
Copyright 2001 IEEE. Published in the Proceedings of 2001 IEEE International Conference on Automated Software Engineering, San Diego, CA, Nov 26-29 2001. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

Automatic Validation of Deployed J2EE Components Using Aspects

John Grundy1, 2 and Guoliang Ding1

1Department of Computer Science and 2Department of Electrical and Electronic Engineering,
University of Auckland, Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract

Validating that software components meet their
requirements under a particular deployment scenario is
very challenging. We describe a new approach that uses
component aspects, describing functional and non-
functional cross-cutting concerns impacting components,
to perform automated deployed component validation.
Aspect information associated with J2EE component
implementations is inspected after component deployment
by validation agents. These agents run automated tests to
determine if the deployed components meet their aspect-
described requirements. We describe the way component
aspects are encoded, the automated agent-based testing
process we employ, and our validation agent architecture
and implementation.

Keywords: software component validation, automated
testing, component characterisation, validation agents

1. Introduction

Component-based software development uses the

approach of composition of self-describing, reusable and
tailorable units of functionality (components) [31, 4, 6].
During component design, implementation and testing
developers need to ensure both individual components and
groups of composed components meet the component
users' functional and non-functional requirements. In order
to ensure components meet these constraints, developers
can carry out three kinds of quality assurance: design-time
constraint reasoning, implementation-time component
testing, and deployed component composition and
configuration validation. Unfortunately while the first two
approaches ideally allow developers to demonstrate
components meet specifications, they have key problems.

Many researchers have investigated approaches to
describing software components formally [6, 11, 25, 29].
These theoretically allow design-time verification of
component characteristics and therefore verification that
groups of composed components will meet system

requirements. Similarly researchers have developed
various tools to assist verifying an implemented
component meets its desired requirements constraints [2,
15, 23]. Design-time validation suffers from the problem
that components run on un-verified hardware, networks,
operating systems and in conjunction with unverified third-
party COTS components [20, 21]. Implementation-time
testing may verify components meet constraints in
"laboratory situations" but not necessarily that they do
when deployed with other, often 3rd party components.

We have developed a new method for developing
software components called Aspect-oriented Component
Engineering (AOCE) [6]. This technique uses "aspects", or
cross-cutting concerns, to characterise software component
constraints. In this paper we describe new work we have
done developing "validation agents" that use aspect
characterisations to verify software components meet
constraints in actual deployment situations. We motivate
this work and survey existing component validation
approaches. We then describe the AOCE method and
illustrate how component implementations have aspect
characterisations associated with them. We describe the
architecture and implementation of our agents, illustrating
their use with some examples. We conclude with a
discussion of experiences and directions for future work.

2. Motivation

Figure 1 (a) shows one of the user interfaces from a

component-based software application, an on-line furniture
store. Some of the software components making up this
application are shown in Figure 1 (b). These include Java
Server Pages providing web-based user interfaces
(including product searching, login, a shopping cart and
groupware messaging support); thick-client data
maintenance applications (e.g. for maintaining staff,
customer, product, catalogue, and order data); server-side
Enterprise Java Bean components implementing business
logic (product catalogue, search engine, order processing,
and messaging) and enterprise data management (orders,
products, staff, customers, and messages). Some

middleware, database, security and GUI components are also used.

Login

Shopping
Cart Messages

Product
Searches

UI – Java Server Pages

Communications

Database Access

Products
[Furniture]

Catalogue

Search EngineCustomers

Staff
Shopping

Cart

Security

Messaging Service Order
Processing

Browser
Clients

Data
Maintenance

Clients

J2EE Server

Figure 1. (a) Example component-based system and (b) a J2EE-based architecture for this system.

Many of these components can be reused in other
applications, either similar on-line business-to-customer
applications (e.g. the shopping cart, catalogue, and
customer sales tracking) or a wider range of multi-tier
applications (customer, staff and order information,
groupware messaging client and server support,
middleware and data persistency support). Many of these
components can be deployed with different 3rd party
components, middleware, and component versions of e.g.
J2EE servers, database servers and so on, from those the
original designers and implementers planned or envisaged.

Both the individual components and the components
they are deployed with to form an application have various
functional and non-functional constraints that typically
“cross-cut” the components that make up the system:
• Performance – speed for component method(s) to

complete; required number of concurrent users; data
transfer rates and so on. Performance is notoriously
difficult to predict [9, 17].

• Resource usage – memory and disk space consumption,
network bandwidth, web server CPU time and so on.
Groups of components can adversely affect each
other’s performance and resource utilisation in very
unpredictable ways [17].

• Transaction support – transaction recovery,
concurrency control, distributed transaction support
and so on.

• Security – authentication of users and client hosts,
access control to server-side functions, data encryption
and decryption and so on.

