

Developing .NET Web Service-based Applications with
Aspect-Oriented Component Engineering

Santokh Singh1, John Grundy1, 2 and John Hosking1
Department of Computer Science1 and Department of Electrical and Computer Engineering2

University of Auckland
Private Bag 92019, Auckland, New Zealand
{santokh|john-g|john }@cs.auckland.ac.nz

Abstract

Current approaches to engineering web service-based
software systems are limited by lack of comprehensive web
service component characterisations. In this paper, we
describe our recent work applying Aspect-Oriented
Component Engineering (AOCE) to develop more
adaptable, higher quality and more reusable software
components for web services. We give examples on how
AOCE can be used to design and implement Web Service-
based systems, including aspect-oriented enhancements to
the Web Services Description Language and the Universal
Discovery, Description and Integration standards. We
describe a prototype web services system we have
implemented using AOCE to demonstrate and evaluate our
technique.

1. Introduction

Web services have quickly become a very important

enterprise system development technology. Numerous
commercial and non-commercial organizations want to use
them to enhance their IT systems’ ability to be extended
and integrated with internal and external systems [1, 7].
Web services promise to enable business to business
integration seamlessly and dynamically irrespective of
platform, language or culture [4, 17]. The number of
organizations making use of web services is predicted to
increase tremendously in the next few years. Key features
of web service-based systems are the self-description of
web service components via Web Services Description
Language (WSDL) and the aim of dynamically
discovering new web service components to integrate at
run time via Universal Discovery, Description and
Integration (UDDI) [7, 19].

Presently component-based systems engineering,
including that for web service-based systems, tends to
focus on low level software component interface design
and implementation. This has a great disadvantage in that
it often results in development of components whose
services are difficult to both understand and combine [9,
10]. Most current development approaches also make

many assumptions about other components related to a
web service, constraining its reuse. Furthermore the
component documentation is too low level, focusing on
component interface and message types, which again is
hard to understand at higher levels. As web services are a
relatively new and still a growing technology, there are
still a lot of unanswered issues about web services design
and implementation, including those relating to security,
performance, collaboration and interoperability [1, 4].
Aspect-oriented component engineering for web services
may provide an answer to overcome such limitations.

We have been carrying out extensive research into
developing Aspect-Oriented Component Engineering [9,
10, 11] for software component design and development.
This approach uses aspects to better-describe functional
and non-functional characteristics of software components
than conventional techniques. In this paper we describe our
work using AOCE to design and implement Microsoft™
.NET-based web services. We firstly motivate this research
with a web service-based example application, and survey
recent work in the area. We describe how we use aspects to
design and characterise web service components, and to
provide improved support for discovering, validating and
integrating web service components at run-time. We give
examples of applying this approach to our example
application, briefly outline its implementation using
aspects, and evaluate our approach’s strengths and
weaknesses, identifying areas for future research.

2. Motivation

In this paper we describe our investigation into

applying a new methodology, Aspect-Oriented Component
Engineering [10, 11], to web service-based component
development. The motivation behind this is that current
approaches to web service component-based systems
engineering focus more on low-level software component
interface design and implementation. This has the problem
of being both cumbersome and difficult to comprehend
[12, 3]. This problem is even more glaring and evident
when large scale developments or maintenance of web
service-based systems are undertaken.

Travel Planner
Client

UDDI
Registries

Payment
Services

Flight
Services

Hotel
Services

Agent
Services

Transaction
Services

Security
Adaptors

Figure 1. An example web services-based application.

Consider a commonly-used example of a web service-
based application, a travel planner [8]. Figure 1 (a) shows a
Travel Planner client user interface, which provides an
interface to remote Flights Booking web services. The
client has been implemented using C#.NET, and includes a
range of interfaces for managing travel itineraries, finding
and booking travel-related items (flights, hotel rooms,
rental cars etc), and active help via “agents” (such as the
“blue genie” on the right).

The architecture of the travel planner is illustrated in
Figure 1 (b). The travel planner is composed of multiple
web service components rather than a single monolithic
application. The travel planner client needs to dynamically
discover available flights, hotels, payment, agency,
transaction co-ordination and other remote services at run-
time. These are integrated with the client to provide the
overall application functionality. Some components may
require adaptors to allow the travel planner to
communicate with them with its known protocols e.g.
some hotel services. Others may require multiple
composite components to provide required functionality,
such as the agency using other payment and car booking
remote web services. Some components provide
“horizontal services”, such as transaction co-ordination
and security. The client discovers the available services via
one or more UDDI registries, and may be able to select
between multiple available services providing the same
functionality [17, 20].

Key challenges faced by engineers developing such
web services-based architectures include:
• How can appropriate web service components be

identified and designed?
• How can such web services be appropriately described

so clients requiring their functionality can discover and
integrate them?

• How can web services be advertised to other
components with enough information that useful
discovery algorithms can be provided?

• How can it canbe validated that discovered components
meet advertised characteristics at run-time?

