and relationships to other
elements. Each such meta-type defines sets of architectural
and testing parameters. Architectural parameters define
architecture design structural data while testing parameters
provide performance code generation-related data. A good
meta-model is essential to ensure an architecture design
has adequate information with low redundancy.

Figure 3. ArgoUML XMI meta-model extension examples.

We developed a meta-model specification tool for
Argo/MTE allowing architects to build and refine their
own meta-models. This was developed as a specialisation
of the ArgoUML class diagramming tool. Figure 5 (a)
shows a sample e-commerce meta-model for CORBA-
based information systems modelling. This meta-model
includes abstractions for client, database and, application
servers, remote objects, and other architecture modelling
types. Argo/MTE uses the ArgoUML view layout menu
and tool bars (1,2), model element tree view (3), diagram
editing pane (4), and tabbed property sheet pane (5).

To build an Argo/MTE meta-model a target application
domain is analysed and abstract modelling element types
devised for that domain. A number of architectural
elements from the CORBA-based information systems
domain are shown in Figure 5 (b). Element attributes with
type “AP” are ArchArchitecturalParameters (generally
structural) properties. Ones marked “TP” are ArchTesting
Parameters used for performance test-bed code generation.

Using a similar approach we developed an architecture
modelling tool by specialising the class diagramming and
collaboration diagramming tools from ArgoUML. This
approach reduced development time and provided
architects with design tools similar to the look and feel of
the ArgoUML toolset. Part of a complex, distributed
micro-payment system architecture, NetPay [3], is shown
in Figure 4© to illustrate this tool. The architecture
modelling notation we developed extends the UML class
and collaboration diagram appearance and layout. We used
a class icon-like representation of architecture abstractions
rather than UML-style deployment diagram shapes as we
found the latter cumbersome and inflexible.

An Argo/MTE model comprises elements (rectangles),
element requests and services (labels), associations (solid
black lines), message interactions (blue lines and
highlights), hosting associations (dashed lines), and
refinements (solid or dashed black line with one end
point). Stereotypes indicate meta-model type instantiation.
Each element has a property set derived from its meta-
model type. The architecture in Figure 4(c) comprises a
customer PC-hosted browser and payment client (“E-
wallet”) (1), a broker (2), and several vendor sites (3). The
vendor has a multi-tier architecture: the client browser
accesses web pages (4), which access application server
components via CORBA (5), and a database (6). Each
abstraction links to other abstractions via relationships.
Properties/parameters for the <<Client>>Reader
component are shown below. Architectural parameters
support architecture modelling e.g. types and relationships.
Testing parameters support performance code generation,
including number of client threads, whether to record
timing information, middleware threading and transaction
models and configuration parameters such as number of
times to repeat requests, pauses between requests etc.

Multiple architecture and meta-model type views are
supported for complex specifications. Figure 5 shows three

views of the NetPay system. Collaboration relationships
between client requests and server services (1) visualise/
specify message-passing relationships between elements.
(2) shows just the message passing relationships between
elements. Refinement of higher-level abstractions is shown
in (3), where CustomerRegistrationPage service “register
Customer()” is refined to constituent operations (each
realised by business logic and database operations). We
further developed a concept of architectural model
refinement from SoftArch/MTE in Argo/MTE. This allows
an architect to specify refinements of high-level concepts
e.g. “RemoteServer” to smaller abstractions e.g. to
“CustomerManger”, “ContentManager” and
“PaymentManager”. This concept was not supported in
ArgoUML and required the addition of cross-diagram and
inter-meta-model element refinement relationships. We
also allow architects to refine architecture elements from
OO analysis classes, and refine them to OO design classes.
This provides an integrated traceability support mechanism
within the architecture design tools.

(1)

(2)

(3)

Figure 4. Multiple views and refinement examples.

