
In Proceedings of the 2010 Asia-Pacific Software Engineering Conference (APSEC2010) Doctoral Symposium

A High-Level Visual Test Specification Model for DSVL

M. F. Jaafar*, J. Grundy**, J. Hosking***
* Department of Electrical and Computer Engineering,

*** Department of Computer Science,

The University of Auckland, Auckland 1142, New Zealand.

** Department of Computer Science and Software Engineering,

Swinburne University of Technology, Victoria 3122, Australia.

Emails: mjaa001@aucklanduni.ac.nz, jgrundy@swin.edu.au, john@aucklanduni.ac.nz

Abstract

Domain-Specific Visual Languages (DSVLs) have

captured the attention of the programming language

world with their simplicity and high-level

abstraction. This has encouraged many to use

DSVLs as a way to write programs. With little or no

programming knowledge, many end-users can

program tasks that would be beyond them with

conventional programming. Despite their benefits

however, DSVLs need validation, just as

conventional programs do. Tests are typically done

manually and few DSVLs support testing processes

inside the language or tool. Motivated by this, we

propose a high-level visual test specification model

that resides inside DSVL programs. This

specification model enables users to design tests

within their domains, providing a way to validate

their development models.

Keywords: Test Specification Model, Domain-

Specific Visual Language, Testing, Meta-Tool,

Automated Test Generation.

1 Introduction

Domain-specific visual languages or DSVLs are

special types of programming language that use icons

and graphical notations to code programs. With their

simplicity and high-level abstractions, visual languages

have been promoted as better than text-based

programming [ref?? – perhaps Shu?]. The use of

DSVLs in the programming world can be seen in

various fields including the financial, engineering, and

medical domains [1].

The reason behind their success is that they combine the

power and flexibility of programming languages with

the ease of graphical interfaces. They help users who

have little or no understanding of programming to

express their intentions using high-level representation.

Another reason DSVLs have gained momentum is

because of the existence of the DSVL meta-tools, tools

that help to create DSVL tools. Marama [2] and

Microsoft DSL [3] are two examples of these meta-

tools. Using these tools, a developer can create new

DSVLs based on the templates and graphical

representations provided. Even end-users can now

create a DSVL tool and share it with others.

Unfortunately, with all these advantages, the validation

problem remains open. Testing is still being done

manually or with the help of third-party testing tools.

End-users are required to use the saved time (while

creating the programmes) to create tests.

2 Research Question and Motivation

While there is a growing number of large IDE’s for

writing codes, there are fewer for testing [4]; this is also

an issue in the DSVL domain. Current meta-tools are

excellent for supporting the creation of DSVL tools,

and yet, fail to assist the user with the verification and

validation process. Meta-tools like Marama and

Microsoft DSL only support testing to the extent of

text-based testing. It is awkward to use text-based

testing for DSVL programmes where almost everything

is achieved visually. End-users are required to fill in

programme codes and test data manually, which means

that they have to revert to something that they have

moved away from.

Although visualization reduces the complexity in

programming language, it brings new problems. Lack

of attention or misunderstanding of notational

characters may cause unintentional errors [5] or, in this

case, unintended tests. Creating test support for DSVLs

is not an easy task and, in general, it is a huge concept

to start with. DSVLs can be developed for different

domains. Specific DSVLs contain attributes that are not

presented in other DSVLs. Flexibility in a generic

DSVL test support tool is therefore required. Our key

research questions are:

• Can DSVL approaches be used to model tests for

DSVL programs at high-levels of abstraction?

• Can such DSVL test models be used to generate and

run automated test tool scripts?

• What domains can such approaches be applied to?

• Can a DSVL meta-tool be extended to specify and

generate such visual approaches in order to test

programs created by the DSVL tools implemented?

Testing is a tedious task and requires much effort.

Having an IDE that could facilitate testing and its

processes would reduce this effort. The need to have a

test design tool has been clearly documented in [6].

Even, researchers in [7] have discuss combining

requirements engineering and interaction design to help

with development processes. It seems that requirements

engineering have reached a new level and need visual

interaction for assistance. This has motivated us to

explore the possibility of assisting the DSVL program

testing process since most DSVL users lack any deep

programming or testing knowledge.

