
Generating EDI Message Translations from Visual Specifications

John Grundy1, Rick Mugridge1, John Hosking1 and Paul Kendall2

1Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

{john-g,rick,john}@cs.auckland.ac.nz

2Orion Systems Ltd
Mt Eden, Auckland, New Zealand

paul@orion.co.nz

Abstract

Electronic Data Interchange (EDI) systems are used in
many domains to support inter-organisational
information exchange. These systems require complex
message translation, where data must be transformed
from one EDI message format into another. We describe
a visual language and support environment which
greatly simplify the task of the systems integrator by
using a domain-specific visual language to express data
formats and format translations. Complex message
translations are automated by an underlying
transformation engine. We describe the motivation for
this system, its key visual language and transformation
engine features, a prototype environment, and
experience translating it into a commercial product.

Keywords: domain-specific visual languages, message
translation, visual environments, XML

1. Introduction

Electronic Data Interchange (EDI)-based systems
exchange messages that codify organisational
information [1, 17, 12]. For example, in Health
Informatics a treatment provider's Information System
might describe a patient, hospital visit information,
patient treatment and treatment costs. It provides a set of
EDI messages that are used to add, update and query
this information. A health insurer or funding
organisation requires this information to record the
treatments, costs and reimbursements, but it uses a
different set of EDI messages and information
structures. In order to support EDI-based information
exchange between these systems, the provider must
supply the insurer/funder system with its expected
message format, or the funder must translate the
provider message(s) into its own EDI protocol.
Similarly, data sent back to the provider from the funder
must be appropriately converted. Often these message
schema are very large and translation between them
requires complex algorithms and code.

In different application domains a rich range of
EDI-based messaging “standards” have arisen. For
example in health informatics, well over 100 EDI
standards are commonly used by different systems. The

more systems that need to be integrated, whether intra-
or inter-organisational, the more inter-EDI message
mappings are required. Even with the advent of XML-
based “standards” for various domains [1, 12, 13], there
are many variants of document and message formats
that need to be translated between [1]. Message-oriented
Middleware (MoM) systems also typically require
extensive message mapping to facilitate systems
integration. Existing EDI, XML and MoM messaging
and translation tools provide little high-level support for
message translation, requiring developers to write
complex program or scripting code. Most EDI message
translations are done by hand-coded applications.
Various XSLT-based translation tools exist, but these
are have limited expressive power and require
considerable effort to use. MoM integration tools also
provide limited translation capabilities and limited
visual formalisms, requiring scripting and coding.

We describe our work developing a proof-of-
concept visual specification language and environment
to provide general, high-level, automated EDI and XML
message mapping facilities. We outline the motivation
and key requirements for this integration support
system, and give an overview of our tool-set which
meets these. We describe the visual language we
developed to facilitate EDI message mapping, with an
outline of its underlying textual mapping language and
mapping translation engine. We describe the dynamic
visualisation support our environment provides to assist
users debug their transformation specifications, and
report on experience using it for EDI message and XML
document mapping support. We conclude by evaluating
our prototype visual environment and describe a
commercial product developed based on this prototype.

2. Motivation

Many organisations use EDI-based messaging
systems in order to exchange information. EDI systems
use a message protocol to encode data queries, updates
and processing requests in a form suitable for network
transmission. These messages are made up of
hierarchical record structures (messages, segments,
records and fields), encoded into a serialised form for
transmission. These messages form an asynchronous
communication protocol between multiple systems: one

jgru001
Text Box
In Proceedings of Int Conf on Automated Software Engineering (ASE 2001)(c) IEEE 2001. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

system encodes and sends a message, another receives
and decodes it, processes it, and encodes and sends back
a response message. Many EDI protocols have been
developed over the years for a large range of application
domains. In order to facilitate systems integration, it is
very often necessary to translate between different
message protocols. For example, a health provider may
use e.g. the UB92 protocol to encode patient treatment
details, and must send this to a funder's system which
only accepts 837a protocol-encoded treatment messages.
These protocols encode (more or less) the same
information, but in quite different ways.