• Data persistency and distribution – data storage,
location and retrieval, storage mechanism (text, binary,

XML, multimedia), data transmission, distributed event
subscription and notification, and so on.
These issues cross-cut software components in multiple

places and in ways orthogonal to the functional
decomposition of the application typically used by most
component (and object) design approaches [32, 24, 6].
Validating that component designs and compositions meet
overall system constraints, and that individual component
constraints are satisfied in a given deployment situation, is
very difficult [9, 7]. Our experience with AOCE has shown
some design-time and implementation-time validation can
be done, but this must be complemented by deployment-
time validation [8].

Most component design approaches, such as
Catalysis™, COMO and SelectPerspective™ [1, 4], do not
capture the cross-cutting concerns impacting components
adequately [13, 8]. This means it is difficult to reason
about component compositions at design-time in terms of
their overall constraints and whether these will likely be
met. Our own aspect-oriented component engineering
method provides much richer component description,
including aspects capturing the above cross-cutting issues,
but similarly cannot adequately support component
validation at design-time. Most other component
description techniques focus on formally specifying
component functional properties [3, 11, 29, 25, 30]. Few
support non-functional constraint specification though
component “trust” and some specialised non-functional
requirement description techniques, such as security, have
been developed [11, 19, 18, 2]. All of these support a
degree of design-time composition reasoning. However
none can adequately validate component deployment

compositions due to inability to specify 3rd party
component, hardware and operating system characteristics.

Various approaches to component testing, middleware
performance evaluation and deployed component
validation have been investigated. Most component testing
approaches and tools apply tests to individual or small
groups of components under “laboratory conditions”, not
usually realistic deployment situations [15, 21, 23, 14, 10].
Some approaches use extracted component meta-data and
wrappers to formulate automated component tests [26, 21],
but these techniques tend to only focus on functional
component validation, not validating non-functional
constraints. Middleware performance testing work
typically focuses on only limited aspects of component
functional and non-functional requirements [9, 22, 7]. In
addition, many of these approaches also suffer from a high
degree of manual effort on the part of developers to build
test harnesses with which to evaluate their components and
middleware [5, 7, 9, 14]. Most current deployed
component validation approaches also typically require
extensive test bed prototyping to evaluate components [16,
9]. A major problem with these dynamic component
testing approaches is that the components under test have
poor self-description in terms of the required component
functional and non-functional characteristics [8]. This
makes automated component validation very difficult.

3. Our Approach

In order to adequately support automated deployed

software component validation we need to:
• Encode information about cross-cutting component

characteristics and constraints in a unified manner. We
use “component aspects” to do this.

• Allow this information to be accessed at run-time by
validation agents. We encode this component aspect
information using XML documents.

• Run extensive, realistic tests on components in their
desired deployment situation. We use queried aspect
information to both configure component testing and
to allow validation agents to act as test oracles,
validating component behaviour meets constraints.

• Leverage existing testing frameworks and tools. Some
of our validation agents make use of our
SoftArch/MTE performance test-bed generator to
generate realistic component loading tests.

Aspect-oriented component engineering is an extension

to component engineering methods that focus on
decomposition of system requirements into software
component divisions of responsibility along functional
lines. Component aspects represent cross-cutting concerns
that impact on components in terms of the systemic
services a component requires in order to operate or
provides to other components in a system. Typical
component aspects we use include user interface,
distribution, persistency, security, transaction processing,
component configuration and co-operative work support
facilities (though many others are also possible [6]). Each
component in a system is impacted by one or more of these
systemic aspects - they either provide services to the
system as a whole in this category or require them from
other components. Each aspect category is divided into a
number of aspect details, each of which may be provided
or required by a software component. For example, a
"shopping cart" component might provide a user interface
window and menu bar, a data structure, transactional
support, and event generation, but might require data
persistency, event transmission and security management.

.jar files

Requirements

components

aspectsSpecification

Design

<aspect id=distribution>
 <provides>
 <detail id=send event>
 <properties>
 <performance>
 <speed_sec>
 100
 </speed_sec>
 </performance>
 …
 </properties>
 </detail>
 …
 </provides>
 …

</asepct> EJB Classes

.war files

JSPs + JavaBeans

Implementation

Deployment

J2EE Server

EJBs

HTTP Server

JSPs

Validation
Agents

3rd Party
Testing Tools

Figure 2. Using aspects to ensure component-based system properties are met.

Provided and required component aspect details have
properties that further specify/constrain them e.g.
minimum rate of data transmission provided or required;
data indexing scheme and functions; whether parts of
interface can be extended by other components; and so on.
Aspect details typically characterise the systemic provided
or required services (functional behaviour) impacting parts
of a software component (i.e. that it provides or requires),
whereas aspect detail properties tend to characterise non-
functional constraints on these provided/required services
(though this is not a hard rule) [6, 8].

