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Abstract

Formal program development has gained widespread
academic interest as a rigorous software engineering
technique. One of the main hurdles for the wider IT
industry in adopting these formal techniques is a lack of
tools to support their use in combination with more
traditional development techniques. This paper describes
an integrated environment for object-oriented software
development which incorporates formal Object-Z
specifications for classes. These formal specification
views are kept consistent with more traditional design
and implementation views, allowing software developers
to design, refine, implement and document their
software utilising integrated formal techniques.
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1. Introduction

Since its introduction as a programming paradigm
in the early 1960's, object orientation has enjoyed
increasing popularity. Not surprisingly, its use has
spread beyond that of an implementation technique with
the development of methodologies and notations for
object-oriented (OO) analysis, specification, and design.

A large number of OO analysis and design
methodologies and notations have been developed
including Booch [3], OOA [5], OMT [24], and [25].
These are all, essentially, informal in their approach and
hence do not lead to rigorous system specification. All
require textual supplements to more completely define,
for example, service behaviour. The methodologies are
supported by a variety of CASE tools, some having
code generation capabilities such as Rational Rose, for
Booch and ObjecTOOL, for OOA.
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A variety of formal OO specification approaches
have also been developed. These include: LOTOS,
which is not strictly an OO specification language but
which has been adapted as such; Object-Z [6]; OOZE
[1]; Z++ [18]; OSDL [20]; and VDM++ [7]. The
advantage of using such specification languages is that a
more rigorous and concise specification of systems
results. These specifications can also be more easily
reasoned with than informal implementation code and
designs [4]. Disadvantages of such languages are that
they are not directly executable, and, being
mathematically based, many people find them too “hard”
or “unwieldy”. A variety of tools have been developed to
support OO specification languages, with some
providing prototyping and application shell generation.
These include the OOZE tools [1]; the UQ editors [26],
supporting Object-Z; and tools supporting OSDL [20].

A problem that both OO analysis and specification
methodologies suffer from is that they are disjoint from
the implementation of the systems they are defining.
The code generation facilities of their support tools are
useful, but do not ensure the code and specifications are
kept consistent with one another. Similarly, there is no
support for keeping OO analyses consistent with OO
specifications, contributing to the lack of enthusiasm
for the use of the latter. An exception is the Eiffel
approach of design by contract, using method pre- and
post-conditions, and class invariants to specify classes
and their behaviour. This language-based approach,
while laudable, has problems with the lack of expressive
capability of the assertion language used in comparison
with languages such as Object-Z.

While there have been some approaches to
combining analysis and specification methodologies,
such as the ROOA approach of [19] and the work of
[15], there has been little tool support for this. What is
needed are tools which support the use of informal
requirements specification and OO analysis, integrated
with more formal OO specification, and combined with



the ability to proceed to design and implementation, all
within the one environment. In this paper we describe
such an environment, constructed by extending SPE, an
existing environment supporting integrated OO
analysis, design, and implementation, with views
supporting OO specification using a variant of Object-
Z.

We commence with a brief overview of SPE. This
is followed by a description of SPE's extension to
include Object-Z views. Section 4 examines issues of
consistency within the integrated environment. Section
5 discusses implementation details, while Section 6
provides discussion and conclusions.

2. Overview of SPE

SPE (Snart Programming Environment) provides an
integrated environment for OO analysis, design, and
implementation using Snart, an OO Prolog [10]. SPE
supports multiple views of a system across multiple
phases of development. It has a novel approach to
consistency management based on the propagation of
discrete change descriptions between views. These
descriptions document a change made in one view and
are propagated to all other views that could be affected
by the change. The receiving views interpret the change
and modify their contents appropriately.

Graphical views support the definition of classes
(and their attributes and services), and inter-class
relationships important for analysis and design such as
(using OOA terminology, but different notation), gen-
spec, whole-part, and instance and message connections.
For example, Figure 1 shows two graphical views
specifying part of the analysis (window ‘window-root
class’) and design (window ‘window-figure stack’) for a
drawing program application. Graphical views such as
these allow programmers to define and browse the
important analysis and design structures associated with
an OO program. Analysis and design views are
supplemented by textual documentation views, which
can be associated with classes or individual methods.
These are used to record informal requirements and
specification details.