It turns out that coding message translations, or
"mappings", from one (or more) "source" messages to
one (or more) "target" messages, is relatively complex.
Often one has to translate between complex hierarchical
structures, apply formulae to several field values and
map sets of hierarchical record structures into other sets
of hierarchical records. Key requirements for a system
supporting mapping of EDI messages include:
• Separation of transport-level format from the

hierarchical data schema of the message. Source
EDI messages should be abstracted into an object-
based representation for processing, and transport-
level encodings of target messages generated from
object representations when necessary.

• Specification of segment, record and field
translations. Field-level translations are relatively
straightforward, although complex formulae may be
needed to merge multiple field values into one, split
a field value into multiple etc. Records and
segments may be grouped into collections, and
complex collection to collection mappings may be
required. Ideally, specifying these mappings should
be done using abstract, structural representations
rather than programmatic while/for etc loops.

• An integrated system incorporating automated
message encoding/decoding and mapping facilities
is highly desirable, rather than several separate,
inconsistent and possibly incompatible components.
Ideally both message format specification and
message translation specification do not require
direct programming but rather the use of visual
tools that are easy to use and generate required
message sourcing, sinking and transformations.

Most EDI solutions provide a set of predefined
function libraries programmers use to encode and
decode messages in particular EDI protocols [20, 21].
When translating between message formats, developers
read a message using a protcol's API function, write
program code to construct a new message, then generate
its transport-level representation using another protocol
API function. This means that a programmer is typically
required to implement message mappings. Few high-
level EDI message mapping systems have been
developed, such as ETS, [8, 1]. These all suffer from
using only low-level, textual representation of mappings
or use of overly simple visual formalisms. Related
Message-Oriented Middleware (MoM) systems use a

similar approach, including MQ Series™ and Tuxedo™.
Some message integration tools have been developed,
including MQ Integrator™ [9]. These provide limited
abstract message translation facilities, often requiring
coding of translations. XML-based systems use
"standardised" Document Type Definitions (DTDs)
which can be used to form message-based protocols for
systems integration [16, 5, 18]. Many XML translators
have been produced, including XSLT, Seeburger’s data
format and business logic converter [15] and
eBizExchange [14]. Most XML document translation
systems use XSLT (XML Style Sheet-based
Translations) [2, 22]. These suffer from a lack of
expressive power in XSLT, especially for complex
hierarchical collection mappings, and tools that only
partially support visual mapping and XSLT script
generation. Various Enterprise Application Integration
(EAI) and database integration products have been
developed to facilitate Business-to-Business electronic
commerce. These include Vitria BusinessWare™ [19],
BizTalk™ [6] and the Universal Translation Suite [3].
Some of these systems provide translation support for
database, message and XML-encoded data using visual
representations of mappings. However, these are
typically limited to simple record structures, don't
support the range of complex mappings inherent in most
EDI message translations, and are relatively difficult to
use.

3. Overview of the Encore System

In order to provide EDI and XML system
developers and integrators with appropriate tool support
for message management and translation, Orion Systems
Ltd (www.orion.co.nz), a leading health industry EDI
solutions provider, has developed the Symphonia™
product suite. The aim is to minimise the requirement
for professional programmers to be used in
implementing message mapping by providing an
appropriate domain specific visual language that
business modellers can use. Figure 1 illustrates the key
architectural components of this system. Visual tools are
used to specify EDI message formats (including XML
encoded-messages), message translations (mappings),
and message control flow (i.e. message exchange
sequences between Symphonia™ components and
external EDI- and XML-based systems, including
exception handling). Without Symphonia™, a very
large program would have to be hand-coded to read
source EDI and XML messages, decode and translate
these into target messages, and handle message
sequencing.

Researchers at the University of Auckland
developed a proof-of-concept message mapping system
to augment Orion's message control and EDI-to-objects
software tools, comprising three key components. A
visual mapping tool imports Symphonia™ or XML-
encoded message definitions (a), allowing developers to
abstractly specify message mappings with a visual
notation, generates mapping language programs (b), and

dynamically visualises running message mappings (c).
A compiler for a textual mapping language takes
programs generated by the visual mapping tool and
generates a set of binary encoded mapping functions (d).
A mapping engine reads objects encoding EDI messages
(e), maps source object formats to target object formats
based on the mapping function binary code, and
generates target EDI and XML message object
representations (f).