5. Test Code Generation and Deployment
In our SoftArch/MTE prototype tool we developed a

proprietary XML format to represent and store SoftArch
designs. This was then processed by XSLT scripts to
generate target code files, batch scripts, deployment
descriptors, IDL files etc. This worked well for relatively
small example systems but proved inefficient and caused
XSLT script implementation and processing problems
when modelling larger systems. It also has the fundamental
problem that only our own tool could ever generate it.

We wanted to represent the architecture models in a
more standardised format, and our final aim is to
eventually make Argo/MTE model data exchangeable with
other XMI-supporting CASE tools.

Element Type Main Attributes Property Description
Client :
 ArchOperHost

ClientType (AP, TP)

Threads(TP)

Type of a client e.g. browser,
CORBA client.
Number of con-current clients run
for tests

RemoteRequest
: ArchOperation

RemoteServer (AP, TP)
RemoteObject(AP, TP)
RemoteMethod(AP, TP)
RecordTime(TP)
TimesToCall(TP)
PauseBetweenCalls(TP)

Name of remote server to call
The name of remote object
The name of remote service
Record time for this?
Repetitions
Pause duration between calls

AppServer :
 ArchHost

Name (AP, TP)
RemoteObjects(AP, TP)
Type (AP, TP)

Name of server
Objects this server hosts
Type of the application server, e.g.
CORBA, RMI, J2EE…

RemoteObject :
 ArchOperHost

Name, Type (AP, TP)
Threading (TP)

Name+type info e.g. EJB, JSP
Thread information e.g. #

RemoteService :
 ArchOperation

Name, Type (TP, AP)
Parameters (TP)
ConcurrencyCtl (TP)
RecordTime (TP)

Name+type info e.g. method
Arguments for operation
Concurrency management code info
Record time for this and how

DBRequest …
DBTable … (b)

(1)

(2)

(3)

(4)

(5)

(6)

1
2

3

4

5 (a)

Figure 5 (a). Example of a domain-specific meta-model; (b) Examples of meta-model types and attributes; (c)

Example of an Argo/MTE architecture model for complex micro-payment system architecture.

For now we chose to extend ArgoUML’s XMI-based
UML representational format to capture model structure
and code generation parameters. Currently, Argo/MTE
model files consist of modelling elements represented

using the meta-types shown in Figure 3. We extended the
ArgoUML save file module to store and retrieve our
extended architectural design models.

We chose to continue using XSLT scripts to implement
our Argo/MTE code generators as they proved to be
flexible, powerful and more easily maintained and
extended than Java or C++-implemented code generators
we had used in other CASE tool work. However, we
needed to modify the SoftArch/MTE scripts to use our
extended model format and also had to make the code
generators more efficient and generate larger but more
easily managed target code.

Argo/MTE

Architecture
Model

Architecture
Meta-model

Test Parameter
Database

Ant Script
Generator

Ant Script
Invoker

Ant Script:
-generation (XSLT)
-compilation (javac etc)
-deploy – upload (sftp)
-download results (sftp)

Ant Engine

XSLT
(Xalan)

Compile
(javac etc)

Deploy
(sftp)

Code, IDLs etc Compiled code
etc

Remote
hosts Model (in XML)

1

2

3
4 5

Figure 6. Argo/MTE code generation, compilation

and deployment via generated Ant scripts.

In SoftArch/MTE a set of code generation XSLT
scripts were run over multiple XML save files generated
by the tool. The scripts run and input files to give them
were determined by examining the architecture model.
Each script was responsible for organising its own output
file(s). We discovered when adding code generation scripts
for JSP and ASP web server components, J2EE Enterprise
Java Bean code and deployment descriptors, and .NET
component code and WSDL interface definition files that
this approach didn’t scale well. It often required hand
modification of SoftArch/MTE’s code generator co-
ordination code and it was difficult to order invocation of
compilation, deployment and test execution scripts.

