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Abstract 

We report on our experiences developing a performance 
test-bed generator for industrial usage by extending an 
open-source UML CASE tool. This tool generates client 
and server code, database configuration and deployment 
scripts from a high-level software architecture description. 
It automates the code generation, compilation, deployment 
and performance metric result collection processes. We 
identify a range of problems that arose from our previous 
research on performance test-bed generation that needed 
to be addressed to scale this automated software 
engineering technique. We describe a range of approaches 
we used to solve these problems in our new tool. We then 
report on industrial deployment and evaluation of our new 
tool and discuss the effectiveness of these solutions. 
 
Keywords: experience report, architecture analysis, 
software performance testing, software tool extension 

1. Introduction 

Non-functional software performance requirements, 
such as response time and transaction throughput, are in 
general very challenging to meet. For example, estimating 
likely target application performance from a high-level 
software architecture design is a very hard problem [1, 4, 
7, 19]. A range of approaches have been attempted, 
including rapid prototyping, existing system profiling, 
architecture modelling and simulation, and performance 
test-bed generation [11, 7, 5, 1, 12, 8]. 

In our previous work we developed SoftArch/MTE [8], 
a performance test bed generator that generates client and 
server test-bed code and deployment scripts from a high-
level software architecture design model. The tool 
automatically generates, compiles and deploys the test bed 
code, runs the specified performance tests on the code, and 
reports the performance results to a software architect. 
Initial experiences using this tool and approach were very 
promising. However, when we tried to apply our prototype 
tool to industrial case studies with a view to 
commercialising this automated software engineering 
technique, we encountered a number of problems. These 
included: use of a non-standard architecture modelling 

notation and prototype architecture design tool; non-
standard representation of the architecture model; 
limitations on the expressiveness and maintainability of the 
code generators and the simplistic code compilation and 
deployment tools we had built; and unsuitability of the 
performance data management and visualisation support. 

The focus of this paper is to present a number of 
approaches that we have used to solve these challenges and 
report on our experiences with these techniques. These 
have included: extending an open-source CASE tool, 
ArgoUML, to provide UML-like architecture modelling 
and XMI-derived model representation capabilities; 
restructuring and enhancement of the XSLT-based code 
generators employed; use of Ant, an open-source build 
tool, to manage complex automatic process of code 
generation, compilation and deployment dependencies; use 
of SFTP, a widely supported file transfer protocol to 
manage code deployment and performance result capture; 
an MS Access database for performance test management; 
and result visualisation plug-ins for the extended Argo 
CASE tool. The resultant industrial-strength performance 
test-bed generation tool is called Argo/MTE. 

We first motivate this work by describing approaches 
to performance estimation and in the process describe and 
critique our original SoftArch/MTE performance test-bed 
generation tool, identifying its strengths and weaknesses 
for industrial usage. We then describe the approaches we 
used to build our new Argo/MTE tool in order to scale-up 
the capabilities of SoftArch/MTE. Each of the key 
approaches we used is motivated, described and illustrated. 
We then report on the deployment of Argo/MTE on two 
industrial application projects and reflect on how 
successful our techniques were. Based on this we discuss 
applicability of techniques we used for other automated 
software engineering systems with similar characteristics. 

2. Motivation 

Many approaches have been used for performance 
estimation. These include benchmarking [1, 7] which uses 
reference architectures and load-testing of simple 
implementations. Relative performances of the differing 
technologies used in the implementations are compared. 
While accurate measures for the particular benchmark 
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application are obtained, these only provide a rough guide 
for related applications [7]. Rapid prototyping [11] 
involves developing partial applications for performance-
critical parts of a system e.g. network-centric and database-
intensive. This can require significant development effort 
particularly if architecture evolution requires prototypes to 
be modified and tests repeated. Analysis of deployed 
systems [13, 15, 17] involves studying performance 
patterns and trying to extrapolate these onto new systems 
with similar architectures. This approach is limited to 
providing bench-mark style guidelines only for architects. 
Simulation approaches model distributed applications and 
simulate performance with over-head estimates based on 
architecture [1, 12] or middleware [12, 19] choices. 
Accuracy varies widely and it is difficult to obtain 
performance models for 3rd party applications such as 
databases. Performance tuning tools [14] are post-
implementation approaches to improving architecture 
performance, but are limited by the architecture design 
adopted as to the effect they can have. SoftArch/MTE is a 
performance estimation tool we have developed which 
uses a different approach: test bed generation [8]. This is 
an automated form of the rapid prototyping approach that 
others have recently begun experimenting with [4]. 
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Figure 1. Outline of the SoftArch/MTE architecture 