• How can adaptors to components be discovered or
synthesised and composite component aggregates be
found and initialised?

We have been conducting research on existing

methodologies for developing complex web services
systems and found shortcomings with them. OMG’s Model
Driven Architecture (MDA) [18] defines software at the
model level, expressed in OMG’s standard Unified
Modeling Language (UML). The MDA application's base
model specifies details of its business functionality and
behavior in a technology-neutral way called the
application’s Platform-Independent Model. An
intermediate product called a Platform-Specific Model
(PSM) and it reflects non-business, computing-related
details e.g. affecting performance and resource utilization
that are added to the Platform-Independent Model by the
web services’ architects. Though it’s a commendable
development methodology that can be applied to large
scale development of web service-based systems, it has a
number of disadvantages. All of the techniques used in
MDA tend to focus on lower-level features of the system.
Other Component-Based Development methodologies
include the COMO approach [14], The Select
PerspectiveTM [2] and The CatalysisTM approach [6]. These
also focus on the provided features of components and not
component requirements and inter-component
relationships. This can make designs hard to understand at
abstract levels or during reengineering and refactoring
processes. Higher level systemic component descriptions
such as persistency, user interfaces, security, transaction
processing, performance etc. are all missing from this
approach. These high-level features are very important for
understanding and using systemic components and their
functionalities, especially in the context of large and
complex systems.

1. AO-Specification
and AO-Designs

3. Deploy Web
Services

2. Implementation
Using AOCE

Fully Componentised
Aspect-oriented Web

services providers

.Car Rentals WS

Hotels Web Services

Flights Web Services

AO-
Adaptors

AO-Client(s)
Validation

Agents

AO-Servers

AO-UDDI

4. Register Web
Services

5. Discover Web
Services

6. Validate and
Integrate Web

Services

AO-WSDL

Figure 2. An overview of how we use aspects to develop .NET web service-based systems.

3. Our Approach: AOCE.NET

Aspect-Oriented Component Engineering (AOCE) is a

component development methodology that uses aspects to
characterise and categorize different system cross-cutting
capabilities and to reason about inter-component services
[10, 11]. These aspect-characterised services, such as data
persistency, message distribution, transaction co-
ordination, security, user interfaces and system resource
utilisation [15, 13], can either be provided by a software
component or required by it in order to operate. If a service
is required, it can be acquired from other components that
provide such a service in compatible ways. AOCE
supports the identification, description and reasoning about
high-level component functional and non-functional
requirements grouped by such systemic aspect categories.
We have applied this in past work to CORBA and RMI-
based remote object systems, and done preliminary
investigation of its applicability to web service-based
components [11, 8, 9].

In Aspect-oriented Component Engineering a software
component is characterised by the systemic aspects it
provides services to support or requires services from
another component in order to operate [11]. In previous
work we have used this approach to effectively engineer
components for a range of domains, including adaptive
user interfaces, plug-and-play collaborative work
components, and various enterprise systems [9, 11, 8]. We
have used aspect characterisations to describe all
components in an application.

In a web services-based architecture, such as provided
by Microsoft™’s .NET technology, a system is made up of
multiple components. Some of these are remote functions
(“web services”) accessed typically by standardised
communications technologies, such as XML-based Simple
Object Access Protocol (SOAP) across HTTP or similar
transport technologies [4]. When applying the aspect-

oriented component engineering concepts to web services
we are able to characterise web services and their clients
by the aspect-categorised services they provide and/or
require. We also wanted to experiment with enhancing
web service component descriptions to enhance their
discovery and dynamic integration within an architecture
at run-time.

Figure 2 shows the main steps in applying the AOCE
methodology to .NET-based web service-based system
development. Aspect-oriented specifications and designs
capture the functionality of desired web service clients and
service components. Aspects are used to identify
functional and non-functional characteristics that a web
service or client provides or requires for operation. Our
.NET web services are then implemented with the need for
them to be run-time discovered, validated and integrated,
and to be characterised by aspect-enhanced service
descriptions. Clients are implemented with the need for
them to run-time discover their required services using
aspect-enhanced web service characterisations as well as
conventional web service category and provider
descriptions. Each web service in our approach has an
extended, Aspect-Oriented Web Service Description
Language (AO-WSDL) description characterising the
service’s functional and non-functional properties. Web
services are deployed and their descriptions registered with
an extended registry mechanism, Aspect-Oriented
Universal Discover, Description and Integration service
(AO-UDDI).

At run-time, a web service client issues one or more
aspect-enhanced queries to the AO-UDDI tool. This
locates matching web services, using the standard UDDI
information to locate category matches and the aspect
enhancements to locate and rank functional and non-
functional matches. In order to communicate with a
discovered service, the client may recognise its protocol,
but sometimes may need to locate or even synthesise an
appropriate adaptor to access it. Aspect enhancements are

used to assist in discovering or building appropriate service
adaptors. At times multiple components may need to be
located and used to match a single client query, and these
composite web service component aspects must be
checked. When located, remote services may need to be
dynamically tested to ensure they meet advertised
characteristics e.g. performance, security protocols and
transactional behaviour. We use aspect characterisations to
support dynamic testing agents running validation checks
on discovered web services.