To solve these problems we have structured our Argo/
MTE code generator to have scripts associated with meta-
model types. In addition, we have developed a repository
of code generation parameters which are used to determine
which scripts require running on a model, their order and
templates for generating a configuration management tool
script to handle the dependencies between code generation
scripts and moving and packaging their output files. This
approach does not require any code modification to
Argo/MTE when new scripts are added, just maintenance
of the test parameter repository.

In addition to hard-coding the code generation,
SoftArch/MTE hard-coded compilation and deployment of
generated code, batch files, IDL files etc. This also proved
non scalable. In Argo/MTE we replaced this with an Ant
script generator component. This uses test parameters,
meta-model types and model data to generate an Ant script
that runs: XSLT code generation script processing;
generated code compilation, including source code and
IDL files; compiled code, IDL file and deployment
descriptor uploading to remote hosts; and performance
result downloading. Ant manages complex dependencies
between parts of a large set of test-bed programmes at each
stage of compilation, deployment and test execution.
Figure 6 shows how Argo/MTE provides scalable
generation, compilation and deployment processes.

In addition to Ant script generation, Argo/MTE also
used a 3rd party secure FTP (SFTP) program for
deployment and result upload, replacing another hard
coded component of Softarch/MTE. We used generated
Ant script macros to drive SFTP to both deploy compiled
code and download test result files from remote client and
server host machines. This provides us with a standardised,
widely available file up and downloading facility with an
extensible, scripting-based control language.

6. Test Data Management and Visualisation

In SoftArch/MTE deployed client and server programs
are initialised, and clients told to execute via our custom
deployment tool, and performance results were stored in
text files. These were downloaded to the SoftArch/MTE
host, parsed and data extracted to visualise test results.
Recording of results was by archiving result files and by
custom code added to SoftArch/MTE to annotate diagrams
and drive simple Excel spreadsheet charting functions.

We found this approach unsatisfactory when adding
new code generators for thin-client JSP and ASP server
components. We had to generate “pseudo-browser” clients
which provided results of limited accuracy. Controlling
test runs via the custom deployment tool required continual
update of this application. Visualisation of results in
SoftArch/MTE was not well-integrated with modelling
views and the Excel charting cumbersome. The capture
and comparison of test runs for different architecture
models was particularly poorly supported.

Figure 7 illustrates the Argo/MTE test deployment,
execution and results management process. Argo/MTE
instructs Ant to upload and initialise generated test client
and server programs, scripts, IDLs and database scripts (1).
The generated Ant build script is run with “deployment”
parameter, resulting in multiple file uploads to remote
hosts using a local SFTP client and remote SFTP servers
(2). Each remote host has another generated Ant script
uploaded as part of this deployment process.

Remote Client & Server Hosts Argo/MTE Host

Compiled files,
IDLs, scripts etc

Ant Build
Manager

Argo/MTE

SFTP Client

Remote Ant
Build Manager

Generated
Ant Build

Script

Remote SFTP
Server

Compiled files,
IDLs, scripts etc

Test Results

Test bed Running
Programs

Remote ACT tool,
Databases etc

Test Database

2

3

4
5

6
1

7

Figure 7. Argo/MTE test execution & results capture.

Figure 8. Example of result visualisation.

This is used by a remotely-deployed Ant build engine
running on each host to initialise deployed programs and
configuration scripts (3). This remote Ant engine script is
also used to synchronise the start of multiple client
programs. For thin-client test-beds (e.g. JSP or ASP web
server components), we use the Microsoft Application
Centre Test (ACT) automated test execution tool which
simulates multiple browser requests to these JSPs and
ASPs, giving realistic browser performance measures. An
ACT script is generated for each thin-client from the
Argo/MTE model and the remote Ant engine script
initialises and instructs ACT to run these scripted tests.
Results from performance profiling annotations to code or
ACT output files are captured as text files (4). The
Argo/MTE Ant engine downloads these results via SFTP
(5). It updates a test database, inserting performance results
for each model item grouping them by test run (6). The

result visualisation component extracts test run results to
visualise (7).

