
In Proceedings of APCHI’98, July 15-17, Japan, IEEE CS Press.

 © 1998 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
 component of this work in other works must be obtained from the IEEE.

Human Interaction Issues for User-configurable Collaborative Editing
Components

John Grundy

Department of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

Abstract

The ability to synchronously and asynchronously edit
work artefacts has become very important in many editing
tools. However, most tools usually only provide one kind
of collaborative editing "level", or provide incompatible
levels of collaborative editing. We describe our recent work
in adding flexible, user-configurable collaborative editing
facilities to component-based design environments, and
focuses on the human interaction issues in such systems.
We also briefly describe the engineering of such tools
using a component-based approach, which allows user-
configurable collaborative editing capabilities to be added
to component-based tools without modifying the tool or
collaboration component implementations.

1. Introduction

Users of many editing tools require facilities to support
collaborative editing i.e. multi-user collaboration on the
development of work artefacts. This is common when
using tools such as CASE (Computer-Aided Software
Engineering) tools, CAD (Computer-Aided Design) tools,
document editors, and drawing packages. The "level" of
collaborative editing supported by the tools is often either
synchronous i.e. "What You See Is What I See", where as
one user changes an artefact other users see the exact same
changes in "real time", or asynchronous, where users
independently modify alternative versions of an artefact,
then merge their changes at a later date. Examples of
synchronous collaborative editing tools include CoolTalk
[15], MS NetMeeting [13], and GroupKit [16].
Asynchronous collaborative work is supported by BSCW
[2], wOrlds [3] and Mjølner [12]. Some systems provide
integrated support for both levels of collaboration, for
example TeamRooms [17], Oz [1], SPADE/ImagineDesk
[4], and W4 [6]. However, most such systems completely
separate support for different editing modes, and only a
few, such as SEPIA [19], allow the same work artefact to
be synchronously or asynchronous edited with users able
to change mode of collaboration at will.

We have found in our work developing CAD, CASE
and other design tools that a range of collaborative editing
facilities are generally required by users, and users should
be able to seamlessly move between levels of collaborative
editing. For example, consider the JComposer OO CASE
tool we have developed, a view (diagram) from which is
shown in Figure 1 [7, 9]. This is an example of specifying
an ER modeller meta-model, and an ER editing tool will
be generated from this model (and other views specifying
different aspects of the tool). Users of JComposer views
often want to independently (asynchronously) edit versions
of the same view, then have one user merge the changes to
produce a new OO diagram. Sometimes users want to
synchronously edit the views and discuss changes via audio
and/or text chat synchronous communication. At other
times users want to be informed of changes made to
another version of a view by other developers, but retain
control over applying them to his/her version of the view
incrementally. At other times, users simply want to be
informed when a particular change or sequence of changes
are made by another user to a shared view.

From a tool architecture perspective, such collaborative
editing capabilities are useful in many JComposer-like
environments. However, groupware capabilities are usually
hard-coded into most systems, with the decision to support
collaborative work having to be made early in the system's
development lifecycle [10]. Some proposals for pluggable,
reusable groupware facilities, for example using CORBA-
style remote object management, have been made [11, 5],
or using custom architectures [18], but usually such
proposals don't support the degree of user-configurable,
flexible facilities we desire. We have developed pluggable
components which provide the kind of groupware editing
capabilities described above, and can be reused in different
environments which have a component-based software
architecture, like that of JComposer. We have reused these
groupware components in an ER modelling tool and a
process modelling environment, as well as in JComposer,
without having to change the implementation of any of
these environments or the groupware components
themselves.

Figure 1. Example view from JComposer.

2. Specifying Collaboration Levels

The groupware components we have plugged into
JComposer use a "Collaboration" menu item to allow
users to configure the kind of collaborative editing for a
view. We chose this approach as it allows users to easily
configure collaboration with others from one place, and

provides some basic awareness capabilities (informing the
user who is registered for collaboration and at what level).
Figure 2 (a) shows user "John" who is editing the ER
modeller specification from Figure 1 in JComposer. John
has specified two people he wants to collaboratively edit
this view with via the "Add Collaborator" item, and is
viewing the collaboration level of these people. John can
change the level by selecting a "level" from the range 0
(none - i.e. remove the collaborator) to 5 (fully
synchronous editing). John (or one of his collaborators)
can change the collaboration level with a particular user at
any, as required, and when John changes the collaboration
level for this view for a specified user, the collaboration
level for the user's view with "John" is set to the same
level. Different views can be collaboratively edited at
different levels as desired.