4. AOCE.NET Travel Planner Example

We have applied AOCE to the development of our

example travel planner application design, implementation
with .NET web services, and dynamic discovery and
integration of web services the client application uses.

4.1. Web Service Design and Implementation

Figure 3 shows an example of a high-level AOCE web

service component diagram for part of the travel planner
system. Each component is represented as a traditional
UML class, and in this example the focus is on the
Booking client and related components. This component
design diagram shows both software components making
up the application and various systemic aspects that are
cross-cutting the different components. The search and
booking interfaces use middleware (web services) to
access a remote travel itinerary manager service, along
with a remote payment service payment and distributed
transaction co-ordinator. A diamond sign shaped aspect

annotation indicates that the aspect provides crosscutting
information for another component while a square one
requires it from another component. In this format, an
indication of the functional and non-functional aspectual
properties is attached to each visual component. More
detailed views and associated component properties
specify provided and required aspect details of each web
client and service. Our approach is different from
traditional Aspect-Oriented Programming systems [15, 13]
in that the aspects themselves are not separated out into
their own modules. Our aim is not necessarily to inject
aspect-implementing code into modules but to better-
characterise cross-cutting features of our web services-
based software components.

Each aspect-characterised feature of these web service
components has additional constraint specifications
(“aspect detail properties”), such as the required
persistency mechanism, data size limits, event-based or
data-based distribution mechanisms, caching and
synchronisation mechanisms, required data transmission
performance, transaction co-ordination demarcation, and
so on. For example, in Figure 3, the MakeBooking
component requires security, data persistency and
transaction processing aspects. As shown by the diamond
symbols and matching patterns, the TransactionCo-ord
component provides the security and transaction co-
ordination MakeBooking requires. The PaymentManager
component provides distribution and security support and
the TravelItemsManager data persistency. These aspects
are required by the MakeBooking component to enable it
to function in this architecture.

SearchInterface

BookingInterface

 MakeBooking

Middleware

PaymentManager

TravelItemsManager

TransactionCo-ord

+begin(): void
+commit(): void Database

Provides

Requires

Distribution

Persistency

Security

Transaction

User interface

Aspect
Annotations

Figure 3. An AOCE design for travel planner components.

<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve
data
<<WebService>>
+locate service
AO-WSDL

<<Transaction
Processing>>
+ commitdata
+ rollback data
- lock data data
<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve data
<<WebService>>
+services

<<Transaction
Processing>>
+ commitdata
+ rollback data
- lock data data
<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve data
<<WebService>>
+services

Staff Travel Planner Client

Discovery Agencies
(AO-UDDI)

Travel Planner Database

Other Web
Service Providers e.g.

ItenaryManager,
HotelsWebService etc.

Provider Database

SQL

SOAP
Publish

SQL

SQL

Hotels
Service Provider Server

SOAP
Publish Provider DatabaseSQL

Customer Travel Planner Client

Interact

SOAP

Find

SOAP
Interact

Service Requester Application

HTTP

<<UI>>
+process views

-form/frame
<<UI>>

+process views
-form/frame

<<Persistency>>
+ store data
+retrieve data
- storage media

<<Persistency>>
+ store data
+retrieve data
- storage media

<<Persistency>>
+ store data
+retrieve data
- storage media

<<Security>>
+ authentication
- encode data
- decode data
<<WebService>>
-services
-locate service

AO-Adapter

AO-Post Filter

Validating
and Testing
agents

Figure 4. The travel planner's AO-web service-based architecture.

The software architecture of our collaborative Travel
Planner is shown in Figure 4. This example uses a more
detailed textual representation of cross-cutting aspects to
annotate the architecture structure. In this figure, aspects
are placed between double angled brackets, e.g.
<<Persistency>>, <<Security>> and <<Distribution>>
shown in the figure stand for persistency, security and
distribution aspects respectively. All aspect-details
pertaining to a particular aspect are listed immediately
below the aspect itself. Also aspect-details have a “+” or “-
” symbol preceding them. A “+” sign means that the aspect
details are provided by the component while a “-” signifies
that it is required. The software components that make up
each subsystem/application expose interfaces that relay
information about these aspect-oriented functions. These
interfaces are implemented within the component that
contains them. They are used by other aspect-oriented
components that are assembled together to build the
software application.

Using such aspect-oriented component designs, we
implement .NET web service components that:
• are self-describing not only in terms of their interfaces

but include aspect characterisations for richer run-time
understanding and configuration;

• at run-time are able to locate web service components
that provide their required functional services as
specified by their aspect characterisations;

• and may make use of “standardised” aspect-based
component adaptors to interact with discovered web
services in a de-coupled manner, without needing any
hard-coded type or behavioural information about the
component.