performance analysis process (from [8]). 

Figure 1 illustrates how SoftArch/MTE is used to gain 
an understanding of the likely performance of a software 
architecture design. The architect constructs one or more 
high-level architecture designs, specifying clients, servers, 
remote server objects and database tables, client-server, 
server-server, client/server-database requests and server 
services, and various kinds of architectural connectors. 
They specify properties such as client, server and database 

host; number and frequency of requests (e.g. call remote 
method 1000 times; call repeatedly without delay; call 
every 2 seconds; etc); database table and request 
complexity (e.g. one or multiple row select; 10 row update; 
one row insert/delete etc); middleware protocol (e.g. 
CORBA, web services message, RMI etc); and so on. 
SoftArch/MTE generates an XML encoding of the 
architecture model (2) which is then passed through a 
number of XSLT-based (XML style sheet transformations) 
scripts (3). These scripts generate, without any user 
intervention, Java, C#, etc code, JSP and ASP web server 
components, CORBA, COM and WSDL IDL files, EJB 
deployment descriptors, database table creation and 
population scripts, compilation and start-up scripts, and so 
on (4). This generated code is a runnable performance test-
bed that when executed generates real client-server-
database interactions and captures performance profile 
information (5). Compiled code is up-loaded to client, 
server and database hosts. The generated programs are 
started on all hosts and when signalled clients begin 
execution i.e. send requests to their servers. Code 
annotations and/or 3rd party profiling tools capture 
performance measures and these are returned to 
SoftArch/MTE. Diagram annotations, property sheets and 
Excel worksheets are used to show performance measures. 

We have used SoftArch/MTE to evaluate the 
performance of a range of software architectures. The 
performance results obtained have been validated against 
both hand-implemented realisations of the architectures 
tested and hand-implemented performance test-beds [9]. 
However, these experiences and our attempts to use the 
tool on several other industrial projects revealed major 
deficiencies in the realisation of this automated software 
engineering technique. These included: 
• Non-standard design tool and modelling notation. 

SoftArch is an experimental proof-of-concept 
architecture modelling tool which uses a non-standard 
visual architecture modelling language. While it proved 
suitable for experimenting with and evaluating the 
performance test-bed generation concept, it has poor 
usability, limited integration with other CASE tools 
which causes a steep learning curve for tool users. 

• Proprietary XML architecture model format: SoftArch 
saves model designs in an ad-hoc XML model format 
we developed only for our own experimental work. 
This makes exchanging the design with other tools 
difficult and excessively couples the architecture 
design tool and performance test bed code generators. 

• Unmaintainable code generators. Our SoftArch/MTE 
code generators demonstrated that XSLT provides a 
good implementation platform. However, the original 
prototype XSLT scripts proved hard to maintain, 
difficult to debug and impossible to reuse effectively. 
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Figure 2. Overview of Argo/MTE architecture.

• Tool-driven code generation, compilation and 
deployment. In SoftArch/MTE we had the tool itself 
co-ordinate the code generation, compilation, 
deployment and also result capture and visualisation 
(steps 3-6 in Figure 1). When adding new target code 
and scripts e.g. JSP and ASP web server components, 
web services WSDL descriptions and deployment 
scripts, and trying to deploy the tool on secure 
networks, this approach proved very hard to maintain 
and tailor to different tool deployment environments. 