We added a result visualisation component to
Argo/MTE which queries the test database and displays
test run results as graphs or annotations to architecture
model diagrams. This is shown in Figure 8; architecture
components with performance results available are
annotated with a small box at the top left corner. These
results can then be examined in tabular or graph form. We
decided after user evaluation of SoftArch/MTE to more
closely integrate the result visualisation support into
Argo/MTE architecture model diagrams. Users found our
previous approach of using an Excel charting macros and
generating new SoftArch/MTE annotated views to be
difficult to use. Our new approach of a database to capture
multiple test run results allows us to much more easily
visualise multiple test runs e.g. comparing the relative
performance of different architecture design decisions.

7. Discussion

7.1 Industrial Deployment of Argo/MTE
We have carried out two detailed industrial case studies

using Argo/MTE, one on a complex micro-payment
architecture [3] and one on an enterprise integration system
architecture [10]. In both cases we had example
architectures and fully-implemented systems. We had also
carried out performance analysis experiments with the
hand implemented systems in previous projects so we
could model and compare the Argo/MTE-produced results
with these actual performance results. In addition, with
Argo/MTE we could model alternative architecture design
scenarios and obtain performance results to compare to the
results from other architectures. We used these case studies
as they both provided us with complex architectures to
model and performance test, and we were familiar enough
with the problem domains that we could analyse and
interpret the results in depth. For both case studies we had
to add new meta-model abstractions, code generators and
build compilation script templates. Our previous
SoftArch/MTE prototype proved very difficult to adapt
and use on these case studies whereas we were able to
successfully use Argo/MTE.

Our experiences with these large case studies were
generally very positive. We were able to build successive
levels of abstract and detailed architecture models with
Argo/MTE, which provided a robust environment and
effective set of architecture modelling facilities.
Extensions to the meta-model, code generation scripts and
build and deployment configuration templates were all
much more straightforward than with SoftArch/MTE. We
were able to generate code for and compile very complex
test beds. Both systems had several servers and databases,
with numerous remote operations per server, even with
greatly simplified architectural models. We required a

range of test bed clients, many run con-currently, to
request a mix of different server operations and gather
overall performance metrics from the generated server
programs. Overall, the performance results we obtained
from Argo/MTE’s generated test beds were reasonably
close to those obtained when running the exact same
clients against the real implemented system servers. We
discovered some implementation errors in the real micro-
payment system example, badly affecting its performance.
These were highlighted by obtaining Argo/MTE test bed
results wildly different from those obtained from the real
system. Correction of these programming errors resulted in
much closer performance result correlation.

Several limitations were encountered when using
Argo/MTE on these case studies. The first related to the
inability of the architect to specify ranges of values rather
than absolute numbers of clients, client requests, etc. Other
included the effort needed to add and test new code
compilation and build support, and the limited result
visualisation in the tool at present.

7.2 Advantages and Disadvantages of Argo/MTE
Argo/MTE provides integrated modelling support as an

addition to a UML-based CASE tool, ArgoUML. This was
found to be a much more appealing and effective
environment than our previous, stand-alone SoftArch/MTE
tool. The use of a set of UML-like modelling abstractions
provides an architecture design notation closer to
designer’s other modelling languages within this tool. The
use of an XMI-like model representation format and
extensible architecture meta-models increases the chance
of model data exchange. Restructuring our XSLT-based
code generators and using the Ant build manager tool to
control code generation, compilation and deployment
greatly eased this process. It is now far easier to add new
meta-model abstractions to represent new target
middleware or database technologies, add new code
generators, compilers and deployment scripts, and generate
Ant build scripts to control this process. The use of third-
party tools to co-ordinate the test bed generation and
execution process (Ant), deployment (SFTP), and web-
based client tests (ACT) has proved much more scalable
and flexible than our previous ad-hoc applications to
perform these tasks. We found this particularly so when
heterogeneous architectures incorporating several
technologies had to be generated and deployed.