4.2. AO-WSDL

Standard web service components are characterised by

the Web Service Description Language, an extensible
XML-based mechanism for describing the low-level
interface features of the provided web service [4]. Web
service requestors will only access, consume or integrate
with the web service if it is understandable and exposes
services that satisfy the requirements of the clients. We
have incorporated aspect-oriented elements into the WSDL
document to increase understandability of the web service
at run-time. These aspectual information enhancements
allow for easier, more dynamic and automated systems
integration by allowing queries for web services to filter
inappropriate services out using their aspect information.
They also allow for more precise run-time integration to
remote services and support automated testing of

discovered web services to validate they meet aspect-
specifiedc constraints.

WSDL itself has 6 major elements that are extensible
i.e. for definitions, types, message, portType, binding and
service. It also has other optional utility elements, e.g. for
documentation and import purposes. We have added a
number of aspectual extensions, all neatly bundled into a
major “aocomponents” element, to the standard WSDL
format as shown in figure 5. This transformed the WSDL
into Aspect-Oriented Web Service Description Language,
or AOWSDL for short. The purpose of this is to enable the
description and capture of the rich and highly characterised
aspectual features of web services in a systematic manner.
Figure 5 further gives a summarised description and
overview of the AOWSDL document showing the
hierarchy of the six major elements of WSDL together
with the “aocomponents” major element for describing
aspectual features. A standardized method for extending
WSDL with aspects nested in components was used. AO-
WSDL also allows for more dynamic and automatic
searches for any given aspect, aspect details and properties
of the services advertised because our AO-WSDL
specifications for web service components follow
consistent, formal and clearly defined semantics and
syntax.

<definitions> The root element of a WSDL document

<types> All data types to be transmitted are
defined here.

<portType> The round-trip operations that
will be supported.

<message> One way messages that will be
transmitted

<binding> The way the messages will be
transmitted over the wire including all
related SOAP specific details.

<service> The location (address) of the web
service.

<aocomponents> All aspect-oriented
components and exposed aspects including
their details and descriptors are defined here.

Figure 5: AOWSDL document showing the

hierarchy of its elements.

 Figure 6. (a) the initial section of the AO-WSDL schema; and (b) implemented part of this section in the AO-WSDL

from the travel planner.

Figure 6 shows the initial section of the AO-WSDL

schema and an example of its use in the AO-WSDL
document for the HotelComponent. All our aspect-oriented
elements and descriptors are enclosed within a main
“AOComponents” element. Complete documentation for
human consumption about the web service’s aspects and

components is placed within the “AODocumentation”
element. This documentation also includes high level
instructions to software developers about the web service
and how to access and consume it. Another element, the
“WSDescription”, gives instructions used for automatic
discovery and integration of the web service.

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSche
ma" targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified">

 <xs:element name="AOComponents">
 <xs:attribute name="Name" type="xs:string"

use="required" />
 <xs:element name="AODocumentation">
 <xs:attribute name="Information"

type="xs:string" use="required" />
 </xs:element>
 <xs:element name="WSDescription">
 <xs:attribute name="Description"

type="xs:string" use="required" />
 </xs:element>
 ……

<?xml version="1.0" encoding="utf-8" ?>
<definitions …..
xmlns:aowsdl="http://localhost/AOUDDIWebService/bin/ao
wsdlSchema.xml" ………>

………
 <aowsdl:AOComponents Name="HotelComponent">
 <aowsdl:AODocumentation Information="Exposes
aspects to find vacant rooms in hotels, searches for hotels
based on city or country of interest. After finding rooms
reservations can be made to book the rooms concerned… All
human readable information go here. This include
instructions and high level documentation about the web
service for human consumption." />
 <aowsdl:WSDescription Description="To find, update,
delete and insert reservations or bookings for vacant hotel
rooms" />
……

 …………
 <xs:element name="Component"
 type="xs:string" use="required">
 <xs:attribute name="ComponentName"
 type="xs:string" use="required" />
 <xs:element name="ComponentDescription">
 <xs:attribute name="Description"
 type="xs:string" use="required" />
 </xs:element>
 <xs:element name="Aspects">
 <xs:element name="FunctionalAspects">
 <xs:element name="Aspect">
 <xs:sequence>
 <xs:attribute name="Type"
 type="xs:string" use="required" />
 <xs:attribute name="AspectName"
 type="xs:string" use="required" />
 <xs:attribute name="WSEntryPoint"
 type="xs:string" use="required" />
 <xs:attribute name="Standalone"
 type="xs:string" use="required" />
 <xs:element
name="AspectDescription">
 <xs:attribute name="Description"
 type="xs:string" use="required" />
 </xs:element>
 …………

 ……..
 <aowsdl:Component ComponentName=
 "HotelComponent ">
 <aowsdl:ComponentDescription Description=
 "Component to find hotels in various cities
 and countries including rooms availability" />
 <aowsdl:Aspects>
 <aowsdl:FunctionalAspects>
 <aowsdl:Aspect Type="Persistency"
 AspectName= "StoreData "
 WSEntryPoint="true"
 Standalone="true">
 <aowsdl:AspectDescription
 Description=
"To search for hotels based on city or country query" />
……
 <aowsdl:Parameters>
 <aowsdl:Parameter
 ParameterName="strCity"
 ParameterType="string" />
 <aowsdl:Parameter
 ParameterName= "strCountry"
 ParameterType="string" />
 </aowsdl:Parameters>
 <aowsdl:Return ReturnType="DataSet" />

Figure 7. (a) Components and aspects from the AO-WSDL schema; and (b) corresponding elements in AO-
WSDL.