• Proprietary code deployment tool. We built our own 
Java deployment tool client and server for 
SoftArch/MTE. This worked well but again proved to 
be too difficult to adapt to different tool deployment 
environments, hard to maintain and lacked fundamental 
code deployment and test control facilities. 

• Result capture and visualisation.  We added bespoke 
code to SoftArch to visualise performance results in 
various ways. This proved difficult to extend to capture 
other kinds of results and visualisation facilities 
provided were poorly integrated with other facilities. 
Managing and comparing multiple architecture design 
results was particularly poorly supported. 

 
Scaling up automated software engineering techniques 

for use on large industrial problems has long been of 
interest [2]. Techniques adopted include integration with 
Commercial Off-The-Shelf (COTS) tools [6], developing 
more robust implementations for large-scale problem 
domains, and adopting widely used standards, enabling 
reuse of industrial-strength tools developed  by others [16]. 

3. Overview of Argo/MTE 

To solve the problems we encountered with SoftArch/ 

MTE and produce an “industrial strength” performance 
test-bed generation tool we developed a new tool, 
Argo/MTE. ArgoUML is a widely-used open source 
CASE tool [20, 21] incorporating other open source 
packages such as novosoft UML, java XML and java GEF.  
It provides well organized source files and documentation. 
We extended ArgoUML to incorporate our performance 
test-bed support in an integrated UML-based CASE tool. 

Argo/MTE is an integrated development environment 
for software architecture design and architecture 
performance evaluation. Figure 2 provides an overview of 
the Argo/MTE architecture and its usage. Multiple 
Argo/MTE domain-specific meta-models can be defined 
using a new tool we added, each providing a different set 
of architecture modelling abstractions and code generators 
e.g. for web-based or real-time systems, etc (1). These 
meta-model abstractions are stored using an extended form 
of ArgoUML’s XML Meta-data Interchange (XMI)-based 
XML model representation format within the ArgoUML 
environment. Argo/MTE allows tool users to draw, 
modify, refine, and revise software architecture designs, 
again using a new architecture modelling tool we added to 
ArgoUML (2). Architecture models are developed using 
one or more meta-models and multiple design views. Each 
Argo/MTE design encodes enough data to generate a test 
bed (normally a distributed software system) for a given 
level of abstraction. The test bed not only implements 
fundamental functional requirements of the intended 
system, but also carries performance evaluation 
information. Meta-models and architecture models are 
saved in an XML file format (3). A set of Ant 
configuration management tool scripts are generated to 
perform code-generation, compilation, deployment, test 
initiation and results capture (4). The XML-encoded 
software architecture model is transformed into a range of 



files and scripts (5). A set of XSLT scripts and the Xalan 
XSLT engine perform this work under Ant script control. 

The generated test-bed code is compiled and deployed 
to multiple host machines (6). Performance tests are then 
run producing text files capturing the performance 
profiling results (7). The results are downloaded and 
captured in an MS Access database, producing an archive 
of architecture model/performance results over time. The 
result database is queried and performance results for a 
single or multiple performance test runs visualised using 
various graphs and architecture model annotations (8). 

In the following we examine in more detail the 
architectural and design decisions made when developing 
Argo/MTE to solve the scalability of SoftArch/MTE. 
These include: the architecture modelling and meta-
modelling capabilities; architecture model representation 
and management; co-ordination of code generation, 
compilation and deployment; and performance test 
execution, data management and visualisation. 