Target Health
System e.g. Insurer

Source Health
System(s) e.g.

Hospital

Symphonia™
Architecture

Symphonia™
Message

Specification
Tool

Generated
C++/Java code
to source EDI
messages to

objects

Generated
C++/Java code

to sink objects to
EDI messages

Message control
Engine

Message
Mapping Engine

Symphonia™
Message Mapping
and Visualisation

Tool

Message Control
Specification Tool
(process definition)

Generated mapping
program text &
compiled code

Messaging
Control Data

Message Mapping

(a)

(b) (c)

(d)

(e) (f)

Figure 1. Orion Symphonia™ System Architecture.

The visual mapping tool is described in more detail
in the following sections. Its key features include: the
ability to visualise EDI and XML message structures;

the ability to visually specify complex mappings
between message formats; the generation of mapping
language program text; the invocation of a compiler and
reporting of error messages against visual mapping
elements; and the dynamic visualisation of partially-
mapped message instances to assist developers debug
mapping specifications as they are being run. An
evaluation of this visual mapping environment is given,
along with a comparison of the proof-of-concept
mapping system to the commercial product recently
developed by Orion Systems.

4. Message Mapping Process

To illustrate the specification of message mappings
with this tool, Figure 2 shows two example messages
representing health informatics data (for simplicity,
shown in XML format in IE 5.5). The message on the
left encodes patient treatment information using a deep
hierarchy (Patient->Visits->Treatments). The message
on the right encodes (mostly) the same data, but using a
flatter-format. To translate the left message into the right
we need to apply field-, record-, segment- and record
collection-level mappings to transform the structure. To
translate the right into the left, we apply mappings to
convert the flat structure into the deeper hierarchical
one. In addition, several fields and collections of fields
must be merged or split. A number of formulae, some
dependent on message content, need to be applied. This
is reasonably typical of many of the EDI and XML
mappings we have used the Symphonia™ system for in
the health industry, and is common for many mappings
in other domains. Most EDI and XML messages are
much larger however, often with hundreds of segments,
records and fields.

1. One PatientMessage maps
to one PatientVisitMessage

2. PatientRecord fields
copied, split or merged

4. 1st PhysicianRecord
fields to AttendingDoctor

fields; 2nd record’s to
ResponsibleDoctor

5. “P” TreatmentRecords to
PrimaryTreatments; rest to

OtherTreatments

3. 1st PatientVisitRecord
fields copied

Mapping Steps

Figure 2. Examples of EDI formats to be mapped (shown in XML).

5. Message Mapping Specification

Our visual mapping tool provides a domain-specific
visual language for representing message mappings. This
includes source and target message structure
representation and mappings between source and target
segments, records, fields and collections. The mapping
tool focuses on structure mapping semantics, not
transport-level EDI or XML parsing and unparsing
(which is handled by the Symphonia™ Message
Specification tool-generated C++ or Java transport-level
decoding/encoding code).

The visual mapping tool is used to represent
message structures in a predominantly hierarchical form
(as EDI and most XML messages are strongly oriented
towards hierarchical structure). Developers import
message schema definitions into the tool from
Symphonia™ Message Specification tool-generated EDI
protocol definitions or from XML documents, XML
DTDs or XML Schema definitions. The source message
schema is placed on the left, the target on the right, using
rectangles ("nodes") to represent each message, segment,
record and field item in the message "schema" (see Figure
3). Child nodes are linked to their owning parents. Note,
however, that many mappings may be "run backwards"
and our compiler allows mapping specifications to be
generated for translations left-to-right or right-to-left. Any
number of views of parts of a mapping specification are
supported by the tool. In EDI messages, some parts of a
message repeat and some are optional, and this is
indicated in the visual tool (see Figure 3). Schema nodes
can be shown or hidden by developers as required, in
order to manage the complexity of mapping
specifications.