SPE also provides textual implementation views
and two views of the implementation of the stack class
are shown in figure 1. The class interface view (window
‘stack-Interface’) defines the interface to this class. The
method implementation view (window ‘stack::pop -
Method’) shows the Snart implementation of the stack's
pop method. In this example, a stack stores its items by
using a Prolog list attribute of the stack object. SPE’s
graphical views are interactively edited while textual
views are free-edited and parsed.
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Figure 1. Drawing program analysis, design and implementation views in SPE.

SPE's change description mechanism is used to
maintain consistency between these views. In many
cases, such as the addition, deletion, or change to the
name of a class, attribute, or service, or the introduction
of an inheritance relationship between classes, other
affected views can be automatically modified to reflect



the change. This is because the affected property of the
system has common semantics in both the graphical and
implementation views.

In other cases, such as an implementation view
receiving notification of the introduction of an abstract
instance or message connection, automatic modification
is not possible as there is insufficient implementation
information (such as whether an instance connection is
to be implemented as an attribute reference or via an
intermediate dictionary object). Rather than attempting
full consistency in these cases, a partial consistency
approach is taken. The received change description is
translated into a readable form and inserted as an
annotation in the view, as shown in the method
implementation view in figure 1. The user is then made
responsible for implementing the modifications required
to regain full consistency. The same approach is taken
with change descriptions received by documentation
views. The user is responsible for inspecting the
annotations and checking that informal requirements are
still met, or that informal specifications are updated to
reflect the change.

SPE thus provides an effective approach to
integrating tools supporting software development
across analysis, design, and implementation. However,
it lacks tools to support formal specification of
systems, relying instead on informal textual
requirements and specifications. To correct this
deficiency the integration of Object-Z specification
views into SPE has been undertaken, as described in the
following section.

3. Adding Object-Z views to SPE

We chose Object-Z as the formal specification
language for use with SPE because of its object-oriented
features and our experience with it. We use a simple
stack example for conciseness in the following
discussion, to illustrate these Object-Z views in SPE.
Figure 2 shows an Object-Z specification for a simple
stack class (adapted from [6]). This specifies that a stack
holds items of type T (a generic parameter). Stacks have
a maximum number of elements, max, and a sequence of
items, items, where the number of items is always
constrained to be less than or equal to max. Methods
include: INIT, used to initialise a stack object on
creation; Push, used to push an item onto the top of the
stack; and Pop, used to pop the top item off the stack.
Push and Pop alter the items attribute, and have one
argument, item, the value to push or the value which
was popped. Push is constrained to ensure the number of

items does not exceed max, and Pop is constrained to
ensure an empty stack is not popped.

Formal specification of classes can be supported by
adding Object-Z views to SPE. Figure 3 contains a class
specification view showing an Object-Z specification of
the stack class. The Object-Z syntax has been adapted
somewhat to a purely textual form for simplicity of
implementation within the SPE framework.

— Stack[T]

Imax:N

items : seq T

#items < max

—INIT
items = <>

— Push
A (items)
item?: T

[#items < max

items' = <item?> + items

— Pop
A (items)
item!: T

[items = <>

items = <item!> + items'

Figure 2. Object-Z specification for simple stack
class (from [6]).

SPE's Object-Z specifications can be split into parts
and multiple views of a specification may be provided.
For example, the method specifications can be put into
their own SPE textual views, or even displayed and
edited in the same view as SPE method
implementations. Figure 4 shows an example of this.
The same can be done with the class interface
specification, with constraints on attributes and the
initial state of the class defined by an Object-Z schema.

Object-Z views are integrated with all other views of
the software under development, so SPE design and
analysis views can be used to visualise and navigate
through complex Object-Z specifications. SPE provides
hyper-links between different views, and thus a designer
can move to the specification of a class by double-
clicking on a class icon and requesting its Object-Z
view(s) be shown. Similarly, a designer can move from
an Object-Z view to related design or implementation
views. The ability to use the high-level SPE design
views to structure class specifications helps to solve to
problem of complex, unwieldy specifications noted by
[1], [26], and [20].
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Figure 4. Combining Snart code and Object-Z
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Specification refinement can be carried out using
Object-Z views. For example, a designer may wish to
refine the stack class specification to incorporate the
items attribute state predicate into the push and pop
operation predicates. The operations will then
autonomously respect the state predicate, making
translation into code much simpler [17]. The designer
can modify the method specifications, either in their
separate views, as in figure 4, or in the full class
specification view, as in figure 3. If the refinement is
carried out in separate views, SPE can automatically
update other affected Object-Z views to reflect the
change. Figure 5 shows an example of refining the push

method specification to incorporate the items attribute’s
state predicate. SPE’s Object-Z views also help to
support more complex refinement, such as refining two
or more class specifications, by informing the designer
of inconsistencies between different views of the
specifications.
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Figure 5. State predicate refinement into operation
predicates.