The main aim of this study is to propose, implement

and validate whether a meta-tool can be extended with

test specification support for DSVLs built using the

meta-tool. We want to extend a current meta-tool’s

potential from just domain-specific language and

application creation to support the DSVL testing

processes.

3 Existing Work

Various methods have been introduced to create tests

automatically, either from program codes [8, 9] or

development documents [10-12]. Testing tools like

JUnit and NUnit focus on textual programming

languages like Java and C#. One example for test

support in the end-user programming domain is the

ability to create tests for spreadsheet applications [13].

Here, the “What you see is what you test” (WYSIWYT)

methodology was used to assist test creation. We

believe this method is relevant in designing a test

specification model for DSVLs, as it is concerned with

creating tests from artefacts that users see (in the DSVL

case, the development model). With this method, end-

users can reuse the development model and specify

tests from it.

In more recent examples, tests have been created based

on user requirements. The first example is where a test

is generated from the viewpoint of an end-user who has

created a security requirement [14]. The system has the

ability to suggest to the end-user if there is any lack in

their system. The same is true in [15], where a model is

created from a document specification and then kept as

abstract as possible to match the textual specification.

Other researchers [16, 17] have derived test cases from

a DSVL. The created test is independent of any

programming language and is transferable across

platforms. We believed that creating test specifications

that are independent of a programming language better

empowers end-users.

As well as creating test cases, we are interested in

exploring visual approaches in test reporting which is

an important part of testing. Test reporting is the

communication point between end-users and the

application created. Existing testing tools provide test

report to a certain extent [8]. A report typically consists

of the number of pass, fail and unexercised tests. Only a

few exceed this stereotype. For instance, [10] describes

a report showing the defects and test paths that were

exercised during the test activity. Users are allowed to

select the path node and see the failed test details too.

Alternatively, [18] illustrates the testing process with

animation. This helps the user to identify improper use

of modelling constructs. A recent study by [19] has

created another approach for visualizing the test

execution. Although this is promising, we believe it

should have more interactive capabilities allowing the

end-users to select and rerun the fail tests with new

data. [20] and [21] suggest that visualization enables the

user to understand faults and how to debug the

programme. These examples indicate that visualization

plays an important role in helping end-users to

understand their application more effectively.

Fig. 1 Overview of testing life cycle in DSVL

Fig. 2 Framework for creating test from DSVL

4 Proposed Solution

The aim of our research is to design a generic high-

level visual test specification meta-tool prototype that

allows users (developer and end-users) to create

Test

Specification

Model

Concrete Test

Case

Development

Model

SUT

Result

specific test specification models and tools. By taking

this approach, we hope to eliminate the need to use

textual testing specifications and scripts. In addition, the

same model can be used to examine execution results

within the development environment.

Figure 1 shows the life cycle of the proposed testing

process for DSVL. The process starts with the DSVL

development model and follows by creating the test

specification model. Then, concrete test cases are

generated and given to the system under test (SUT).

Finally, the test results are gathered and visualized

within the development model.

Illustrated in figure 2 is the framework for creating test

from DSVL. The test should be generated from any

type of DSVL development model combined with a test

specification. These combinations are then fed to a test

generator to create concrete test cases which will be

executed by the SUT. The test execution results

gathered are fed to the test model specification for

result annotations. Within this framework, the test

specification models have two functions:

(i) specifying tests, and

(ii) annotating test results.

5 Contributions

This research focuses on how a DSVL can be used to

support the validation process for other DSVL

programs. The framework will provide guidelines for

creating a test specification model for a DSVL

programme, realised by a DSVL tool developed using a

meta-tool. Listed are the expected contributions from

this research:

• Modelling and visualizing tests using a DSVL

• Generating and executing concrete tests from DSVL

test models

• Extending a DSVL meta-tool to support the testing

process

Currently, we have demonstrated that concrete tests can

be produced from a DSVL test specification model. We

also have confirmed that the test specification model

can be used to annotate test results. Our work is on-

going to identify what types of DSVL are suitable for

use with our proposed test models.