Root Node

Child #1 Node

<Repeating Child #1 Node>

[Optional Grandchild #1 Node]

Message Schema Nodes

Mapping Node Types

main

map

<->

->

if/then/else

case

Root mapping function

map_proc

arg

select

Bi-directional copy

Uni-directional formula

Conditional mapping

Table look-up (formula)

Mapping function/group

Functional definition

Function argument
formula

Function argument filter

Mapping Nodes
Root Node

Child #1 Mapping Spec

Child #1 Mapping Spec

Grandchild #1
Mapping Spec

mapping source(s)

mapping target

Figure 3. Mapper Visual Language.

We use a simple visual language to describe the
message mappings. Oval "mapping nodes" are arranged
hierarchically in the centre of a mapping view. Each node

typically has a source message schema node and target
schema node. A mapping node thus specifies a translation
of source information into target information. For
example, indicating the presence of a segment in a source
message requires a corresponding segment in a target
message; a source field should be copied into a target
field; a formula be applied to one or more source fields to
obtain a target field; or a group of source records be
translated into a group of target records (possibly with a
different hierarchial organisation of sub-records and their
fields). When the mapping engine applies mapping
transformations it runs these hierarchically and in top-to-
bottom order i.e. top-level "message map" first, which
creates the target message body; and then subsequent
mappings. If a source is a collection (repeating set of
records), the mapping either selects one item from the
collection and transforms, or multiple items from the
collection which it transforms one-by-one. Note that some
mapping nodes may have multiple source nodes where a
formula is applied to these to calculate an output, and
some no source node if a default value is put into the
target message field.

Figure 4 (1) shows two message schema (those from
Figure 2) and some simple mapping specifications. The
“main” mapping node (a) groups all mappings from one
EDI message to another. The first child mapping node (b)
below groups the mappings specifying how to copy
PatientMessage patient information to a PVisitMessage's
patient fields. The first node of this (c) specifies that
MedRecNumField is copied from IDField, and is a bi-
directional mapping (<->) i.e. can be applied the same
when mapping in either direction. The PIDField value is
defaulted (auto-generated) by an external function call
(d). The PnameField value is a merge of the
PatientNameRecord’s LnameField and FnameField values
(e). The DateRecord fields are merged into one
DateOfBirthField value by a local mapping function call
(f). Another reusable mapping function call says what to
do when translating in the reverse direction (g), in this
case the DateOfBirthField will have to be parsed and split
to obtain the separated DOB record's field values. Figure
4 (2) shows the date mapping function definition we can
reuse instead of redefining this common mapping
functionality. Address record fields are merged (h).
Figure 4 (3) shows some other basic mappings used when
translating treatment details. The TreatmentDate
transformation (i) is specified using the mapping function
in Figure 4 (2), the TreatKind and TreatCosting are
looked up in tables using source record values (j, k), and
TreatRecord cost fields are calculated from a single
source value (l, m).

Formulae are written in our textual mapping
language, as shown the bottom window text areas (n, o).
This includes local variables, conditional and iteration
statements and so on. Our mapping system allows
developers to code complex, reusable mapping functions
both with the visual editor or with this textual scripting
language. They can also, if necessary, call external
functions written in Java or C++ using mapping nodes.

(1)

(3)

(2)

(a)

(n)

(b) (c)

(d)

(e)

(f)

(g)
(h)

(i)

(j)
(k)

(l)

(m
)

(o)

Figure 4. Some simple message mapping examples expressed in our visual mapping specification prototype tool.

More complex message transformations involve
transformations of groups of records into similar or
different structures and the use of conditional logic during
transformations, sometimes doing content-sensitive
message transformations. For example, Figure 5 (1)
shows how all PatientMessage treatment records can be
translated into multiple PvisitMessage primary treatment
records by applying a mapping function to each
VisitRecord in the PatientVisitsSegment, producing a
corresponding TreatRecord in the target message’s
PrimaryTreatmentsSegment (a). The definition of the
mapping function called by this mapping is the one shown
in Figure 4 (3) above. Sometimes we want to selectively
map information. Argument nodes are used to specify
such restrictions on arguments passed to mapping
functions. For example, Figure 5 (2) is an alternative to
Figure 5 (1), showing the mapping of only treatments
marked "P" in the source message to the
PrimaryTreatments segment in the target message. The
first mapping function input argument (b) now includes a
selection filter over the source VisitRecords, with the
mapping function only being applied to each source
record matching the selection criteria. The selection

argument (with its formula shown in the message bar)
specifies only TreatmentRecords with
TreatmentTypeField == “P” are mapped to
PrimaryTreatmentsSegment TreatRecords. Other
TreatmentTypeField values are mapped to
OtherTreatmentsSegment TreatRecords.