4. Integrated Software Development

Programmers translate formal specifications into
Snart code to produce an implementation. Snart code is
translated from the Object-Z views in a manner similar
to the proposals of [17] for C++ code generation. It is
somewhat easier to generate Snart code, however, as
Snart is a logic programming language. When



generating C++ code, extra code must be used to test
and set the success of invariants, predicates and
operations. This is generally unnecessary with Snart
implementations, as Snart methods are Prolog predicates
and hence may fail, indicating failure to meet the
specified constraints. In addition, as Snart allows Prolog
list handling predicates to be used in the
implementation, code requiring lists can be implemented
in a similar style to formal specifications using list
operators.
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Figure 6. Snart implementation of stack::push.

Figure 6 shows a simple implementation of the
push operation using Snart. First, the items state
predicate is tested by retrieving the current contents of
the stack (a Prolog list), computing its length, and
checking it is less than the maximum allowable length.
If this number is exceeded (ie the state predicate is not
satisfied), the push method fails, indicating to the
calling method that the stack is unable to accept any
further items. If the stack can accept more items, the
items list attribute is updated by prepending the new
item to it. This implementation could be done in a
number of different ways, and still be consistent with
the formal specification. For example, a separate list
object could be used to store the stack items, with push
calling the list prepend and num_items
methods.Typically, code generation from formal
specification tools is done after the formal specification
is complete. However, as with other approaches to
partial system generation, this greatly lessens the ability
of designers to evolve the design and specification of a
software system along with its implementation. This is
because changing a specification means regenerating the
system implementation. This new system will not
include any code refinements made to the previous
system. Object-oriented software development is
particularly amenable to evolutionary development [16].
Thus we feel it is essential that once Object-Z views and
Snart code views have been defined they must be kept

consistent during further evolution of the specification
or the code.

SPE maintains consistency between its analysis,
design and implementation views. Keeping Object-Z
specifications consistent with the design and
implementation views presents new problems. Some
updates to design and implementation views can quite
easily be automatically applied to Object-Z views by
SPE, and vice versa. For example, the addition,
deletion, and renaming of classes, attributes and services
is straightforward to keep consistent, no matter which
kind of view is updated. Adding, modifying, or deleting
method arguments or their types is also straightforward.
Other straightforward translations are described in [17].
This describes techniques for translating from Object-Z
to C++, although many of these are straightforward to
adapt to Snart or SPE's graphical notation.

Figure 7 shows an example of this type of
consistency management for Object-Z views. The items
attribute has been renamed to stack_items, and the
argument to push and pop has been renamed to sitem.
The method deltas, arguments and predicates have all
been updated to reflect these changes. In the same
manner as for other textual views, SPE expands change
descriptions into the header section of the object views
to inform programmers of the changes made in other
views. Programmers can select the changes they want
SPE to apply, and SPE can update the Object-Z
specifications. For example, SPE can automatically
rename the stack_items attribute in the ‘stack-Interface’
view. The other changes serve as documentation for
programmers informing them of specification changes
which may impact on method implementation code. For
example, the programmer can see in the ‘stack::push-
Method’ view that the items attribute should be renamed
to stack_items in the method implementation code.

These changes are relatively easy for SPE to
implement, as the Object-Z specifications or Snart code
can be parsed and the changes incrementally unparsed
into the view text (see [11] for details of this process).
Our Object-Z syntax allows SPE to incrementally parse
a view and locate information needing to be updated.
SPE can then replace, for example, old argument names
with their new names. A similar approach works for
adding or deleting attributes, methods and method
arguments. For example, if the programmer renamed the
items attribute and push and pop methods in the class
interface view, SPE can then automatically rename the
attributes and methods in the specification.
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Figure 7. Simple consistency management between SPE and Object-Z views.