Several issues need to be further addressed with
Argo/MTE. This includes process support to guide the use
of the tool. The design of an architecture, performance
test-bed generation, and evolution of the architecture
design using test results has proved to be a complex
process requiring considerable domain knowledge. Support
for this may include use of ArgoUML’s critics to provide
pro-active guidance to architects for the performance
testing [20]. We have used an extended, XMI-like format
to represent Argo/MTE model data, but this is not

standard. As the UML is enhanced to incorporate more
architecture representation facilities, our approach ideally
will need to be adapted to use these, from an XMI-based
encoding of the model. Similarly, if UML architecture
modelling approaches become standardised, we would like
to use these instead of our architecture modelling
enhancements. We found writing new XSLT code
generators and Ant build script templates one of the most
time-consuming aspects of adding new target technology
support to Argo/MTE. Adding an IDE for these facilities to
the tool would make it much easier for architects to extend
its supported target technologies.

Storage of test results in an MS Access database proved
a major improvement. However, while SoftArch/MTE’s
use of Excel charts to visualise results proved to be
unpopular with end users, our Argo/MTE approach of an
Argo extension to display results is also limited. Extending
its support to display results in different ways and to carry
out different analysis of results requires extra Java coding.
An enhancement would be to use MS Access reports to
generate these visualisations but to incorporate the
invocation and display of report results within the
Argo/MTE using OLE or similar component integration.

7.3 Generalisation of Our Experiences
While it is difficult to generalise from one example, we

feel that there are a number of lessons from our
experiences in scaling up our test bed generator technique
that may be applicable to scaling of other automated
software engineering techniques.

The first of these is to where possible concentrate on
using commonly used COTS (or Open Source OTS) tools
to implement parts of the application rather than
developing bespoke code. Such tools have typically been
developed with efficiency, both in terms of performance
and representational economy in their target domain, in
mind [6]. They have also been through the quality control
processes needed to support industrial usage. Examples of
this in Argo/MTE, which can be considered as lessons in
their own right are:
• Use of build tools to manage complex dependencies.

This is a specialist domain, fraught with difficulty.
Reuse of existing expertise to solve the compilation
and deployment problem was an essential component
of Argo/MTEs successful development

• Use of scripting languages and engines. Both Ant
scripting and XSLT scripts proved excellent
approaches for representing complex operations.
Scripting notations are tuned to their particular
domains of application, hence are terse and relatively
easy to develop code generators for.

• Use of databases for management and visualisation of
large datasets over time.

The second major lesson is the use of standard
representations where possible. While our SoftArch
notation was novel and innovative, this proved to be a

handicap for user adoption. Use of the UML meta model
for defining our architecture notations proved successful
for two reasons. Firstly it provided users with a much more
familiar set of notations, extending obviously from UML
class and object diagrams. Secondly it meant we could
reuse the ArgoUML modelling tools, by specialising them
to suit our notation extensions. This saved considerable
development effort in developing the modelling tools.

Key future enhancements we plan to explore include:
using the Eclipse [18] framework instead of ArgoUML; a
fully XMI-compliant XML representation using UML
meta-model derived architectural modelling types; and an
IDE to assist in developing new XSLT and Ant code
generation and built scripts for new target technologies.

8. Summary

Applying our SoftArch/MTE automated performance
test-bed generation tool to industrial case studies proved
problematic. We found that while this automated software
engineering technique was applicable to the case study
domains, the proof-of-concept tool had many problems
when trying to scale it. We have developed Argo/MTE,
where we integrated the test-bed generation approach into
an open source, UML-based CASE tool. Extensions of
UML modelling notations and data representations of
models are used to describe architectures. A number of
third-party tools, including XSLT, Ant, SFTP and MS
Access, are used to realise the performance test-bed
generator support in a much more scalable and flexible
way. Using Argo/MTE on two large industrial case studies
indicates these approaches have generally been successful
in scaling our test-bed generation approach.