6 Methodology

This research uses the methodology listed below:

• Conduct a literature review on model-based testing,

test generation, and visual test reports to

understand current approaches;

• Design initial test specification model and test

report layout;

• Implement the test specification model functions

inside a meta-tool;

•••• Generate and support execution of the concrete test

cases and test scripts;

• Evaluate the model and accompanying tool using

real world examples and representative end-users

group.

Iterative and incremental development methodologies

are used to prove our framework. This cycle starts with

designing the test specification model, implementing it

in a DSVL meta-tool and then evaluating it in order to

verify the effectiveness of the model. The result is then

used in the next iteration development. A complete test

model specification will be implemented and evaluated

in the last development cycle.

6.1 Designing the Modelling Language

In order to create a test specification model that co-

exists with DSVLs, several criteria need to be

addressed. To help us with this, we have followed the

guidelines provided in [22] and have also conducted a

literature review on past methods used to create tests

from model-based testing and UML notations (as UML

is an example of a DSVL). At the moment, we are

investigating several approaches to identify the best

method for visualizing test execution results.

6.2 Implementing the Design

Marama has been chosen as the meta-tool to help us

prove this framework. It has model generation

capabilities, which allow customizable functions and a

usable GUI. In addition, Marama supports model

integration, which can be used with our test

specification model, in order to identify and implement

the test specification model. Marama is:

(i) used to create DSVLs prototypes,

(ii) used to design and create test specification models,

and

(iii) extended to support test specification creation and

test generation and execution visualisation in a

DSVL meta-tool.

6.3 Evaluating the Model

In order to demonstrate the validation of the proposed

model, we have selected two criteria [23, 24] that are

relevant for end-users. They are briefly explained:

Model representation: This is concerned with the

representation used for defining the test specifications

or contributing towards in the creation of tests.

Usability: This addresses the effort required to learn

and use the test specification language provided. We

also aim to identify the effectiveness of designing test

specifications using the model and tool provided.

We will apply the test specification model with several

case study examples and conduct a user survey. For the

case study, the test specification model should be able

to be used to:

(i) generate an intended test, and

(ii) find errors seeded in the programme.

We will deliberately seed a number of different errors

into the programme. All of these errors will be logic

errors that can occur in programming. We skip syntax

errors because these should be catered for by the

language editor and compiler. We expect that the tests

generated will be able to find all the seeded faults.

We will also undertake a survey on each DSVLs

prototype to obtain end-user feedback on the model and

accompanying tool usability. The survey will ask

questions related to the ease of use and the support

given by the test specification model and accompanying

tool.

The evaluation will be conducted in two stages:

(i) During the initial prototype development. A quick

survey will ask end-users about feasibility and

practicability of the test specification model and

accompanying tool for specifying tests. Results

obtained will be reviewed for a possible significant

research improvement.

(ii) At the last stage of development, when we will fully

validate our proposed meta-tool model.

7 Progress

Until now, we have developed two working prototypes

of DSVLs to evaluate our test model. The first

prototype is MaramaEUC, used for modelling essential

use cases. The second prototype is MaramaFB, created

for drawing function block diagrams design based on

IEC 41699 standard. Both of these DSVL prototypes

were developed using the Marama meta-tool.

7.1 MaramaEUC

Essential use cases or EUCs are an extended version of

use case but from the user view [25]. They are simpler

than UML use case models only requiring users to

specify their intention and the possible system response

at an abstract level. Thus, it tries to capture

requirements without relying on a technology or

implementation bias [26].

Fig. 3 Drawing essential use case with MaramaEUC

Fig. 4 MaramaEUC with Test Specification Model

MaramaEssential is a visual modelling tool for

specifying EUCs. In MaramaEssential, users can create

two main entities; User Tasks and System Responses,

which can be linked with a connection arrow (to show

the flow of process). Figure 3 shows an example of an

essential use case model.

In this prototype, our approach was to specify tests with

a small set of icons that extend the DSVL

“programming” environment and can be used to

explicitly annotate the DSVL programme with test

specification information. Figure 4 presents the

extended version of the essential use case with a test

specification model shown alongside (fig. 3).