Sometimes we want to map one element of a
collection into a single target element (or vice-versa).
Figure 5 (3) shows first the mapping of the first Physician
record in the source message into the AttendingDoctor
record in the right-hand side message. The top argument
node (c) has value “[0]”, indexing the first source
PhysicianRecord. The reverse mapping is of the
ResponsibleDoctor record to the second Physician record
in the left-hand side message. The second arg node (d)
has value “[1]”, creating a second target PhysicianRecord
when this mapping is done. Sometimes we selectively
apply mapping processing. For example, Figure 5 (4)
shows different target costing information being
calculated depending on a source field value, using
if/then/else constructs in the mapping specification (e).

(3)

(1)

(2)

(4)

(3)

(a)

(b)

(c)

(d), value = [1]

(e)

Figure 5. Complex mapping examples.

6. Mapping Language and Engine

When a mapping specification is complete, our
visual mapping specification tool generates a textual
“mapping language” encoding the full EDI/XML message
mapping specified by the user. An example is shown in
Figure 6. This language includes message typing,
conventional programming constructs and a number of
record collection iteration, selection, replication and
creation constructs. It also allows external functions (in
Java or C++) to be invoked for type conversions, field
parsing etc. This language is automatically compiled to a
byte code for our message mapping engine.

type PatientMessage = struct {
PatientRecord PatientRecord;
PatientVisitsSegment PatientVisitsSegment;

};
type PatientRecord = struct {

int IDField;
PatientNameRecord PatientNameRecord;
PatientDOBRecord PatientDOBRecord;
PatientAddressRecord PatientAddressRecord;

};
…
map main(<- PatientMessage PatientMessage,

-> PVisitMessage PVisitMessage)
{

PatientMessage.PatientRecord.IDField <->
PVisitMessage.MedRecNumField;

ExternalGeneratePatientID(,PVisitMessage.PIDField);
Concat(PatientMessage.PatientRecord.

PatientNameRecord.LnameField, ‘ ‘, …
);
DOBRecordToDateOfBirth(PatientMessage.PatientRecord.

PatientDOBRecord,PVisitMessage.DateOfBirthField);
MapTreatmentRecordToTreatRecord(select(I from

in.PatientVisitsSegment.VisitRecord.TreatmentsSegment.
TreatmentRecord[*] where I.TreatmentSegment …));

…
}

Figure 6. Some generated mapping language code.

Source EDI/EML
Message

Decode into Mapping
Engine Source structure

Source Structure Target Structure

Mapping Engine

Compiled Mapping
Specification

Target EDI/EML
Message

Encode from Mapping
Engine Target structure

Controller
(2)

(1)

(3)

(4)

(5)

(3)

Figure 7. Message mapping engine processing.

When deployed, the mapping engine uses the
compiled byte code to automate EDI and XML message
transformation. Figure 7 illustrates the basic process of
message transformation. A source message is read by the
mapper (supplied by the generated transport-level
decoding classes) into a source message data structure (1).
The mapping specification for this message to a target
message is requested by the Symphonia™ message
controller (2). The mapping engine traverses the compiled
mappjng specification hierarchically, running each
mapping function and then its sub-mapping functions in
turn (3). The source message records and fields can be

read in any order, and the target message can similarly be
constructed in any order, its values put into a target
message data structure. Place-holders are used by the
mapping engine for not-yet transformed target message
parts if necessary (4). Once mapping is complete, a
transport-level target message is constructed from the
mapping engine target data structure, using the generated
message encoding classes.