At times users want changes made by other users
automatically processed. This is particularly true in the
"notify" level (2), where changes made to a view are sent
to collaborators, but nothing explicitly is done with them
(vs. presentation, level 3, where the changes are presented
in a dialogue box to other users). Tools built with the
same architecture as JComposer provide an event handling
language that allows users to configure such behaviour
(see [8] for details of this language). In Figure 2 (b) "John"
has specified that if any changes made by "Mark" to the
view component named "BaseEntity" are received, John
should be notified by a message. The Visualisation
diagram where this has been specified shows running
components implementing the "ERD Specification" view
in JComposer (e.g. component number 55 is the ERD
Specification diagram component).

(a) Configuring collaboration levels for views. (b) Configuring handling of broadcast changes.

Figure 2. Configuring the collaboration "level" with other and the handling of broadcast changes.

3. Interface Issues During Editing

In this section we illustrate the different levels
supported by our collaborative editing components, and
their user interface characteristics. We have at this stage
opted for simple interface widgets and group awareness
capabilities, all of which could be extended in the future.

3.1. Level 1 - Asynchronous Editing

Asynchronous editing is illustrated in Figure 3, where
"John" has made some changes to a view in JComposer
named "ERD View Spec #1" (a). The two bottom items in
the Collaboration menu allow John to "send" the changes
he has made to other users, or to send the whole view
specification itself. John has sent the view using the "Send
Component" menu to user "Mark", then sent changes
made to this view since the view was sent to Mark. These
changes are being presented to Mark in a dialogue (b).
Mark can choose to have all the changes made to his
version of this view, by selecting them all then clicking
the "redo" button. Or he can selectively apply some of the
changes only to his view, merging in a subset of the
changes made by John. He can also make other changes
manually to the view, then send these to John with his
"Send Changes" collaboration menu item. Any changes
which can't be made (e.g. Mark has deleted a view
component John has edited) are shown by Marked
"invalid". Users can then discuss how to handle such view
merging inconsistencies.

Note changes are not broadcast to another user's
environment unless the sender explicitly requests this via

the Send Changes item. We chose this approach to give
the person making changes control over their distribution,
but could extend our collaborative editing components to
allow e.g. Mark to request all new changes from John's
view, without having to ask John to send them via
separate email, chat or audio communication channels.

3.2. Level 2 - Notification of Changes

Changes made to a view are broadcast to another user's
view, where they are then broadcast to any "listeners" of
the view i.e. other components interested in changes made
to the view. The changes are not presented to the user or
actioned in any way, but filter/action event handlers, like
the one shown in Figure 2 (a), may have been specified by
the other user to detect and act on the change. Changes
broadcast from another users environment are "tagged"
with the other user's name, distinguishing them from the
user’s changes.

3.3. Level 3 - Presenting Changes

Presenting changes is a mode of collaborative editing
"between" asynchronous and synchronous editing. Figure 4
shows John and Mark now editing the ERD View Spec #1
view, with changes made by other collaborators presented
in a dialogue box, annotated with the name of the other
user who made the change. The user can select particular
changes or sets of changes and have them performed on
his/her view by clicking on the "redo" button. Clicking on
the "undo" button will reverse the changes if they turn out
to be inappropriate.

(a) John's view. (b) Mark's view.

Figure 3. Asynchronous editing of a JComposer view.

(a) John's view. (b). Mark's view.

Figure 4. Presenting changes as they are made by other users.

When a change is applied to the user's view in this
manner, the icon affected by the change is coloured to
match the colour associated with the collaborator in the
Collaboration menu. This assists users to identify parts of
a view last modified by collaborator actions.