Figure 2 illustrates how we make use of component
aspects to validate deployed software components.
Candidate component specification are identified and each
of these components has a number of component aspect
details they provide or require. Refinement of component
specifications into detailed designs identifies
implementation approaches to be followed in order to
realise components. At design-time inter-component aspect
relationships can be reasoned about. For example, consider
a component requiring event broadcasting services
(functional, Distribution aspect detail) that must support
100 events per second over a local area network (non-
functional aspect detail property constraint). To be a valid
component configuration one or more other components
providing such services and meeting the performance
constraints must be composed with this component.

We have developed a J2EE component implementation
method that uses aspect-oriented component designs to
guide component implementation maximising reusability
and configuration [8]. As part of this process, developers
encode component aspect information in XML documents.
After component deployment this information is accessible
for a number of purposes: other components introspect
aspect information and perform automatic re-
configuration; automated indexing of components for a
repository; and allowing users to view component aspect
information. In the work described in this paper validation
agents also use this aspect information. It allows them to

determine required component functional and non-
functional characteristics and to perform tests on deployed
components to determine if these are met. Our validation
agents obtain component aspect information encoded in
XML, determine appropriate tests that need to be run, then
run these tests. Developers are informed of any non-
working functional services or non-functional constraint
violations. Some agents run test themselves while others
use 3rd party testing tools to run required tests.

4. Component Characterisation

After designing software components using aspects a

developer implements them using an appropriate
technology. In this work we focus on using Java 2
Enterprise Edition (J2EE) implemented components [28],
though the concepts are applicable to CORBA, .NET and
COM+ implemented components. The J2EE architecture is
illustrated in Figure 3, along with how we manage aspect
encodings for J2EE components. The key components in
the J2EE software architecture include clients (thin clients
via browsers and thick clients via applets and
applications); middle-tier web servers (comprised of Java
Server Page (JSP); JavaBean and Servlet “components”);
enterprise servers (comprised of Enterprise JavaBean
(EJB) components); and databases. Thin clients are
rendered HTML presented to users in web browsers. Thick
clients incorporate Swing JavaBean GUI components and
possibly data structure and other components. JSPs and
Servlets are not strictly components but we treat them as
such – they can be self-describing (via aspects) and
dynamically deployed. These may make use of JavaBeans,
simple software components that run in the hosting web
server. Enterprise JavaBeans are a component model
incorporating enterprise business logic (“Session Beans”)
and data management (“Entity Beans”), and are hosted by
EJB containers and servers (providing persistency,
transaction, security and resource management support).

Middle-tier

J2EE Server
Bean Containers

Web Browser

Servlets

JSPs

Applets

Applications
(Swing Comps)

Home IFs
EJBs

Databases

Aspect info in
BeanInfo classes

Aspect info in XML
(via URL)

Aspect info in XML (via
URL or AspectInfo EJBs)

AspectInfo &
AspectTestData

EJBs

Figure 3. J2EE component-based architecture with aspects.

We have used the J2EE architecture to incorporate
aspect descriptions for EJBs and JSPs Each JSP and
Servlet hosted by the web server have an XML document
describing the component’s aspect information, accessible
via a URL. EJB aspect information is accessed via a URL
or by meta-data management AspectInfo entity EJBs
deployed with the EJBs being described. Test data for use
by validation agents is provided by AspectTestData EJBs.

Component aspect information is encoded using XML
documents. We chose to use XML as it is flexible, can be
straightforwardly stored and processed using a range of
technologies and can be flexibly queried via Xpath-
implemented queries. Aspect encodings describe systemic
services provided and required by components and
describe constraints on these services. Aspect information
is consistency checked by a CASE tool [8].

Part of our Document Type Definition (DTD)
describing component aspect XML document structure is
illustrated in Figure 4 (a). An aspect specification is for a
specified component or group of components. Group, or
“aggregate” aspects, allow functional and non-functional
characteristics to be specified for a set of composed
components. A component’s specifications are aspects,
aspect details and aspect detail properties describing cross-
cutting systemic concerns impacting the component’s
methods and state. Details are provided or required, and
properties include types and expressions constraining the
property’s value(s). In addition, “validation” methods and
URLs can be specified for components. These allow
validation agents to construct and invoke method and/or
URL calls to test the component at run-time. While some

standard EJB and JSP method/URL calls are built-in to
different validation agents, some must be component-
specific and make use of deployment-specific example
data. Such parameter values for EJB method calls and
argument values for JSP page POSTs are accessed from
named AspectTestData EJBs, along with expected method
return values and a subset of the expected HTML result
data values.