7. Mapping Visualisation

Our visual mapping tool can be used to visualise in-
progress message mappings and to step through mappings
as they are applied to debug them. Actual message data is
shown in the visual views to aid this process. Figure 8
shows the visual tool in use during message mapping
debugging. The mapping is shown part-way through, after
compiling the specification, selecting “Step Map”,
opening the source XML-encoded EDI message and
stepping through the first three mappings. Some target
fields have values e.g. patient information (a) while others
have not been assigned values yet (b). Groups of records
can be displayed (c), one group item at a time by the use
of pop-up menus associated with schema nodes (d).

(a)

(a)

(b)

(c)

(d)

Figure 8. Visualising partially mapped data.

8. Experience

Translation of EDI (and other) message formats is
complex [4, 5, 21]. Typically large, complex programs are
written in languages like Java and C++ to do this. These
are difficult to understand and debug, but their chief
weakness is that they take a long time to develop and are
hard to maintain. Existing message and document
translation tools do help, but most are limited to fairly
basic data and structural translations. Most use textual
programming or scripting.

Our mapping environment provides a high-level,
expressive visual language with which EDI system
integrators can readily specify complex mappings,
particularly conditional and structural mappings. A visual
formalism is used for mapping structure and a textual

language for formulaic information. These specifications
are compiled and run by a mapping engine, with
visualisation and step-through of mapping supported in a
tightly integrated way, visualisations using the same
mapping visual language. The expressive power of this
system is demonstrated by noting that a hand coded UB92
to 837 health EDI message mapping program took over 3
months to build, whereas a visual mapper-specified and
implemented equivalent took less than a week. We
implemented our prototype using Java, which proved very
successful, being able to leverage Java's XML and
Symphonia-generated EDI message parsing. We have run
many performance tests with a range of message formats,
sizes and number. Performance of our mapping engine is
excellent, with around 30,000 moderately complex EDI
messages being able to be translated per minute.

We carried out a cognitive dimensions framework-
based evaluation of our visual mapping tool to assess its
visual language’s adequacy for EDI and XML message
translation developers [7]. This evaluation framework
characterises features of visual languages using several
dimensions, which helps indicate how users will find the
language in use. The results are summarised below.

Abstraction Gradient. Our visual mapping language
is a medium-level abstraction system. Mapping functions
and groups represent potentially complex aggregations of
primitive mapping transformations. Collection mappings
succinctly capture complex, iterative transformations.

Closeness of mapping. Our primitive visual elements
represent simple field-level transformations in our textual
mapping language, explicitly representing source and
target dependencies. Mapping functions, iterations and
groupings represent high-level, aggregated dependencies
of target schema items to source items.

Consistency. Schema and mapping nodes are
distinguished by basic shape differences. Hierarchical
schema and mapping node links use the same layout and
visual representation. The left-to-right connectivity of
source/mapping/target nodes is preserved throughout.

Diffuseness/Terseness. Our prototype visual
mapping language is quite terse, using a small set of
visual icons and connectors and relying on labelling to
distinguish different mapping operations and abstractions.

Hard Mental Operations. Understanding mapping
specifications requires understanding the mapping engine
semantics: hierarchical and iterative mapping traversal.

Role-Expressivenes. Model/view separation and
multiple view support makes it possible to create
modularised models, with each view of the model
displaying a single related group of entities from the
model. The view can be given a relevant name indicating
the role the group of entities has in the model.

Visibility and Juxtaposability. Our mapping tool has
good juxtaposibility with the ability to have multiple
views open side by side, displaying different parts of the
same mapping specification. Poor visibility occurs when
revesre-mappings or non-hierarchical message schema
references are present. Both result in source/target lines
crossing over icons and other connectors, obscuring
specifications. Some complex, structural mappings where

formulas are used, based on source field values, to specify
sub-record groups to map, can't be directly represented
visually (but can be expressed in our textual mapping
language and encapsulated in visual mapping function
nodes).

The success of our prototype has lead to Orion
Systems Ltd developing a commercial version of the tool,
recently released in a Beta version. This preserves the
visual tool metaphor, mapping language and engine
architecture, and much of the visual specification and
dynamic visualisation techniques. Some modifications
include the phasing out of conditional nodes in the visual
mapping specifications and use of textual if/case
statements; the introduction of various navigation aids,
better support for non-heirarchical field references and
additional visual annotations. We are investigating the
extension of this system to support database sourcing and
sinking of information i.e. in addition to EDI messages,
allowing developers to specify mappings to and from
database tables. While we have applied both the proof-of-
concept and commercial mapping tools to health
informatics, they are not restricted to this domain. We are
investigating the application of the Symphonia™ system
to a wide range of Business-to-Business electronic
commerce domains.