In figure 4, test specification is conducted by linking a

test case icon to the essential use case icon. Test oracles

(input and expected output) are specified inside the test

case icon. The collection of test cases is placed inside a

test suite icon to organize the test. Finally, concrete test

cases are generated based on the chosen template. At

this stage, JUnit is our main test template, as our initial

SUT was implemented using Java. For a complete list

of test specification models and examples of generated

concrete tests, please refer to the Appendix.

We have mentioned test visualization in our proposed

solution. Hence, in the MaramaEUCTest prototype, the

test case icon (besides functioning as test case) also

functions as the test result reporter. The test case icon

changes colour from yellow (the default colour) to

green (for a passed test) or red (for a failed test). By

doing this, we help to reduce the need to refer to the

text-based test report. Furthermore, we have reused the

test specification model to facilitate results reporting.

7.2 MaramaFB

Fig. 5 Drawing function block diagram with MaramaFB

A function block diagram describes functions between

input and output variables [27] and is used mainly to

describe the programming logic control inside an

embedded application. MaramaFB is our version of a

function block diagram tool created using Marama.

In MaramaFB, users can draw a block diagram using a

provided set of icons, which can be divided into two

categories;

(i) Interface icons – this represent the function block

components. They consist of a Block icon

(representing a basic block), an Event icon

(representing an event), and a Data icon

(representing an event variable).

(ii) Execution Control Chart (ECC) icons – these

represent the logic control inside a basic block. This

consists of a State icon and a Transition link.

Figure 5 shows an example of a function block diagram

model. MaramaFB was chosen as the second prototype

since it has different characteristics from the first

prototype, MaramaEUC. MaramaEUC is a high-level

abstraction model that works with user requirements.

MaramaFB works with visual languages that directly

specify control logic programming. With different types

of domain-specific language, we will be able to observe

if the test specification model is applicable to other

domains.

Fig. 6 MaramaFB with Test Specification Model

The same test specification model was used but with

some modification to the test oracle. We need to

explore the possibility of having more than one input

(or expected output) in the test (this was not present in

the first prototype). Figure 6 shows MaramaFB with its

test specification model.

Another improvement that we are implementing in the

second prototype is the effect of changing the test suite

icon colour according to the number of test case results.

At this point of development, the test suite icon does

not contribute anything to the visualization test result.

We believe the test suite icon could be extended into

something similar to the test case icon. The idea here is

to use a simple colour calculation method and change

the icon colour based on the number of test cases

passed or failed. If the number of test passes is more

than the number of test failed, it would have a colour

that leans more towards green. It is vice versa if the

number of failed test is more.

Currently, we are working on generating and proving

that concrete tests can be produced from function block

diagrams and test specification models. The process is

however more complicated, mainly because each

diagram contains more than one input and expected

output. To solve this problem, a model checker is added

to the test case generator. Model checking is a

technique for verifying models based on given formulae

specification. The results from the model checker are

fed to the test generator and used to produce concrete

test cases.

8 Future Directions

We will continue to implement and improve our

proposed test specification model on other types of

DSVL domains and are keen to explore the possibility

of using our test specification model on web-based

DSVLs (or embed it inside an existing DSVL). We plan

to embed it into MaramaMTE (Middleware Testing

Environment) which is a tool for modeling complex

software architectures and generating performance test

beds [28]. This will prove whether the test specification

model can be used on other testing tool or not.

The current prototype uses our built-in test generators.

Although the test generator works fine for now, we

would like to see whether the test specification model

can be used effectively with other test case generator.

To achieve this, we are planning to create an export

function that converts the test specification model into

an XML data file. XML is chosen because most of the

current testing tools share data (or specifications) using

this format.

As mention earlier, an evaluation will be carried out to

examine the possibility of using the test specification

model to assists users in creating tests. We will examine

both users’ opinions on the model and the tool ability to

create concrete tests from given specifications. The

results will help us to design a generalized high-level

visual test specification model meta-tool.

Finally, we would like to explore the prospect of

modelling and generating DSVL test support from the

DSVL meta-tool. By doing this, it can increased and

broaden the scope DSVL meta-tool from just

supporting the creation of DSVL to validating its

content. This will definitely make DSVLs a pure visual

programming language.