4. Architecture Modelling 

User evaluation of SoftArch/MTE identified several 
enhancements needed for architecture modelling support 
[9]. These included software architects’ desire for a more 
conventional UML-based modelling language, integration 
of our technique into a “standard” UML-based CASE tool, 
and ability to modify and extend the architectural design 
tool’s meta-model types. To achieve this we chose to 
extend ArgoUML with SoftArch/MTE-style capabilities. 
We chose ArgoUML instead of other UML CASE tools 
for several reasons: it is open source; well-structured and 
extendable at both diagramming and model levels; uses 
common data representation standards such as XMI; and 
its cognitive support could be used to provide architecture 

design process support [20]. We made three fundamental 
extensions to ArgoUML to support architecture modelling:  
• extending ArgoUML’s data structures to support 

architecture-specific meta-model types and model 
instances using these domain-specific types 

• adding a visual meta-model type specification tool 
• adding a visual architecture design tool 

 
We designed modelling elements at UML meta-model 

level to support Argo/MTE-style architecture modelling. 
We extended ArgoUML’s existing UML meta-model data 
representation to capture these software architecture 
designs. Figure 3 shows our design of modelling elements 
at UML meta-model level. Modelling capabilities added 
include representing host machines, nodes (processes), 
operations, attributes and various parameters. We tried to 
ensure this design followed logically from existing Argo 
meta-model types. An Argo/MTE domain-specific meta-
model provides a modelling framework for a particular 
domain, which specifies available modelling types, 
properties and their relationships available to define an 
architecture model’s structure and semantics. 

Each architecture design model in Argo/MTE must use 
one or more previously defined meta-models. Meta-models 
can be defined for e.g. “web-based applications”, “real-
time applications”, “mobile device applications”, etc. 

Each component in an architecture design model is 
typed by a meta-type (a meta-modelling element) which 
specifies allowable properties and relationships to other 
elements. Each such meta-type defines sets of architectural 
and testing parameters. Architectural parameters define 
architecture design structural data while testing parameters 
provide performance code generation-related data. A good 
meta-model is essential to ensure an architecture design 
has adequate information with low redundancy.

 
Figure 3. ArgoUML XMI meta-model extension examples. 



We developed a meta-model specification tool for 
Argo/MTE allowing architects to build and refine their 
own meta-models. This was developed as a specialisation 
of the ArgoUML class diagramming tool. Figure 5 (a) 
shows a sample e-commerce meta-model for CORBA-
based information systems modelling. This meta-model 
includes abstractions for client, database and, application 
servers, remote objects, and other architecture modelling 
types. Argo/MTE uses the ArgoUML view layout menu 
and tool bars (1,2), model element tree view (3), diagram 
editing pane (4), and tabbed property sheet pane (5). 

To build an Argo/MTE meta-model a target application 
domain is analysed and abstract modelling element types 
devised for that domain. A number of architectural 
elements from the CORBA-based information systems 
domain are shown in Figure 5 (b). Element attributes with 
type “AP” are ArchArchitecturalParameters (generally 
structural) properties. Ones marked “TP” are ArchTesting 
Parameters used for performance test-bed code generation.  

Using a similar approach we developed an architecture 
modelling tool by specialising the class diagramming and 
collaboration diagramming tools from ArgoUML. This 
approach reduced development time and provided 
architects with design tools similar to the look and feel of 
the ArgoUML toolset. Part of a complex, distributed 
micro-payment system architecture, NetPay [3], is shown 
in Figure 4© to illustrate this tool. The architecture 
modelling notation we developed extends the UML class 
and collaboration diagram appearance and layout. We used 
a class icon-like representation of architecture abstractions 
rather than UML-style deployment diagram shapes as we 
found the latter cumbersome and inflexible. 

An Argo/MTE model comprises elements (rectangles), 
element requests and services (labels), associations (solid 
black lines), message interactions (blue lines and 
highlights), hosting associations (dashed lines), and 
refinements (solid or dashed black line with one end 
point). Stereotypes indicate meta-model type instantiation. 
Each element has a property set derived from its meta- 
model type. The architecture in Figure 4(c) comprises a 
customer PC-hosted browser and payment client (“E-
wallet”) (1), a broker (2), and several vendor sites (3). The 
vendor has a multi-tier architecture: the client browser 
accesses web pages (4), which access application server 
components via CORBA (5), and a database (6). Each 
abstraction links to other abstractions via relationships. 
Properties/parameters for the <<Client>>Reader 
component are shown below. Architectural parameters 
support architecture modelling e.g. types and relationships. 
Testing parameters support performance code generation, 
including number of client threads, whether to record 
timing information, middleware threading and transaction 
models and configuration parameters such as number of 
times to repeat requests, pauses between requests etc. 