Each component of the web service provider is nested
within the “AOComponents” element as shown in Figure
7. These components contain all the aspects that are
exposed to the clients. The clients can make further XML
queries to verify whether or not their detailed needs match
those provided by the components and their aspects. These
descriptions are also highlighted in Figure 7, and the clear
and concise language used allows automatic querying to be
possible.

Each component exposes one or more aspects. Each
aspect element describes details about a particular cross-
cutting features impacting the component e.g. persistency,
transaction processing, security, resource utilisation, etc.
An aspect describes a functional or non-functional type of
cross-cutting concern. Each aspect has an aspect type
associated with it, e.g. the aspect type could be
Persistency, Distribution, Transaction, Security etc,
categorising the cross-cutting concern.

Figure 8. (a) Aspect details in the AO-WSDL schema; and (b) corresponding elements from the AO-WSDL
document in the collaborative travel planner.

 <xs:element name="Aspect">
 …………
 <xs:element name="AspectDetail">
 <xs:sequence>
 <xs:attribute name="Type" type="xs:string"

 use="required" />
 <xs:attribute name="Detail"

 type="xs:string" use="required" />
 <xs:attribute name="Provided"

 type="xs:string" use="required" />
 …………
 <xs:element name="AspectUserOperations">
 <xs:attribute name="UsedBy" type="xs:string"

 use="required" />
 </xs:element>
 <xs:element name="UsesOperations">
 <xs:attribute name="Uses" type="xs:string"

 use="required" />
 ………….

 <aowsdl:Aspect Type="Persistency"
AspectName="PersistenceHotelsDataSetfromCityCountry"
WSEntryPoint="true" Standalone="true">
 ……………

 <aowsdl:AspectDetail Type="data retrieval"
Detail="select" Provided="true" />
 <aowsdl:AspectUserOperations
UsedBy="Persistence_HoteFinder|
 TransactionProcessing_ItenaryManager" />
 <aowsdl:UsesOperations
Uses="Persistence_roomsByHotelID|Persistence_OnSiteF
acilities|Persistence_OffSiteFacilities|Persistence_places
OfInterest" />
 </aowsdl:Aspect>
……

If the aspect can be used without resorting to the use of
another aspect first, i.e. there is no precondition that it need
to be used subsequent to another aspect, its
“WSEntryPoint” attribute is set to true in the AOWSDL.
All the aspect descriptors shown are used to facilitate
automation. As shown in Figure 8, each aspect has one or
more aspect details associated with it. If this aspect detail
is provided, its “Provided” element is set to “true”, if it is
required from others, it is set to “false”. This enables
clients to understand the aspects in more detail and query
whether it serves their needs or not. AO-WSDL as such
supports better description, characterisation and
categorisation of web services than plain WSDL.

4.3. AO-UDDI

A key feature of web services-based architectures is the

dynamic discovery, adaptation and integration of
distributed web service components. The Universal
Description, Discovery and Integration (UDDI) registry is
a business and service registry which is also an open
industry initiative to enable businesses utilising web
services technology to describe, discover and integrate
with each other [1, 17]. Unfortunately current web
services technologies such as .NET provide only limited,
low-level support for dynamic integration, with much
current research attempting to improve the state-of-the-art
[16]. We have used our aspect-oriented descriptions of
web service components to provide improved support,
developing an Aspect-oriented UDDI (AO-UDDI) registry
tool. Each web service is assigned a unique identifier when
it is registered with our AO-UDDI. All aspect-oriented
features and related information about the web services
together with this identifier is stored in databases with
local caches of it available for speedier searches and
discoveries.

In a conventional UDDI-based system a web service
client requests matching web services based usually on
standard, function-oriented categories [20]. In our AO-
UDDI registry, aspect characterisations can be used both to
inform category choices and also as a post-filter to refine
and rank located candidate services. Aspect
characterisations support composition of web service
components by retrieving multiple components that are
used to satisfy the query. They also support adaptor
location and integration when required by a web service
client. We have also used them to perform run-time
validation of discovered web service components using
testing agents which synthesise test requests to the web
services to check their actual run-time behaviour.