This mode of collaboration we have found very useful
when a "looser" form of collaboration is required by
collaborators, and when version merging is to be
performed by more than one user at the same time. It has
advantages over asynchronous editing in that users are kept
aware of changes made by other collaborators as they
occur. It has advantages over synchronous editing in that
users' views are not automatically changed when a
collaborator changes the view, allowing users to
"incrementally" merge changes into a view.

3.4. Levels 4 and 5 - Synchronous Editing

These levels of editing provide the typical "what you
see is what I see" mode of editing common in many real-
time groupware applications [16]. Actioning changes
(level 4) is similar to presentation (level 3) except instead
of storing and presenting received changes in a dialogue
box, the changes are immediately applied to the receiving
user(s) view. In this mode of operation, no locking of
view components is used, meaning two (or more)
collaborators can edit the same view artefact at the same
time. This is resolved when the competing changes are
received by other collaborators, and one is immediately
superseded by another in a non-deterministic fashion.
Changes are still stored in a dialogue box so any
simultaneous edits can be reviewed and discussed further.
This mode of editing works well when complemented by
audio and/or text chat communication.

Level 5 (synchronous) editing, illustrated in Figure 5
adds locking of view components to ensure no
simultaneous edits occur. Whenever a user attempts to
modify a view component, a lock request is sent to other
collaborators in "synchronous" edit mode on this view. If
the view component is unlocked, all users environments
allow the current user to edit it. If any other user has
requested a lock simultaneously, all requests are rejected
with the affected icon coloured red, and users must attempt
to edit the component again. In both actioning and
synchronous editing modes, affected icons are coloured, to
indicate the last person to change the icon. Users can
review the view change history, with name annotations on
changes, as shown in Figure 5.

Mixed-levels of Editing Views

The different modes of collaborative editing we have
illustrated above can be used on different views e.g. one
view edited synchronously while another in presentation
mode. In addition, different users can be editing the same
view using different levels of collaboration, for example
John and Mark at the synchronous level, but Mark and
Steve editing the view in asynchronous or presentation
levels. When Mark merges any changes from Steve, these
are synchronously sent to and applied by John's view, due
to the level of collaborative editing between Mark and
John. John and Mark may then decide to move to a
different level of editing for the view, or John to add Steve
as a collaborator. This can be done simply by using the
collaboration menu to change the mode of operation. This
ability to easily mix "levels" of collaborative editing has
proved to be very useful in design environments like
JComposer.

(a). John's view. (b). Mark's view.

Figure 5. Synchronous editing of JComposer views.

4. A Supporting Software Architecture

We did not want to make large-scale modifications to
retro-fit collaborative facilities onto JComposer, or other
design environments we have developed and are
developing. Instead, as JComposer and our other design
environments use a component-based software architecture,
we built reusable, pluggable software components to
embody these facilities. JComposer was developed using
the JViews component-based software architecture [7], a
specialisation of the Java Beans componentware API of
Java 1.1 [14]. Software components are parts of software
systems which can be readily "plugged" into different
software applications, often when the software is actually
running and in use, rather than being software libraries or
class frameworks which are chosen at compile-time.
Advantages of components-based approaches to building
software is that they allow software to be incrementally
extended and upgraded, and often allow end-users of
software to reconfigure their systems using third-party
reusable components.

Figure 7 shows the architecture of our JComposer
environment, and the groupware components we added to
JComposer to support the flexible collaborative editing
facilities described in the previous section. The grey-
coloured items are existing JComposer components and
links [7], the black components and links are those we
have added to support collaborative view editing. For each
view which is to be collaboratively edited, a
"Collaborative Menu" component is attached to the view
component, and is sent changes from the view component
and the view's "version record" component (where changes
made to the view are stored). The Collaborative Menu
component then sends changes to other collaborators'
"collaboration server", as required.

EntityIcon

BaseEntity

Display in
window…

RoleIcon

LinkGlue

Repository

View

…

BaseRole

BaseRel…

Version Record

Other views…

Store
changes…

Listen before/after
changes made…

"Collaborative Menu"

Collaborator
Clients

Send changes
To collaborators

Other user's
Collaboration

serveres

User's Collaboration
"Server"

Received changes and
collaboration requests

Present changes Import changes

present & import
changes

Figure 6. Groupware components in JComposer.