Multiple architecture and meta-model type views are 
supported for complex specifications. Figure 5 shows three 

views of the NetPay system. Collaboration relationships 
between client requests and server services (1) visualise/ 
specify message-passing relationships between elements. 
(2) shows just the message passing relationships between 
elements. Refinement of higher-level abstractions is shown 
in (3), where CustomerRegistrationPage service “register 
Customer()” is refined to constituent operations (each 
realised by business logic and database operations). We 
further developed a concept of architectural model 
refinement from SoftArch/MTE in Argo/MTE. This allows 
an architect to specify refinements of high-level concepts 
e.g. “RemoteServer” to smaller abstractions e.g. to 
“CustomerManger”, “ContentManager” and 
“PaymentManager”. This concept was not supported in 
ArgoUML and required the addition of cross-diagram and 
inter-meta-model element refinement relationships. We 
also allow architects to refine architecture elements from 
OO analysis classes, and refine them to OO design classes. 
This provides an integrated traceability support mechanism 
within the architecture design tools. 

 
(1)

(2)

(3)

 
Figure 4. Multiple views and refinement examples. 

5. Test Code Generation and Deployment 
In our SoftArch/MTE prototype tool we developed a 

proprietary XML format to represent and store SoftArch 
designs. This was then processed by XSLT scripts to 
generate target code files, batch scripts, deployment 
descriptors, IDL files etc. This worked well for relatively 
small example systems but proved inefficient and caused 
XSLT script implementation and processing problems 
when modelling larger systems. It also has the fundamental 
problem that only our own tool could ever generate it. 

We wanted to represent the architecture models in a 
more standardised format, and our final aim is to 
eventually make Argo/MTE model data exchangeable with 
other XMI-supporting CASE tools.  
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  ArchOperHost 

ClientType (AP, TP) 
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RemoteServer (AP, TP) 
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Figure 5  (a). Example of a domain-specific meta-model; (b) Examples of meta-model types and attributes; (c) 

Example of an Argo/MTE architecture model for complex micro-payment system architecture. 

For now we chose to extend ArgoUML’s XMI-based 
UML representational format to capture model structure 
and code generation parameters. Currently, Argo/MTE 
model files consist of modelling elements represented 

using the meta-types shown in Figure 3. We extended the 
ArgoUML save file module to store and retrieve our 
extended architectural design models. 



We chose to continue using XSLT scripts to implement 
our Argo/MTE code generators as they proved to be 
flexible, powerful and more easily maintained and 
extended than Java or C++-implemented code generators 
we had used in other CASE tool work. However, we 
needed to modify the SoftArch/MTE scripts to use our 
extended model format and also had to make the code 
generators more efficient and generate larger but more 
easily managed target code.  
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Figure 6. Argo/MTE code generation, compilation 

and deployment via generated Ant scripts. 

In SoftArch/MTE a set of code generation XSLT 
scripts were run over multiple XML save files generated 
by the tool. The scripts run and input files to give them 
were determined by examining the architecture model. 
Each script was responsible for organising its own output 
file(s). We discovered when adding code generation scripts 
for JSP and ASP web server components, J2EE Enterprise 
Java Bean code and deployment descriptors, and .NET 
component code and WSDL interface definition files that 
this approach didn’t scale well. It often required hand 
modification of SoftArch/MTE’s code generator co-
ordination code and it was difficult to order invocation of 
compilation, deployment and test execution scripts.  

To solve these problems we have structured our Argo/ 
MTE code generator to have scripts associated with meta-
model types. In addition, we have developed a repository 
of code generation parameters which are used to determine 
which scripts require running on a model, their order and 
templates for generating a configuration management tool 
script to handle the dependencies between code generation 
scripts and moving and packaging their output files. This 
approach does not require any code modification to 
Argo/MTE when new scripts are added, just maintenance 
of the test parameter repository. 