Figure 9 illustrates these features with an example from
our .NET travel planner application. The travel planner
client issues a query to an AO-UDDI registry, asking for a
flight booking service (1). This query may specify any
flight booking service be returned, or may constrain the
desired services by, for example, saying the service must
use an optimistic booking protocol, must return a book
request query reply in less than 5 seconds, must use a
specified security protocol, and so on. The AO-UDDI
registry locates registered web services matching the
category query (flight booking service), filters and/or ranks
these by further aspect-based constraints, and returns the
list to the client application (2). The user selects a service
or the client chooses a “best match”, and the service is
invoked as required (3). Sometimes a desired service
provides an incompatible SOAP protocol to that required
by the client.

The AO-UDDI registry can search for an appropriate
adaptor mapping one protocol to the other. Alternately, a
component can make use of adaptors “standardised” for
different aspects e.g. a generic data storage, event
broadcasting, transaction co-ordination, itinerary item
booking etc service (4).

T r a v e l P la n n e r C l ie n t

A O -U D D I
R e g is t r y

P a y m e n t S e rv ic e # 1

P a y m e n t S e rv ic e # 2

F l ig h ts S e rv ic e # 1

F l ig h ts S e r v ic e # 2

F l ig h ts S e r v ic e # 3

B o o k in g A d a p to r
A O -W S D L A O - W S D L

A O - W S D L

A O - W S D L

A O - W S D L

A O - W S D L

P a y & B o o k
C o m p o s i t e

2

1

4 3

5

6

T e s t in g A g e n t(s)

7

Figure 9. An aspect-enhanced UDDI query example for the travel planner.

A more complex query to the AO-UDDI registry by the
client might ask for a combined flight booking and
payment service. Such a service doesn’t exist, but the AO-
UDDI registry provides a composite service of an
appropriate flight booking service and payment service (5).
Accessing the composite functionality is via a simple
synthesised web service that sequences interaction with the
existing services (6).

Testing and Verification Agents (7) are used to verify
the accuracy and performance of the web service
component responses to generated queries. These agents
use the aspect descriptions in AO-WSDL documents to
synthesise requests to the discovered services and check
that they meet the client-specified criteria e.g. performance
of remote service, message size used by remote service,
security approach of remote server and so on.

Figure 10. Example of using the AO-UDDI registry.

The AO-UDDI registry can be accessed by client
components as shown in Figure 9. It can also be used to
manually select and choose between available services by
an application user. The user interface of this AO-UDDI
registry client is shown in Figure 10. Here the user is
performing an aspect-based query, seeking data
management components that provide a specified
performance criteria.

5. Design and Implementation

We implemented our travel planner prototype system

using standard C#.NET web service components. Web
service clients were implemented so that they do not hard-
code any remote service information but instead use our
extended AO-UDDI mechanism to locate one (or more)
components that satisfy their required services. Web
services were implemented so that they are dynamically
located and integrated by clients. Web service components

can be run-time tested by dynamic validation agents to
ensure that they meet their aspect characterised
performance and other constraints in their actual
deployment situation. A number of adaptor components
were implemented that allow a web service client to
interact with discovered web services without direct
knowledge of their SOAP protocols and behaviour, instead
using standardised, aspect-categorised adaptor messages to
interact indirectly with it.

We extended the WSDL grammar by enriching it with
aspect-oriented features so that it becomes better
characterised and categorised. All these additional features
were extracted directly from our web service source files
using .NET’s Reflection classes and parsing the web
services files with .asmx (i.e. .NET files supporting web
services and capable of providing aspects over the wire)
extensions. The parsing ensures that all the documentation
and descriptors can be extracted from comments in the
source files and inserted into the AOWSDL file. We had
resorted to consistent and coherent naming conventions
throughout our development process and this made it
easier to comprehend and extract aspectual information
from our source code. AOWSDL as such could be
automatically generated from our web services that were
implemented by using AOCE techniques. Furthermore,
clients not supporting the aspectual features inherent in
AOWSDL can still use it as a standard WSDL file by
parsing it and ignoring all the aspect-oriented elements.

We designed and implemented an AOUDDI that could
execute dynamic discoveries of .NET web services through
the use of XML queries. An AOUDDI user interface was
also constructed that could be used manually to discover
the web services. Further queries specifying detailed
aspectual characteristics that are required can be made to
the AOUDDI. The AOUDDI will discover and return all
matching web service providers located.

Tests were performed by validating agents to gauge
how accurately the web services returned by the AOUDDI
satisfied and matched the queries. The best matching web
service provider was found to have more functionalities
than requested for by the web service clients. These web
services can be integrated either automatically or manually
with the web service requestors. Automatic integration can
be achieved by using the AOUDDI to integrate the best
matched web service provider found with the web service
requestor. Otherwise the user has the option of choosing
from the list of all matching web service providers
returned by the AOUDDI and manually integrating them.