Figure 4 (b) shows parts of two components’ XML-
encoded aspect information, the first for a Staff Entity EJB
(for maintaining Staff information) and the second for a
Product Search JSP. The EJB has a persistency aspect
detail describing the data storage support the EJB provides,
and one describing the write-data support it needs to
provide this Staff information data storage. The provided
StoreData functionality cross-cuts the ejbCreate and
ejbStore methods. A detail property specifies that storing
the component state data should take less than 50
milliseconds. A component method call is specified that
can be used by validation agents when verifying this. A
JSP data provision detail (provided distribution aspect)
specifies a maximum number of concurrent users the JSP
must support. Another data output detail (provided user
interface aspect) specifies the user response time and
specifies a URL call and EJB to access example test data
from. This will be used to formulate a URL with argument
values specific to the JSP’s deployment scenario (in this
case the furniture store). The EJB can also provide some
expected output data for agents to verify – method return
values or example data in the returned HTML text.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT (Component|ComponentGroup)+>
<!ELEMENT Component (CompName, MappingName, CompProperties,

CompMethods, CompEvents, CompAspects)>
…
<!ELEMENT Aspects (Aspect)+>
<!ELEMENT Aspect (AspectName,Details)>
<!ELEMENT Details (Detail)+>
<!ELEMENT Detail (DetailName, DetailType, Provided,

DetailProperties, ImpactedMethods, DetailInfo)>
…
<!ELEMENT DetailProperty (DetailPropName, DetailPropType,

DetailPropConstraint, DetailTestMethods, DetailPropInfo)>
…
<!ELEMENT DetailPropConstraint Expr>
…
<!ELEMENT DetailTestMethod (MethodCall|URLCall)>
<!ELEMENT MethodCall (MethodName, MethodArgumentData)>
<!ELEMENT URLCall (URLName, URLArgumentData)>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Component SYSTEM "componentaspects.dtd">
<Component CompName="StaffEJB">
 <MappingName>java:comp/env/ejb/staff</MappingName>
 <Aspects>
 <Aspect AspectName="Persistency">
 <Detail DetailName=”Store” DetailType=”StoreData” Provided=’true’>
 < ImpactedMethod Name=’ejbCreate’ /><ImpactedMethod Name=’ejbStore’ />
 <DetailProperties>
 <DetailProperty DetailPropName=”StoreSpeed” DetailType=” ResponseTime”>
 <DetailPropType>Milliseconds</DetailPropType>
 <DetailPropConstraint><Expr><LessThan>50</LessThan>…
 <DetailTestMethods>
 <DetailTestMethod MethodName=”ejbStore”
 MethodArgumentData=’ java:comp/env/ejb/staff_testdata’>
 </DetailProperties>
 </Detail>
 <Detail DetailName=”Write” DetailType=”WriteData” Provided=’false’>…
 </Aspect>…
</Component>

<Component CompName="ProductSearch.jsp">
 <MappingName>jsp/furniture/ProductSearch.jsp</MappingName>
 <Aspects>
 <Aspect AspectName=”Distribution”>
 … <Detail DetailName=”DataProvision” DetailType=”DataOutput” Provided=’true’ …>
 … <DetailProperty DetailPropName=”MaxUsers” …>
 … <DetailPropConstraint><FixedValue>50</FixedValue>
 <Aspect AspectName=”UserInterface” …>
 … <Detail DetailName=”PostData” DetailType=”DataOutput” Provided=’true’ …>
 … <DetailProperty DetailPropName=”ResponseTime” …>
 …. <DetailPropConstraint><Expr><LessThan>2500</LessThan>…
 <DetailTestMethod><URLCall URLName=”ProductSearch.jsp”
 URLArgumentData= java:comp/env/ejb/ProductSearch_testdata’ />

(a) DTD for component aspect information. (b) Examples of component aspect descriptions.

Figure 4. Encoding component aspects with XML.

5. Run-time Validation Agents

After deploying J2EE components we use a set of

“validation agents” to determine whether the components’
aspect-encoded requirements are met in their current
deployment and configuration scenarios. Figure 5
illustrates the process by which deployed J2EE
components are validated using this technique.

Web Servers/J2EE Servers

J2EE
Components

Deployment
Tools

Deployment
Descriptors

Deployed
Components

Proxies;
Example
Test Data
suppliers

Validation Agents

Aspect
Information

3rd Party
Testing Tools

Configuration
Scripts etc

EJB Testers JSP Testers

JB Testers

(1)

(2)

(4) (3, 5)(6)

(7)

(8)

(9)

Developer

Figure 5. Our agent-based validation process.