In addition to hard-coding the code generation, 
SoftArch/MTE hard-coded compilation and deployment of 
generated code, batch files, IDL files etc. This also proved 
non scalable. In Argo/MTE we replaced this with an Ant 
script generator component. This uses test parameters, 
meta-model types and model data to generate an Ant script 
that runs: XSLT code generation script processing; 
generated code compilation, including source code and 
IDL files; compiled code, IDL file and deployment 
descriptor uploading to remote hosts; and performance 
result downloading. Ant manages complex dependencies 
between parts of a large set of test-bed programmes at each 
stage of compilation, deployment and test execution. 
Figure 6 shows how Argo/MTE provides scalable 
generation, compilation and deployment processes.  

In addition to Ant script generation, Argo/MTE also 
used a 3rd party secure FTP (SFTP) program for 
deployment and result upload, replacing another hard 
coded component of Softarch/MTE. We used generated 
Ant script macros to drive SFTP to both deploy compiled 
code and download test result files from remote client and 
server host machines. This provides us with a standardised, 
widely available file up and downloading facility with an 
extensible, scripting-based control language. 

6. Test Data Management and Visualisation 

In SoftArch/MTE deployed client and server programs 
are initialised, and clients told to execute via our custom 
deployment tool, and performance results were stored in 
text files. These were downloaded to the SoftArch/MTE 
host, parsed and data extracted to visualise test results. 
Recording of results was by archiving result files and by 
custom code added to SoftArch/MTE to annotate diagrams 
and drive simple Excel spreadsheet charting functions. 

We found this approach unsatisfactory when adding 
new code generators for thin-client JSP and ASP server 
components. We had to generate “pseudo-browser” clients 
which provided results of limited accuracy. Controlling 
test runs via the custom deployment tool required continual 
update of this application. Visualisation of results in 
SoftArch/MTE was not well-integrated with modelling 
views and the Excel charting cumbersome. The capture 
and comparison of test runs for different architecture 
models was particularly poorly supported. 

Figure 7 illustrates the Argo/MTE test deployment, 
execution and results management process. Argo/MTE 
instructs Ant to upload and initialise generated test client 
and server programs, scripts, IDLs and database scripts (1). 
The generated Ant build script is run with “deployment” 
parameter, resulting in multiple file uploads to remote 
hosts using a local SFTP client and remote SFTP servers 
(2). Each remote host has another generated Ant script 
uploaded as part of this deployment process. 
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Figure 7. Argo/MTE test execution & results capture. 

 
Figure 8.  Example of result visualisation. 

This is used by a remotely-deployed Ant build engine 
running on each host to initialise deployed programs and 
configuration scripts (3). This remote Ant engine script is 
also used to synchronise the start of multiple client 
programs. For thin-client test-beds (e.g. JSP or ASP web 
server components), we use the Microsoft Application 
Centre Test (ACT) automated test execution tool which 
simulates multiple browser requests to these JSPs and 
ASPs, giving realistic browser performance measures. An 
ACT script is generated for each thin-client from the 
Argo/MTE model and the remote Ant engine script 
initialises and instructs ACT to run these scripted tests. 
Results from performance profiling annotations to code or 
ACT output files are captured as text files (4). The 
Argo/MTE Ant engine downloads these results via SFTP 
(5). It updates a test database, inserting performance results 
for each model item grouping them by test run (6). The 

result visualisation component extracts test run results to 
visualise (7). 

We added a result visualisation component to 
Argo/MTE which queries the test database and displays 
test run results as graphs or annotations to architecture 
model diagrams. This is shown in Figure 8; architecture 
components with performance results available are 
annotated with a small box at the top left corner. These 
results can then be examined in tabular or graph form. We 
decided after user evaluation of SoftArch/MTE to more 
closely integrate the result visualisation support into 
Argo/MTE architecture model diagrams. Users found our 
previous approach of using an Excel charting macros and 
generating new SoftArch/MTE annotated views to be 
difficult to use. Our new approach of a database to capture 
multiple test run results allows us to much more easily 
visualise multiple test runs e.g. comparing the relative 
performance of different architecture design decisions. 