6. Discussion

Designing and developing the Travel Planner

application gave us extensive hands-on experience in
applying and further refining the Aspect-Oriented
Component Engineering methodology. In earlier versions

we had experimented with the Sun Microsystems’ Java
programming language to build simple prototypes but
without AOUDDI and AOWSDL functionalities. We also
developed a version of the travel planner with standard
C#.NET without aspect-oriented design or WSDL and
UDDI enhancements.

In this paper we described a revision of the travel
planner design and implementation, all developed the
using Microsoft’s .NET technology and our aspect-based
enhancements to component design and web services
technologies. The Visual Studio IDE that we used allowed
us to do rapid prototyping with AOCE for our
collaborative web services based Travel Planner. This IDE
has a comprehensive library of APIs and easy to use
advance features, eg. property boxes with extensive and
clearly defined fields to manipulate UI components; drag
and drop features for connecting to databases etc.

We achieved a higher level of characterisation and
modularisation in our travel planner system designs and
implementations by using the AOCE methodology to build
our web services-based travel planner system. We found
that this also brought about an increased understanding of
the interrelationships between the various components
concerned. Compared with previous prototypes of our
travel planner design, this aspect-enhanced design we
found to be much more easily understood and extended
than our previous non-aspect-based component designs
[9]. In our earlier prototype not using AOCE techniques
the travel planner web service components lacked any
reflection of their inter-relationships with other
components and the cross-cutting concerns that impact
them. When showing the designs and web service interface
descriptions to other developers we had to explain this
information using annotated UML diagrams, free text or
verbal explanations. By capturing the cross-cutting
concerns using our AOCE component aspects for the travel
planner web services we found that these additional
techniques were no longer required or could be
substantially simplified. Feedback from other developers
on our extended designs and web service characterisations
have indicated that they substantially enrich the knowledge
of a web service over conventional UML diagrams and
WSDL and UDDI technologies.

Our AOUDDI extended web service registry was better
equipped to handle queries pertaining to aspects and their
details than the standard UDDI registry and previous
aspect-enhanced registries of our own [1, 10]. The
AOWSDL also provides a richer characterisation of web
service components than its WSDL counterpart. The
extensions in our AOWSDL documents allow for better
dynamic discovery of web services at run-time as they
incorporate both non-functional characteristics and use a
standardised functional categorisation of component
services. The major overhead here is that there are a lot of
descriptors used in AO-WSDL to define the aspects, their

details and the services that they provide. But this is easily
offset by the advantages gained by using the aspect-
oriented features in AOCE.

On the downside, as there are no universally accepted
standards in the terminology and notations used in AOCE
by the various interested parties trying to use it, the result
could be an extra initial cost in terms of developers’ time
and effort to understand other peoples’ designs and code.
We are working on creating some universally accepted
standards for AOCE in these respects so as to streamline
our efforts with others who are using this methodology.
We are also very interested in developing tools that can do
more comprehensive modelling and designs to support
development using AOCE techniques. The existing
modelling tools, e.g. Rational Rose and Microsoft’s Visio,
do not support visual representations of aspects in their
models. Also, a lot of textual descriptions need to be
inserted into the existing design diagrams to describe
aspectual features and we hope to overcome this limitation
in the tools we are building. Currently we have to build our
AO-WSDL descriptions by hand, and this is very time-
consuming and error-prone. Generation of AO-WSDL
descriptions from a design tool would greatly enhance this.

One issue that can cause problems with our approach is
if a web service lacks specification of certain
characteristics using aspects in its AO-WSDL description,
or a third-party web service only has a conventional
WSDL specification. In these circumstances we allow the
web service to be integrated back can not do some of the
things supported by our approach e.g. run-time validation
of discovered service; filtering of service using aspects
using AO-UDDI etc. However, our approach does
conceptually allow a third-party or partially aspect-
enhanced service to be further characterised by additional
AO-WSDL information. This aspect-enhancement of
existing 3rd party web services is an interesting future
research direction we wish to pursue.

Our future research plans also include building better
tools to generate AO-WSDL. The AO-WSDL will also be
upgraded so that it can support and describe more
aspectual features. Our aspectual features are very
important and critical in providing accurate and
appropriate responses, especially to AO-UDDI queries by
web service requestors. These additional aspectual features
would also be used in our post-filter devices. We are also
looking at expanding our automated validation tools. We
are also working with intelligent agents to help us with our
automatic dynamic lookup, interpretation, translation and
integration tasks involving aspect-oriented web services.
Another area of interest to us is extending AO-UDDI to
understand queries in natural language. .NET provides a
variety of extended features that may be used to help
support aspect-oriented web service component
development. These include class attributes, a powerful
reflection mechanism supporting run-time code injection

into class implementations, and a class meta-data
management facility. We would like to explore how these
could be used to provide other aspect-based support
features e.g. run-time code injection for web service
implementations. We see this as being complementary to
the web service interface characterisations that we have
extended with our AOCE for web services. Finally it
would be advantageous to integrate all these additional
features and tools into the Visual Studio .NET IDE. This
will save much time when developing web service systems
using AOCE techniques because developers would be able
to create aspect-oriented components and sub-systems
faster.