A developer deploys J2EE components using a
deployment tool (1), which reads the component
deployment descriptor to properly configure the
component. The deployment tool loads the component into
a J2EE or web server, configures it and registers it for use
(2). Validation agents are informed of the new component
configuration by the developer or proxies in the J2EE
server (3). A validation agent reads the component aspect
information (4) using a URL, AspectInfo or BeanInfo
objects to obtain the XML-encoded component aspect
information. It queries the aspects using Xpath queries to

extract required information for test generation. Test data
for URL or method call arguments and expected result
values are obtained from AspectTestData objects (5).
Some validation agents carry out tests on the deployed
component themselves (6) e.g. those checking
conformance to specified service provision/requirement.
Others configure 3rd party testing tools (7) to perform
validation tests on the component (8). Validation results
are presented to the developer (9) by validation agents
and/or 3rd party testing tools.

Our component validation agents come in three main
flavours: agents that perform simple validation tests;
agents that deploy other agents to perform tests; and agents
that configure and deploy third party testing tools to
validate deployed components. We have built simple
testing agents that check single-client response time, basic
functional operation and data storage/retrieval of single
component methods (EJBs) or pages (JSPs). We have built
validation agents that deploy other agents to test
transaction support, data loading (size) support and
security (authentication and encryption) of EJBs, and
resource usage and reliability of JSPs and EJBs. Separate
agents are used that can be authenticated as specific
clients, can generate large data sets for testing, and can
participate in distributed transactions, all co-ordinated by
another validation agent. We have also developed agents
that make use of the SoftArch/MTE performance test-bed
generator to test maximum user loading, required response
times and transaction processing time for realistically
loaded EJB and JSP components. We utilised this separate,
3rd party testing tool to avoid our component validation
agents having to generate complex performance test beds
themselves. Validation agents typically run independently
and non-concurrently to avoid each others’ test cases
interfering.

(1)
(2) (3)

Figure 6. Examples of validation agent output.

Figure 6 shows three examples of component
validation agent feedback to developers. (1) shows output
from an entity bean EJB persistency testing validation
agent. The agent extracts persistency aspect information
defined for a component and ensures the component’s state
can be stored and retrieved appropriately in its current
deployment situation. It does this by modifying the
component’s state, storing it, retrieving it and validating it.
(2) shows output from a JSP validation agent that tests
both posting to a JSP, retrieving JSP output and testing the
response time of a JSP, all validated against constraints
specified for the JSP component in its aspect information.
(3) shows an MS Excel™ chart graphing the performance
of some EJB component methods under a realistic loading
test. This validation agent deployed the SoftArch/MTE test
bed generator to generate and run this loading test with
multiple clients. It used Excel to graph the results obtained
from SoftArch/MTE performance tests against the required
performance measures expressed in the component’s
aspect information.

As the component configuration of a system evolves
e.g. new components are deployed or existing components
re-configured, these deployed components must be re-
validated. Our validation agents detect changes to
component configurations and re-run tests as necessary to
re-validate changing configurations. This approach could
be extended to proactively validating systems with highly
dynamic architectures, allowing system co-ordination
components to use validation agents to determine if
evolving configurations are valid.

6. Architecture and Implementation

Our validation agents are J2EE components themselves

that share a common set of classes supporting aspect
querying and result reporting. We have developed three
kinds of validation agents to date: agents that perform tests
themselves; agents that co-ordinate the running of tests by
other agents; and agents that configure and run 3rd party
testing tools. Each kind of agent generates test cases from
queried aspect information and then runs these tests. Test
results are compared to aspect-specified constraints against
services to determine if a component deployment is valid.

Figure 7 shows how an EJB persistency validation
agent tests if a component’s persistency services function.
In this example a shopping cart session bean EJB makes
use of product and order entity beans. One entity bean uses
EJB container persistency services, the other a relational
database API directly. The persistency validation agent
reads the order component aspects ad queries them to
extract aspect detail information about persistency
requirements from the components’ aspect information (1):
this includes methods that store data, component state data
to try and store, and methods to test restored component
state. The agent then formulates requests on the component

to create, update, store, retrieve the component state. Many
of these requests are generic for entity bean EJBs, though
complex queries and updates can be encoded in the
persistency aspect information to allow the validation
agent to perform a wide range of tests. Example data for
method (and URL) invocation is obtained from
AspectTestData components (2). This can be tailored to be
suitable for different deployment situations of the
components under test. Invocations of methods and URLs
(3) to test the component are then performed by the
validation agents and the results analysed. Results of
method invocations are compared to expected results from
the AspectTestData components. The contents of the
HTML returned by a URL invocation is parsed and
example data items from the AspectTestData components
are searched for in this returned HTML.

We have implemented several validation agents that
perform basic tests on deployed components to ensure the
component functions work in their deployment context.
These agents are implemented as JavaBean components
that can be run in Java applications or themselves deployed
with components under test. All of our agents provide both
a GUI interface to display information to developers and
an API to allow other validation agents to deploy them and
to gather test results from them.