7. Discussion 

7.1 Industrial Deployment of Argo/MTE 
We have carried out two detailed industrial case studies 

using Argo/MTE, one on a complex micro-payment 
architecture [3] and one on an enterprise integration system 
architecture [10]. In both cases we had example 
architectures and fully-implemented systems. We had also 
carried out performance analysis experiments with the 
hand implemented systems in previous projects so we 
could model and compare the Argo/MTE-produced results 
with these actual performance results. In addition, with 
Argo/MTE we could model alternative architecture design 
scenarios and obtain performance results to compare to the 
results from other architectures. We used these case studies 
as they both provided us with complex architectures to 
model and performance test, and we were familiar enough 
with the problem domains that we could analyse and 
interpret the results in depth. For both case studies we had 
to add new meta-model abstractions, code generators and 
build compilation script templates. Our previous 
SoftArch/MTE prototype proved very difficult to adapt 
and use on these case studies whereas we were able to 
successfully use Argo/MTE. 

Our experiences with these large case studies were 
generally very positive. We were able to build successive 
levels of abstract and detailed architecture models with 
Argo/MTE, which provided a robust environment and 
effective set of architecture modelling facilities. 
Extensions to the meta-model, code generation scripts and 
build and deployment configuration templates were all 
much more straightforward than with SoftArch/MTE. We 
were able to generate code for and compile very complex 
test beds. Both systems had several servers and databases, 
with numerous remote operations per server, even with 
greatly simplified architectural models. We required a 



range of test bed clients, many run con-currently, to 
request a mix of different server operations and gather 
overall performance metrics from the generated server 
programs. Overall, the performance results we obtained 
from Argo/MTE’s generated test beds were reasonably 
close to those obtained when running the exact same 
clients against the real implemented system servers. We 
discovered some implementation errors in the real micro-
payment system example, badly affecting its performance. 
These were highlighted by obtaining Argo/MTE test bed 
results wildly different from those obtained from the real 
system. Correction of these programming errors resulted in 
much closer performance result correlation. 

Several limitations were encountered when using 
Argo/MTE on these case studies. The first related to the 
inability of the architect to specify ranges of values rather 
than absolute numbers of clients, client requests, etc. Other 
included the effort needed to add and test new code 
compilation and build support, and the limited result 
visualisation in the tool at present. 

7.2 Advantages and Disadvantages of Argo/MTE 
Argo/MTE provides integrated modelling support as an 

addition to a UML-based CASE tool, ArgoUML. This was 
found to be a much more appealing and effective 
environment than our previous, stand-alone SoftArch/MTE 
tool. The use of a set of UML-like modelling abstractions 
provides an architecture design notation closer to 
designer’s other modelling languages within  this tool. The 
use of an XMI-like model representation format and 
extensible architecture meta-models increases the chance 
of model data exchange. Restructuring our XSLT-based 
code generators and using the Ant build manager tool to 
control code generation, compilation and deployment 
greatly eased this process. It is now far easier to add new 
meta-model abstractions to represent new target 
middleware or database technologies, add new code 
generators, compilers and deployment scripts, and generate 
Ant build scripts to control this process. The use of third-
party tools to co-ordinate the test bed generation and 
execution process (Ant), deployment (SFTP), and web-
based client tests (ACT) has proved much more scalable 
and flexible than our previous ad-hoc applications to 
perform these tasks. We found this particularly so when 
heterogeneous architectures incorporating several 
technologies had to be generated and deployed. 