If Snart method code or Object-Z state or operation
predicates are updated, however, consistency
management becomes considerably more difficult. SPE
can no longer automatically update code and
specification views to keep them consistent and user
intervention is required. Similarly, if a new code view
statement is added, the affect on the formal specification
view cannot be automatically deduced. In these cases the
SPE partial consistency approach is taken and change
description annotations are used to inform programmers
of changes to other views. Many items of interest can
be detected when parsing the Object-Z views and code
views. These include changes to the delta list for a
method specification, changes to predicates, and changes
to the set of inter-object operations or method calls
made by a specification or implementation view.

This last kind of change is potentially the most
useful: if SPE detects that an implementation method
calls different methods after being parsed, its likely that
the formal specification view will need to be checked
against the new method code. Similarly, if the formal
specification view is updated and the operations invoked
or arguments to these operations have changed, SPE can

expand change descriptions specifying this new data into
the method implementation view of the operation.

As an example, consider extending the definition of
a stack to include an index attribute, acting as a marker
to a distinguished element of the stack (once again
adapted from [6]). We have updated the formal view in
Figure 8 to specify the new state and behaviour of stack
objects. In this example, the stack specification now
includes the new index attribute and a state invariant for
this attribute. The set_index method is used to modify
this value, and the push and pop operations have been
updated to ensure the index value is updated if items are
pushed onto or removed from the stack.

Figure 8 also illustrates the change descriptions
presented to the programmer in the stack
implementation views. Note that SPE only displays
change descriptions relevant to the implementation view
item. Some can be automatically applied, such as adding
the new index attribute. Others must be implemented by
the programmer; the change descriptions serving to
inform the programmer such updates are required. This
simple example illustrates how SPE supports the
evolution of a formal specification and its
implementation within an integrated environment.
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Figure 9. Updated implementation views.

Figure 9 shows the modifications SPE and the
programmer have made to the class definition and push
method implementation views to accommodate the
change in the formal specification views. The change
descriptions have been removed as they are no longer
required. They are, however, still retained by SPE, and
can be browsed at any time by examining the
modification history of components in a dialog [10].

This approach also works well when refining two or
more class specifications together, or when updating the
specification or implementation of two or more

cooperating classes. For example, consider the example
in figure 10, where the stack items list is now
implemented using a linked list object. Inter-object
operation application is denoted here by the ‘@’
operator, which corresponds to the usual Object-Z *.’
operator for operation application. If the formal
specification is updated to reflect push using list
operations, this can also be reflected as change
descriptions in the push method implementation view.
The programmer must modify the implementation view
manually to achieve consistency between the formal
specification and implementation. Note that if the
implementation view was updated first, appropriate
change descriptions are inserted into the formal
specification view, thus view consistency is bi-
directional between specification and code.

Other changes made to specification views which are
only reflected as change descriptions include: class
history predicates (which use temporal logic); the ‘¢’
(subsequent operation application) and ‘||” (parallel
operation application) operators; and visibility
information (not currently supported by the Snart
language).
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Figure 10. Inter-object operation application and consistency with implementation code.

5. Architecture and Implementation

SPE is implemented as a collection of classes,
specialised from the MViews framework [9, 11].
MViews supports the construction of Integrated
Software Development Environments (ISDEs) by
providing a general model for defining software system
data structures and tool views, with a flexible
mechanism for propagating changes between software
components, views and distinct software development
tools.

In addition to SPE, the authors have developed
several other ISDEs using MViews. MViewsER
provides integrated Entity-Relationship diagrams and
textual relational schema. MViewsER has been
integrated with SPE to produce OOEER, an integrated
environment for OOA/D and EER modelling [12].
MViewsDP provides a graphical drag-and-drop interface
builder for dialog boxes, with the dialog interface and
validation rules being defined in textual views [13].
Cerno-II [8] is a graphical debugger complementing
SPE for visualising a running Snart program. EPE is an
environment for constructing EXPRESS specifications
and corresponding EXPRESS-G diagrams [2]. C-SPE
and C-MViews provide support for collaborative,
integrated software development via synchronous, semi-
synchronous and asynchronous editing [14].

MViews supports the construction of Integrated
Software Development Environments (ISDEs) by
providing a general model for defining software system

data structures and tool views, with a flexible
mechanism for propagating changes between software
components, views and distinct software development
tools. MViews provides much more flexible view
consistency mechanisms than comparable ISDEs, such
as PECAN [22], Dora [21], and FIELD [23].