7. Summary

AOCE provides a new framework for describing and

reasoning about component capabilities from multiple
aspect-oriented perspectives. Aspect information in
component implementations allows developers, end users
and other components of web services to access high level
knowledge about component capabilities. We have
extended and enriched the web service description
language into AO-WSDL documents that contain aspect-
enriched descriptions. These extended descriptions can be
indexed by AO-UDDI registries and the aspect information
used to assist better description, discovery, testing and
integration of web service components.

We successfully applied this methodology to develop a
web service based collaborative Travel Planner system
composed of a number of web service-based software
components. AOCE for web services brought about an
increase in reusability, reconfigurability and
understandability during the development process. We
were also able to consume web services exposing aspects
in WSDL files. Our AO-UDDI was used by client
components to dynamically locate available services or to
find adaptors or composite services. The combination of
AO-WSDL and AO-UDDI used in conjunction with web
services supports more powerful dynamic service
discovery, validation and integration compared to those
using conventional WSDL and UDDI techniques. Though
we have used a collaborative Travel Planner application as
an example to describe how AOCE can be applied to the
design, characterisation, location and integration of web
service-based software components, it is our conviction
that these concepts can be applied equally well to the
development of any type of web service-based system.

References

1. Adams, C., Boeyen, S. UDDI and WSDL extensions for Web

service: a security framework, In Proceedings of the 2002
ACM workshop on XML security, Fairfax, VA , 2002, ACM.

2. Allen, P., and Frost, S. Component-Based Development for
Enterprise Systems: Applying the Select Perspective,
Addison-Wesley, 1998.

3. Brown, A.W., and Wallnau., K.C. The Current State of
CBSE, In IEEE Software, Volume 155, Sept-Oct 1998.

4. Cerami, E. Web Services Essentials - Distributed Applications
with XML-RPC, SOAP, UDDI & WSDL, Feb 2002, O'Reilly.

5. Chappell, D. and Jewell, T., Java Web Services, March 2002,
O'Reilly.

6. D’Souza, D.F. and Wills, A.C. Objects, Components and
Frameworks with UML, The CatalysisTM Appproach,
Addison-Wesley, 1999.

7. Ferrara, A. and MacDonald, M. Programming .NET Web
Services, September 2002, O’Reillly

8. Grundy, J.C., Hosking, J.G., Mugridge, W.B., and Apperley,
M.D. Tool integration, collaboration and user interaction
issues in component-based software architectures, In
Proceedings of TOOLS Pacific '98, Melbourne, Australia,
Nov 24-27 1998, IEEE CS Press, pp. 299-311.

9. Grundy, J.C. and Hosking, J.G., In Engineering plug-in
software components to support collaborative work, Software
– Practice and Experience, 2002; vol. 32, pp. 983-1013.

10. Grundy, J. Multi Perspective Specification, Design and
Implementation of Software Components using Aspects, In
International Journal of Software Engineering and
Knowledge Engineering. Vol. 10, No. 6 (2000) 713-734,
World Scientific Publishing Company

11. Grundy, J. and Ding, G. Automatic Validation of Deployed
J2EE Components Using Aspects, In Proceedings of 2002
IEEE International Conference on Automated Software
Engineering, Edinburgh, UK, IEEE CS Press.

12. Heisel1, M., Santen, T., and Souqui`eres, J., Towards a
Formal Model of Software Components, In Formal Methods
and Software Engineering - Proceedings of the 4th
International Conference on Formal Engineering Methods.

13. Kiczales et al, Aspect-oriented Programming, In Proc. of the
1997 European Conf. on Object-Oriented Programming,
Finland (June 1997), Springer-Verlag, LNCS 124.

14. Lee, S.D., Yang, Y.J., Cho, E.S., Kim, S.D., Rhew, S.Y.
COMO: A UML-Based Component Development
Methodology, In Proceedings of the 1999 Asia-Pacific
Software Engineering Conference, 1999, pp 54 – 61.

15. Lieberherr, K. Connections between Demeter/Adaptive
Programming and Aspect-Oriented Programming (AOP),
http://www.ccs.neu.edu/home/lieber/, 1999.

16. Microsoft, Visual Studio and .NET,
http://www.microsoft.com/net/, 2003 Microsoft Corporation.

17. Ran, S. A model for web services discovery with QoS, In
ACM SIGecom Exchanges , Volume 4 , No 1, 2003.

18. Siegel, J. Using OMG’s Model Driven Architecture (MDA) to
Integrate Web Services, http://www.omg.org/.

19. Torkelson, L., Petersen, C. and Torkelson, Z. Programming
the Web with Visual Basic .NET, SoftMedia Inc 2002.

20. Zhang, L.J. Li, H., Chang, H., Chao, T. XML-based advanced
UDDI search mechanism for B2B integration, In Proceedings
of the Fourth IEEE International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems,
IEEE CS Press, 2002, pp.9-16.