Several issues need to be further addressed with 
Argo/MTE. This includes process support to guide the use 
of the tool. The design of an architecture, performance 
test-bed generation, and evolution of the architecture 
design using test results has proved to be a complex 
process requiring considerable domain knowledge. Support 
for this may include use of ArgoUML’s critics to provide 
pro-active guidance to architects for the performance 
testing [20]. We have used an extended, XMI-like format 
to represent Argo/MTE model data, but this is not 

standard. As the UML is enhanced to incorporate more 
architecture representation facilities, our approach ideally 
will need to be adapted to use these, from an XMI-based 
encoding of the model. Similarly, if UML architecture 
modelling approaches become standardised, we would like 
to use these instead of our architecture modelling 
enhancements. We found writing new XSLT code 
generators and Ant build script templates one of the most 
time-consuming aspects of adding new target technology 
support to Argo/MTE. Adding an IDE for these facilities to 
the tool would make it much easier for architects to extend 
its supported target technologies.  

Storage of test results in an MS Access database proved 
a major improvement. However, while SoftArch/MTE’s 
use of Excel charts to visualise results proved to be 
unpopular with end users, our Argo/MTE approach of an 
Argo extension to display results is also limited. Extending 
its support to display results in different ways and to carry 
out different analysis of results requires extra Java coding.    
An enhancement would be to use MS Access reports to 
generate these visualisations but to incorporate the 
invocation and display of report results within the 
Argo/MTE using OLE or similar component integration. 

7.3 Generalisation of Our Experiences 
While it is difficult to generalise from one example, we 

feel that there are a number of lessons from our 
experiences in scaling up our test bed generator technique 
that may be applicable to scaling of other automated 
software engineering techniques.  

The first of these is to where possible concentrate on 
using commonly used COTS (or Open Source OTS) tools 
to implement parts of the application rather than 
developing bespoke code. Such tools have typically been 
developed with efficiency, both in terms of performance 
and representational economy in their target domain, in 
mind [6]. They have also been through the quality control 
processes needed to support industrial usage. Examples of 
this in Argo/MTE, which can be considered as lessons in 
their own right are: 
• Use of build tools to manage complex dependencies. 

This is a specialist domain, fraught with difficulty. 
Reuse of existing expertise to solve the compilation 
and deployment problem was an essential component 
of Argo/MTEs successful development 

• Use of scripting languages and engines. Both Ant 
scripting and XSLT scripts proved excellent 
approaches for representing complex operations. 
Scripting notations are tuned to their particular 
domains of application, hence are terse and relatively 
easy to develop code generators for. 

• Use of databases for management and visualisation of 
large datasets over time. 

The second major lesson is the use of standard 
representations where possible. While our SoftArch 
notation was novel and innovative, this proved to be a 



handicap for user adoption. Use of the UML meta model 
for defining our architecture notations proved successful 
for two reasons. Firstly it provided users with a much more 
familiar set of notations, extending obviously from UML 
class and object diagrams. Secondly it meant we could 
reuse the ArgoUML modelling tools, by specialising them 
to suit our notation extensions. This saved considerable 
development effort in developing the modelling tools.  

Key future enhancements we plan to explore include: 
using the Eclipse [18] framework instead of ArgoUML; a 
fully XMI-compliant XML representation using UML 
meta-model derived architectural modelling types; and an 
IDE to assist in developing new XSLT and Ant code 
generation and built scripts for new target technologies. 

8. Summary 

Applying our SoftArch/MTE automated performance 
test-bed generation tool to industrial case studies proved 
problematic. We found that while this automated software 
engineering technique was applicable to the case study 
domains, the proof-of-concept tool had many problems 
when trying to scale it. We have developed Argo/MTE, 
where we integrated the test-bed generation approach into 
an open source, UML-based CASE tool. Extensions of 
UML modelling notations and data representations of 
models are used to describe architectures. A number of 
third-party tools, including XSLT, Ant, SFTP and MS 
Access, are used to realise the performance test-bed 
generator support in a much more scalable and flexible 
way. Using Argo/MTE on two large industrial case studies 
indicates these approaches have generally been successful 
in scaling our test-bed generation approach. 
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