9. Summary

Systems integration is a challenging task,
particularly in application domains where a wide variety
of complex “standards” for representing inter-
organisational information exchange have grown over
time. We have developed a message translation system
for EDI-based and XML-based applications, which has
been applied to and shown its worth in the health
informatics domain. Key contributions are its intuitive
visual representation of inter-schema message mappings,
full integration with a powerful textual mapping language,
an efficient mapping engine and ability to dynamically
visualise, using the visual mapping views, running
message mappings. A commercial product developed
from our proof-of-concept system has been developed and
wide interest in this product is being shown in the health
systems integration industry.

References

1. Aditel Corp. ETS for Windows™, www.aditel.be.
2. Cheung, D., Lee, S.D., Lee, T., Song, W., Tan, C.J.

Distributed and scalable XML document processing
architecture for E-commerce systems. In
Proceedings of the Second International Workshop
on Advanced Issues of E-Commerce and Web-Based
Information Systems. IEEE CS Press, 2000, pp.152-
157.

3. Data Junction Corp, Universal Translation Suite™
General Information, www.datajunction.com.

4. Emmelhainz M.A. Electronic Data Interchange: A
Total Management Guide, Van Nostrand Rein-hold;
New York; 1990.

5. Estes, D. Disciplined XML, EAI Journal, Jan. 2001,
www.eaijournal.com.

6. Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies &
Solutions, Sept. 1999, pp.10-14.

7. Green, T.R.G and Petre, M, Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework, Journal of Visual
Languages and Computing 1996 (7), pp.131-174.

8. Huemer, C. and Tjoa, A.M. Meta Messages in
Electronic Data Interchange (EDI), In Proceedings
of the Third IEEE meta-data conference, April 1999.

9. IBM Corp, MQ Series Integrator, www.ibm.com.
10. Liou, D.M., Huang, E.W., Chen, T.T. and Hsiao,

S.H. Design and implementation of a Web-based
HL7 validation system. Proceedings 2000 IEEE
EMBS International Conference on Information
Technology Applications in Biomedicine, IEEE CS
Press, 2000, pp.347-352.

11. Lincoln, T., Spinosa, J., Boyer, S., Alschuler, L.
HL7-XML progress report. In Proceedings of XML
Europe '99, Alexandria, VA, USA, 1999, pp.733-
736.

12. McLure ML, Moynihan JJ. Organizing for EDI
(healthcare industry). Healthcare Financial
Management, vol.49, no.1, Jan. 1995, pp.90-93.

13. Morgenthal, J.P. XML: The New Integration
Frontier, EAI Journal, Feb. 2001,
www.eaijournal.com.

14. OnDisplay Corp, CenterStage eBizXchange,
www.ondisplay.com.

15. Seeburger Corp, SEEBURGER data format and
business logic converter, www.seeburger.de/xml/.

16. Spencer H. XML standards for data interchange.
Imaging & Document Solutions, vol.9, no.9, Sept.
2000, pp.15-17.

17. Swatman, P.M.C., Swatman, P.A., Fowler, D.C. A
model of EDI integration and strategic business
reengineering. Journal of Strategic Information
Systems, vol.3, no.1, March, 1994, pp.41-60.

18. Sokolowski, R., Expressing health care objects in
XML, In Proceedings of the 1999 Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises, IEEE CS Press, 1999 pp,
341 –342.

19. Vitria Technolgy Inc, Vitria BusinessWare White
Paper, www.vitria.com.

20. Wallin, G. A new look at EDI healthcare. Health
Management Technology, vol.20, no.5, June 1999.

21. Wing, H., Colomb, R.M., Mineau, G. Using CG
formal contexts to support business system
interoperation. 6th International Conference on
Conceptual Structures, Berlin, Germany, 1998,
Springer-Verlag, pp.431-8.

22. XML.org, XML and XSLT, www.xml.org.