9 Conclusions

This research aims to create a high-level visual test

specification model that can be used by DSVLs’ end-

users to specify and create tests alongside their DSVL

programs. To achieve this, the past model-based

approaches to test case specification, generation and

visualization were analysed and their strengths and

weaknesses are explored. As a result, we have

developed two prototypes to help us understand the

challenges in developing a visual test annotation. Up to

now, the progress shows that this is achievable and has

the potential to succeed.

Appendix

Table 1 shows the test specification model and its

functions for MaramaEUC.

Table 1 Test Specification Model

Shapes Descriptions

The test suite shape

represents test suite in

testing. It is a place to

group test cases together.

It must contain at least one

test case.

The test case shape

represents test case in

testing. It is place inside

test suite to symbolize that

the test belongs to the test

suite. The shape color can

change depends on test

execution result.

Test case container shape

is equivalent to test case

shape. The different is that

it can be used as container

for input and expected

output.

Input shape represents the

input value for testing. It

can take any kind of data.

User needs to specify the

value and its data type.

Same like input shape,

expected shape represents

the expected output value

for testing.

Fig. 7 Concrete test for Case1

These are the examples of the concrete test cases and

test suite created from our built-in test generator, based

on the test specification model in Figure 3. Figure 7 and

8 show the generated concrete test cases.

Fig. 8 Concrete test for Case2

Fig. 9 Concrete test suite for Case1and Case2

Figure 9 shows the concrete test suites generated.

Acknowledgments

The author would like to thank his supervisors,

Professors John Grundy and John Hosking, for their

guidance and contributions to the research. In addition,

special thanks to Dr Partha Roop for his advice and

comment. We would like to extend our gratitude to the

Malaysian Ministry of Higher Education, Universiti

Putra Malaysia, the University of Auckland and FRST

for funding the research.

References

[1] W. Hui, "Grammar-driven generation of domain-

specific language tools," in Companion to the 21st

ACM SIGPLAN symposium on Object-oriented

programming systems, languages, and

applications Portland, Oregon, USA: ACM, 2006.

[2] J. Grundy and J. Hosking, "Supporting Generic

Sketching-Based Input of Diagrams in a Domain-

Specific Visual Language Meta-Tool," in Software

Engineering, 2007. ICSE 2007. 29th International

Conference on, 2007, pp. 282-291.

[3] S. Cook, G. Jones, S. Kent, and A. C. Wills,

Domain-Specific Development with Visual Studio

DSL Tools (Microsoft .NET Development Series).

Boston: Pearson Education, Inc., 2007.

[4] B. Haugset and G. K. Hanssen, "Automated

Acceptance Testing: A Literature Review and an

Industrial Case Study," in Conference on Agile,

2008. AGILE '08., 2008, pp. 27-38.

[5] S. Morris and G. Spanoudakis, "UML: an

evaluation of the visual syntax of the language," in

System Sciences, 2001. Proceedings of the 34th

Annual Hawaii International Conference on, 2001,

p. 10 pp.

[6] A. Hartman, M. Katara, and S. Olvovsky,

"Choosing a Test Modeling Language: A Survey,"

in Hardware and Software, Verification and

Testing, 2007, pp. 204-218.

[7] H. Kaindl, L. Constantine, O. Pastor, A. Sutcliffe,

and D. Zowghi, "How to Combine Requirements

Engineering and Interaction Design?," in

International Requirements Engineering, 2008. RE

'08. 16th IEEE, 2008, pp. 299-301.

[8] A. J. S. Mills, "JUnit Testing Utility Tutorial,"

2005, p. 6.

[9] C. Poole, "NUnit Cookbook." vol. 2009, 2005.

[10] B. Hasling, H. Goetz, and K. Beetz, "Model Based

Testing of System Requirements using UML Use

Case Models," in Software Testing, Verification,

and Validation, 2008 1st International Conference

on, 2008, pp. 367-376.

[11] D. Arnold, J.-P. Corriveau, and W. Shi, "Scenario-

Based Validation: Beyond the User Requirements

Notation," in 21st Australian Software

Engineering Conference (ASWEC 2010)

Auckland, New Zealand: Computer Society Press,

2010, p. 75.