MViews describes ISDE data as components with
attributes, linked by a variety of relationships. Multiple
views are supported by representing each view as a
graph linked to the base software system graph
structure. Each view is rendered and edited in either a
graphical or textual form. Distinct environment tools
can be interfaced at the view level (as editors), via
external view translators, or multiple base layers may be
connected via inter-view relationships.

When a software or view component is updated, a
change description is generated. This is of the form
UpdateKind (UpdatedComponent, ...UpdateKind-
specific Values...). For example, an attribute
update on Compl of attribute Name is represented as:
update(Comp1, Name, Oldvalue, Newvalue). All basic
graph editing operations generate change descriptions
and pass them to the propagation system. Change
descriptions are propagated to all related components
that are dependent upon the updated component’s state.
Dependents interpret these change descriptions and
possibly modify their own state, producing further
change descriptions. This change description mechanism
supports a diverse range of software development
environment facilities, including semantic attribute
recalculation, multiple views of a component, flexible,



bi-directional textual and graphical view consistency
management, a generic undo/redo mechanism, and
component “modification history” information.

New software components and editing tools are
constructed by reusing abstractions provided by an
object-oriented framework. ISDE developers specialise
MViews classes to define software components, views
and editing tools to produce the new environment. A
persistent object store is used to store component and
view data.

The Object-Z views have been implemented by
defining new view and view component classes, and
extending existing base class and feature (method)
classes. All of the consistency management facilities
(generation, propagation and rendering of change
descriptions) are provided by the MViews framework,
requiring no effort by the environment implementor.
The main work involved in providing these views is in
writing a parser for the Object-Z notation used and in
specifying character substitutions for automatic update
of the Object-Z view code for certain change descriptions
(class/feature rename, attribute retyping, etc.). The
Object-Z view parser is written using Definite Clause
Grammars (DCGs), while the character substitutions use
a regular expression grammar interpreted by MViews.
The extensions to SPE to incorporate integrated Object-
Z views took less than a person week to implement.

6. Conclusions and Future Research

It is well recognised that most software development
lacks rigour, resulting in unreliable products. While
there has been much research into formal specification
methods to solve this problem, a lack of tools make
these formal techniques inaccessible to software
practitioners. Our extensions to SPE to provide
integrated Object-Z views go some way to achieving an
integration of formal specification with less formal
design and implementation.

Our integrated environment supports both analysis,
design and implementation of object-oriented Snart
programs and formal Object-Z specification views for
these programs. All of these views can be refined
together within an integrated environment, with the
environment helping to keep them consistent, either by
automatically updating views or displaying change
descriptions to assist programmers in identifying where
updates are required. The formal specifications are made
more accessible, as they can be browsed and navigated
between using graphical design views, and can even be
displayed in the same view with implementation-level
class interfaces and method implementations.

There are, however, still problems with translation
to and from the abstract formal specifications and the
detailed implementation code. There is a need for more
abstract, user-defined links between specifications and
code. This would allow, for example, one Object-Z
class/operation to be refined to an implementation using
several Snart methods, possibly spread over several

classes. We are extending MViews to support user-
definable links between views, and also adding informal
requirements (textual) views with user defined links to
specifications and code. This provides a finer grained
relationship than does the existing propagation of
changes to textual documentation views.

We are extending SPE’s support for Object-Z views
to provide improved support for automatic update of
Snart implementation views. Providing facilities to
filter out changes which relate to particular methods or
attributes would eliminate spurious change descriptions
which do not affect the formal specification. We plan to
add a facility to SPE to generate LATEX files from the
Object-Z views, which will use the standard oz.sty
LATEX macros to format the Object-Z specifications.
This will allow high-quality documentation to be
generated.

We have recently designed an extension to SPE
which supports the refinement calculus, rather than
Object-Z specifications. Proof obligation views are used
to ensure a refinement is proveably correct.
Programmers choose direct translation between
refinements, where this is possible, or choose different
translations, where there are ambiguities. It is possible
to present the programmer with a list of possible
provably correct alternatives and allow the programmer
to carry out the refinement they require. SPE could be
extended in power by turning more of the latter into
either of the former. SPE’s current support for
specification/implementation consistency is a simple
start with a small set of straightforward translations and
a larger set of vague mappings. The partial consistency
change description approach of MViews makes it
possible to refine this environment incrementally.
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