References

1. Balsamo, S., Simeoni, M., Bernado, M. Combining
Stochastic Process Algebras and Queuing Networks for
Software Architecture analysis, Proc 3rd Intl Wkshp
Software & Performance, 2002, ACM Press.

2. Balzer, B. A 15 year perspective on automatic
programming, IEEE Transactions on Software
Engineering, vol. 11 no. 11, Nov 1985, pp.1257-1268.

3. Dai, X. and Grundy, J.C. Architecture for a Component-
based, Plug-in Micro-payment System, Proc 5th Asia-
Pacific Web Conference, Sept 27-29 2003, Xi’an, China,
LNCS 2642, pp. 251-262.

4. Denaro, G. Polini, A. and Emmerich, W. Early
Performance Testing of Distributed Software Applications.
In Proceedings of the 4th International Workshop on
Software and Performance, Redwood Shores CA, Jan 14-
16, 2004, ACM Press, pp. 94-103.

5. ECPerf Performance Benchmarks, August 2002,
ecperf.theserverside.com/ecperf.

6. Egyed, A. and Balzer, R. Unfriendly COTS Integration-
Instrumentation and Interfaces for Improved Plugability, In
Proceedings of the 2001 IEEE International Conference on

Automated Software Engineering, San Diego, 26-29 Nov
2001, pp. 223-231.

7. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proc Software - Methods and Tools,
Wollongong, Australia, Nov 6-9 2000, IEEE.

8. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, Proc 2001 IEEE Intl Conf on Automated
Software Engineering, San Diego, CA, Nov 26-29 2001.

9. Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE:
Generating Distributed System Test-beds from High-level
Software Architecture Descriptions, accepted for
publication in Automated Software Engineering.

10. Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and
Amor, R. An Architecture for Efficient, Flexible Enterprise
System Integration, In Proceedings of the 2003
International Conference on Internet Computing, Las
Vegas, June 23-26 2003, CSREA Press, pp. 350-356.

11. Hu, L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In Proc of the
2nd International Workshop on Software Engineering for
Parallel and Distributed Systems, IEEE, pp. 270 – 276.

12. Juiz, C., Puigjaner, R. Performance modelling of pools in
soft real-time design architectures, Simulation Practice &
Theory, 9, 2002, 215-40.

13. Jurie, M.R., Rozman, I., Nash, S. Java 2 distributed object
middleware performance analysis and optimization,
SIGPLAN Notices 35(8), Aug. 2000, ACM, pp.31-40.

14. Killelea , P. Web Performance Tuning, 2nd Edition,
O'Reilly March 2002.

15. McCann, J.A., Manning, K.J. Tool to evaluate performance
in distributed heterogeneous processing. Proc 6th
Euromicro Workshop Parallel & Distributed Processing,
IEEE, 1998, 180-185.

16. Nentwich, C., Capra, L. Emmerich, W. and Finkelstein, A.
xlinkit: a consistency checking and smart link generation
service, ACM Transactions on Internet Technologies, vol 2,
no. 2, 2002, pp. 151-185.

17. Nimmagadda, S., Liyanaarachchi, C., Gopinath, A.,
Niehaus, D. and Kaushal, A. Performance patterns:
automated scenario based ORB performance evaluation,
Proc 5th USENIX Conf on OO Technologies & Systems,
USENIX, 1999, 15-28.

18. Object Technology International, Inc, Eclipse Platform
Technical Overview, 2003,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

19. Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I. Using
analytic models for predicting middleware performance. In
Proc 2nd Intl Workshop on Software and Performance,
ACM 2000, pp.189-94.

20. Robbins, J.E. and Redmiles, D.F. Cognitive Support, UML
Adherence, and XMI Interchange in Argo/UML, In Proc
CoSET’99, Los Angeles, May 1999, pp. 61-70.

21. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July 1998,
261-390.