[12] P. Baker and C. Jervis, "Early UML Model Testing

using TTCN-3 and the UML Testing Profile," in

Testing: Academic and Industrial Conference

Practice and Research Techniques - MUTATION,

2007. TAICPART-MUTATION 2007, 2007, pp. 47-

54.

[13] M. Burnett, A. Sheretov, R. Bing, and G.

Rothermel, "Testing homogeneous spreadsheet

grids with the "what you see is what you test"

methodology," Software Engineering, IEEE

Transactions on, vol. 28, pp. 576-594, 2002.

[14] J. Romero-Mariona, "Secure and Usable

Requirements Engineering," in IEEE/ACM

International Conference on Automated Software

Engineering Auckland, New Zealand: IEEE, 2009,

p. 4.

[15] J. Ernits, M. Kaaramees, K. Raiend, and A. Kull,

"Requirements-driven model-based testing of the

IP multimedia subsystem," in Electronics

Conference, 2008. BEC 2008. 11th International

Biennial Baltic, 2008, pp. 203-206.

[16] C. Yuhong, J. Grundy, and J. Hosking,

"Experiences integrating and scaling a

performance test bed generator with an open

source CASE tool," in Automated Software

Engineering, 2004. Proceedings. 19th

International Conference on, 2004, pp. 36-45.

[17] B. Ngoc Bao and J. Ross, "DSLBench: applying

DSL in benchmark generation," in Proceedings of

the 1st workshop on MOdel Driven Development

for Middleware (MODDM '06) Melbourne,

Australia: ACM, 2006.

[18] R. B. France, S. Ghosh, T. Dinh-Trong, and A.

Solberg, "Model-driven development using UML

2.0: promises and pitfalls," Computer, vol. 39, pp.

59-66, 2006.

[19] J. Grundy, Y. Cai, and A. Liu, "SoftArch/MTE:

Generating Distributed System Test-beds from

High-level Software Architecture Descriptions,"

Automated Software Engineering, vol. 12, pp. 5-39

pp., January, 2005 2005.

[20] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S.

Prabhakararao, M. Fisher, II, and M. Main, "End-

user software visualizations for fault localization,"

in Proceedings of the 2003 ACM symposium on

Software visualization San Diego, California:

ACM, 2003.

[21] A. J. James, H. Mary Jean, and S. John,

"Visualization of test information to assist fault

localization," in Proceedings of the 24th

International Conference on Software Engineering

Orlando, Florida: ACM, 2002.

[22] H. Alan, K. Mika, and P. Amit, "Domain specific

approaches to software test automation," in

Proceedings of the the 6th joint meeting of the

European software engineering conference and the

ACM SIGSOFT symposium on The foundations of

software engineering Dubrovnik, Croatia: ACM,

2007.

[23] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich,

"Model-based testing in industry: a case study with

two MBT tools," in Proceedings of the 5th

Workshop on Automation of Software Test Cape

Town, South Africa: ACM, 2010.

[24] A. Sinha and C. Smidts, "HOTTest: A model-

based test design technique for enhanced testing of

domain-specific applications," ACM Trans. Softw.

Eng. Methodol., vol. 15, pp. 242-278, 2006.

[25] R. Biddle, J. Noble, and E. Tempero, "Essential

use cases and responsibility in object-oriented

development," in Proceedings of the twenty-fifth

Australasian conference on Computer science -

Volume 4 Melbourne, Victoria, Australia:

Australian Computer Society, Inc., 2002.

[26] L. L. Constantine and L. A. D. Lockwood, "Usage-

centered engineering for Web applications,"

Software, IEEE, vol. 19, pp. 42-50, 2002.

[27] M. Karaila and T. Systa, " Applying Template

Meta-Programming Techniques for a Domain-

Specific Visual Language--An Industrial

Experience Report," in 29th International

Conference on Software Engineering, 2007. ICSE

2007., Minneapolis, MN, USA, 2007, pp. 571-580.

[28] C. Yuhong, G. John, and H. John, "Synthesizing

client load models for performance engineering via

web crawling," in Proceedings of the twenty-

second IEEE/ACM international conference on

Automated software engineering Atlanta, Georgia,

USA: ACM, 2007.