EJB Container

Shopping Cart

Product

Order

AspectInfo

DB API

Persistency
Validation Agent

Web server

Cart JSP
URL

Conformance
Validation

Agent

AspectInfo

Psuedo-web
browser agent

AspectTestData

(1)

(2) (3)

Figure 7. Example of simple validation agents.

Some tests require one agent to configure and deploy
one or more other agents, for example transaction
consistency testing, security testing and resource usage
testing. This is because transactions and security need the
testing agent to participate with the components under test
e.g. be in its transaction or be authenticated as a specific
client. Both of the validation agents compose method and
URL calls using aspect information and example test data
supplied by AspectTestData EJBs. They both try valid and
invalid transactions (commit, rollback and raise
exceptions) and security access (valid and invalid user and
access to remote object functions). Resource usage testing
e.g. memory, disk, CPU and so on, requires validation

agents to monitor system state vital signs as components
are tested by other validation agents. As an example, in
Figure 7 a JSP conformance validation agent determines
the range of arguments a shopping cart JSP page can take
to perform different functions. It then deploys a simple
pseudo-web browser agent to interact with the JSP, as if it
were a customer’s web browser, to check the JSP works.

In the example from Figure 7, the persistency
validation agent locates persistency aspect information for
the Order entity EJB component. It extracts all specified
persistency-impacting methods encoded in the
component’s aspect information. For each of these
methods it obtains example order data values and method
argument values to set from a specified AspectTestData
EJB and sets the Order object’s attributes to these values. It
then constructs method calls and invokes each of the Order
EJB persistency methods to store the data, change the data
and reload the data. It then checks that the reloaded Order
component attribute values (state) equal those expected.

The conformance validation agent locates user interface
aspect information for the CartJSP Java Server Page
component. It extracts all URL requests encoded in the
component’s aspect information. For each of these URL
requests it obtains example URL argument data values
from a specified AspectTestData EJB. It then constructs
URL requests and invokes each of the CartJSP requests. It
obtains expected response content data values from the
AspectTestData EJB and checks to see that this data is
contained in the HTML returned from the URL request.

Some kinds of deployed component validation require
quite sophisticated testing. For example, to determine if a
deployed component’s response time (performance) will
be adequate under “realistic” client, server and network
loading we need to run “realistic” loading tests. We have
developed a performance test bed generator,
SoftArch/MTE, that allows software architects to generate
realistic performance testing frameworks from high-level
architecture descriptions [7]. We have reused this system
to allow validation agents to configure SoftArch/MTE to
run realistic loading tests for deployed J2EE components.

Figure 8 illustrates this process. A validation agent
wanting to determine if deployed component response
times to requests will meet aspect-encoded requirements
generates an XML-encoded software architecture
description (1). This includes references to the deployed
component name/URL (for look-up) and methods (if an
EJB) or arguments (if a JSP), along with test harness client
and server applications, objects, services, requests,
middleware and database table information.
SoftArch/MTE takes this architecture configuration and
generates source code and deployment scripts sufficient to
automatically run realistic performance tests on the
architecture [7] (2). However, unlike our previous work
with SoftArch/MTE, this code now incorporates references
to real, deployed software components rather than only

automatically generated test bed code. The generated code
is compiled then deployed by SoftArch/MTE to multiple
available client and server host machines (3). A
deployment agent initialises clients and servers (4) and
then performance tests are run, results being captured in
text files (5). The performance validation agent retrieves
the results (6)and visualises them for the developer (7).

SoftArch/MTE

Source
Code Generated

scripts

Compilers

Compiled
Code

Remote
Deployment Agent

Test bed
clients/servers

Performance
Results

MS Excel

Remote
Hosts

(3)

(4)

(6)

(5)

(7)

Response time
validation agent

XML-encoded
architecture data

(1)
(2)(2)

Deployed
components

Figure 8. Example of a using SoftArch/MTE.

7. Evaluation

Our aspect-oriented component characterisation

technique supports both functional and non-functional
provided and required service specification. This is richer
than most other component characterisation techniques we
have found [13, 26, 29] and is sufficient to automate a
range of quite different component validations. As long as
sufficient detail is provided to allow agents to generate
required test cases then many kinds of validation are
automatable. The functional component service
characterisations are similar to those of other techniques in
terms of identifying methods and types but we group these
by the aspects that impact this service (whether provided or
required by the component). This has the advantage of
identifying agents that make use of particular aspect detail
or aspect detail property constraints and ensuring sufficient
information is specified for these agents to automate
validation tests. Our use of agents to carry out the testing,
including using agents to drive 3rd party testing tools,

contrasts to many other testing and performance validation
approaches that require substantially tester-written code [2,
9, 14, 23]. Our approach allows developers to deploy
components then be given proactive feedback on
components’ aspect-encoded constraint compliance. Our
testing of JSP-based components is not as comprehensive
as some [20], but we do allow for parsing of returned data
and compare keywords to aspect-encoded URL calls.

Validation tests can be automatically re-run as more
components are deployed or component configurations
changed to provide developers with on-going feedback.
Our approach of agents using aspect-encoded information
to formulate operation invocations on deployed
components to validate their configurations is similar to
behaviour-based component repository work [12, 27].
However, we use this information to validate deployed
components rather than locate components by behaviour
for deployment. We have found developing most of our
validation agents to be low-effort – key steps are to encode
and extract required test case generation information,
generate and run test cases, and compare results to encoded
constraints. Use of third-party testing tools requires
suitable tool integration though to date we have used data
files predominantly to integrate tools.

To assess the effectiveness of our validation agents we
have used hand-written test scripts and third-party testing
tools to compare with our validation agent’s testing results.
We performed over a dozen hand-crafted tests on the
Furniture System components and compared these results
to those of four of our validation agents. This showed that
as long as the validation agents had access to sufficient
aspect-codified test methods, test data and required
constraints, they can provide as accurate validation of
deployed components as hand-built tests. However,
analysing why a component doesn’t meet its aspect-
codified constraints can be quite difficult for developers if
the agents have generated the tests. This implies that
improved test oracle support is necessary in future agents.
An additional problem occurs when aspect information
was deficient or inaccurate - component deployments
flagged as invalid are not necessarily correct.

The main disadvantages of our approach are the
necessity to specify sufficiently detailed and consistent
aspect information for component implementations and
effort in building validation agents. While we have
developed prototype tool support to generate aspect
encodings from design models [8], this is still primitive
and insufficient for many of our prototype validation
agents needs. Some validation tests are extremely difficult
to perform even with component aspect information e.g.
does a component deployment situation satisfy reliability,
non-functional user interface and data integrity constraint
specifications? We have currently only used our agents to
validate snap-shots of a system’s deployed components
and not done continuous validation of a system of

components with a dynamic evolving architecture. We
currently have not investigated the issue of validating
interacting aspects i.e. validation agents only test specific
aspect details and not multiple, interacting component
aspects. We have so far only applied our technique to
J2EE-based software components although have developed
a number of quite different validation agents.

We plan to record testing results and use these to
feedback into the component development process to help
guide enhancements to component development. We plan
to allow for some aspect constraints to be specified in more
general ways in aspect encodings, and specific constraint
values to be provided by separate AspectTestData
components. This will allow aspect constraints to be tuned
to a component’s deployment situation. Improved tool
support will allow developers to have aspect information
generated, encoded and made accessible for deployed
components automatically. We plan to make use of other
3rd party testing tools with our agents, and to look at
validating other kinds of middleware using these tools (e.g.
message-oriented middleware like SOAP).

8. Summary

We have developed a technique of characterising

software components via the cross-cutting system concerns
that impact component methods, called aspects.
Component aspect information encoded with J2EE
components is accessible after component deployment by
validation agents which perform tests on deployed
component configurations. These agents determine if
aspect-specified functional and non-functional properties
of the components are met in their current deployment
scenario. Developers are proactively informed of invalid
component deployment and configuration and can
reconfigure systems to ensure required individual
component and system constraints are met.

Acknowledgements

Support from the New Zealand Foundation for Research,
Science and Technology and the University of Auckland
Research Committee for this research is gratefully
acknowledged, as are the helpful comments on an earlier
version of this paper from the anonymous referees.

References

1. Allen, P. and Frost, S. Component-Based Development for

Enterprise Systems: Apply the Select Perspective™, SIGS
Books/Cambridge University Press, 1998.

2. Baudry, B., Vu Le, H., Le Traon, Y. Testing-for-trust: the
genetic selection model applied to component qualification.
In Proceedings of the 33rd International Conference on

Technology of Object-Oriented Languages and Systems,
IEEE CS Press, 2000, pp.108-119.

3. Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.,
Making components contract aware, IEEE Computer,
vol.32, no.7, July 1999, pp.38-45.

4. D’Souza, D.F. and Wills, A., Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison-
Wesley, 1998.

5. Feather, M.S., Smith, B. Test oracle automation for V&V of
an autonomous Spacecraft's planner, Model-Based
Validation of Intelligence - Papers from the 2001 AAAI
Symposium, AAAI Press, 2001.

6. Grundy, J.C. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000.

7. Grundy, J.C., Cai, Y., Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the 2001 IEEE International
Conference on Automated Software Engineering, San Diego,
CA., Nov 26-28 2001, IEEE CS Press.

8. Grundy, J.C. and Patel, R. Developing Software
Components with the UML, Enterprise Java Beans and
Aspects, In Proceedings of the 2001 Australian Software
Engineering Conference, Canberra, Australia 26-29 August
2001, IEEE CS Press.

9. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE CS
Press.

10. Haddox, J.M., Kapfhammer, G.M. An approach for
understanding and testing third party software components,
In Proceedings of 2002 Annual Reliability and
Maintainability Symposium, Seattle, WA, 28-31 Jan. 2002,
IEEE CS Press.

11. Han, J. Zheng, Y. Security characterisation and integrity
assurance for component-based software. In Proceedings of
the 2000 International Conference on Software Methods and
Tools, IEEE CS Press.

12. Henninger, S. Supporting the Construction and Evolution of
Component Repositories, In Proceedings of the 18th
International Conference on Software Engineering, Berlin,
Germany, 1996, IEEE CS Press, pp. 279-288.

13. Ho, W.M., Pennaneach, F., Jezequel, J.M., and Plouzeau, N.
Aspect-Oriented Design with the UML, In Proceedings of
the ICSE2000 Workshop on Multi-Dimensional Separation
of Concerns in Software Engineering, Limerick, Ireland,
June 6 2000.

14. Hoffman, D., Strooper, P. Tools and techniques for Java API
testing. In Proceedings of the 2000 Australian Software
Engineering Conference,IEEE CS Press, pp.235-245.

15. Hoffman, D., Strooper, P., White, L. Boundary values and
automated component testing. Software Testing Verification
& Reliability, vol. 9, no. 1 (March 1999), Wiley, pp.3-26.

16. Hu L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In Proceedings
of the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, IEEE, pp. 270 – 276.

17. Jurie, M.R., Rozman, I., Nash, S. Java 2 distributed object
middleware performance analysis and optimization,
SIGPLAN Notices 35(8), Aug. 2000, ACM, pp.31-40.

18. Kaiya, H. and Kaijiri, K., Specifying Runtime Environments
and Functionalities of Downloadable Components under the
Sandbox Model, In Proceedings of the International
Symposium on Principles of Software Evolution, Kanazawa,
Japan, Nov 2000, IEEE CS Press, pp. 138-142.

19. Khan, K.M. Han, J., Composing security-aware software,
IEEE Software, vol.19, no.1, Jan.-Feb. 2002, pp.34-41.

20. Lee, S.C., Offutt, J. Generating test cases for XML-based
Web component interactions using mutation analysis, In
Proceedings of the 12th International Symposium on
Software Reliability Engineering, Hong Kong, China, 27-30
Nov 2001, IEEE CS Press.

21. Ma, Y-S. Oh, S-U. Bae, D-H., Kwon, K-R. Framework for
third party testing of component software. In Proceedings of
the Eighth Asia-Pacific Software Engineering Conference,
IEEE CS Press, 2001, pp.431-434.

22. McCann, J.A., Manning, K.J. Tool to evaluate performance
in distributed heterogeneous processing. In Proceedings of
the Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE, 1998, pp.180-185.

23. McGregor, J.D. Parallel Architecture for Component
Testing. Journal of Object-Oriented Programming, vol. 10,
no. 2 (May 1997), SIGS Publications, pp.10-14.

24. Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play
Components for Evolutionary Software Development, In
Proceedings of OOPSLA’98, Vancouver, WA, October
1998, ACM Press, pp. 97-116.

25. Motta, E., Fensel, D., Gaspari, M., Benjamins, R.
Specifications of Knowledge Components for Reuse, In
Proceedings of 11th International Conference on Software
Engineering and Knowledge Engineering, Kaiserslautern,
Germany, June 16-19 1999, KSI Press, pp. 36-43.

26. Orso, A., Harrold, M.J., Rosenblum, D., Rothermel, G.,
Soffa, M.L., Do, H. Using component metacontent to
support the regression testing of component-based software,
In Proceedings of the IEEE International Conference on
Software Maintenance, Florence, Italy, 7-9 Nov 2001, IEEE
CS Press.

27. Pai, Y. and Bai, P. Retrieving software components by
execution, In Proceedings of the. 1st Component Users
Conference, Munich, July 1996, SIGS Books, pp. 39-48.

28. Perronel,P. Chaganti, K. Building Java Enterprise Systems
with J2EE, Sams, June 2000.

29. Qiong, W., Jichuan, C., Hong, M., and Fuqing, Y. JBCDL:
an object-oriented component description language, Proc. of
the 24th Conf. on Technology of Object-Oriented Languages,
(September 1997), IEEE CS Press, pp. 198 – 205.

30. Rakotonirainy, A. and Bond, A. A Simple Architecture
Description Model, In Proceedings of TOOLS Pacific'98,
Melbourne, Australia (Nov 24-26, 1998), IEEE CS Press.

31. Szyperski, C.A., Component Software: Beyond OO
Programming, Addison-Wesley, 1997.

32. Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the International Conference
on Software Engineering (ICSE 21), May 1999.