Each JComposer environment for a different user has
its own "collaboration server", which responds to
collaborative edits and collaboration requests by forwarding
these to the appropriate view's collaboration menu
component for actioning. This approach is used to provide
robust, efficient propagation of changes (no central server
is used, but rather selective point-to-point(s) broadcasting).
The collaboration menu component for each view has a
"present changes" and an "import changes" version record
instance used to support asynchronous and presentation
collaboration levels. Notify level changes are supported by
the collaboration menu sending received changes to any
user-defined component listening to it. Actioning and
synchronous editing are supported by the collaboration
menu actioning received changes, or broadcasting a lock
message to collaborators then actioning received changes.

This component-based approach to adding collaborative
editing support to JComposer (and other JViews-based
environments) is possible due to the JViews approach of
broadcasting change description objects to linked
components before and after the change has been actioned.
We also utilise JViews component persistency
mechanisms to serialise view and view change description
objects for transmission via socket connections to support

the broadcasting of changes and view descriptions. We
have plugged these collaborative editing facilities into the
JComposer OO design tool, an ER modeller, and a
graphical process modelling tool. Neither these existing
tools nor our collaborative editing components needed any
modification to achieve this.

Difficulties in adopting this approach involved
providing a locking mechanism for synchronous editing
and for handling simultaneous edits for the action changes
level of collaboration. We also encountered limitations in
the presentation of change descriptions and the amount of
highlighting of JComposer components that could be done
without changing existing code. An unsolved issue occurs
when a user is collaboratively editing different views in
JViews-based environments using our collaborative
facilities, but different levels of collaboration are used with
different collaborators for these views. Better awareness
indicating which components in a view are being editing
in other views would be useful, but it is unclear just how
this should be indicated.

5. Summary

We have described flexible, user configurable
collaborative editing facilities that have been added in a
seamless fashion to an existing OO design tool. These
allow users to collaboratively edit using asynchronous,
semi-synchronous and synchronous collaboration, and at
any time to be able to change collaboration level, add new
collaborators or remove collaborators. Multiple views can
be simultaneously edited using different collaboration
levels and collaborators. We have utilised a component-
based approach to adding these facilities to design tools,
which necessitates no modification to these tools. Our
collaborative editing support components can themselves
be upgraded and reused in diverse environments to support
a flexible range of collaborative editing needs.

References

[1] Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S.,
Skopp, P.D. amd Tong, A.Z., and Valetto, G.,
“Integrating Groupware and Process Technologies in
the Oz Environment,” in Proc. 9th International
Software Process Workshop, Ghezzi, C., IEEE CS
Press, Airlie, VA, October 1994, pp. 114-116.

[2] Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J.,
“Supporting collaborative information sharing with
the World-Wide Web: The BSCW Shared Workspace
system,” in Proc. of the 4th International WWW
Conference, Boston, MA, December 1995.

[3] Bogia, D.P. and Kaplan, S.M., “Flexibility and
Control for Dynamic Workflows in the wOrlds
Environment,” in Proc. of the Conference on
Organisational Computing Systems, ACM Press,
Milpitas, CA, November 1995.

[4] Di Nitto, E. and Fuggetta, A., “Integrating process
technology and CSCW,” in Proc. of 4th European
Workshop on Software Process Technology, LNCS,
Springer-Verlag, Leiden, The Nederlands, April 1995.

[5] Emmerich, W., “An Architecture for Viewpoint
Environments Based on OMG/CORBA,” in Proc. of
Viewpoints’96 ACM Press, 1996, pp. 207-211.

[6] Gianoutsos, S. and Grundy, J., “Collaborative work
with the World Wide Web: adding CSCW support to a
Web browser,” in Proc. Oz-CSCW'96, University of
Queensland, Australia, August 1996, pp. 14-21.

[7] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A
Java-based toolkit for the construction of multi-view
editing systems,” in Proc. 2nd Component Users
Conference, Munich, Germany, July 14-18 1997.

[8] Grundy, J.C. and Hosking, J.G., “Serendipity:
integrated environment support for process modelling,
enactment and work coordination,” A u t o m a t e d
Software Engineering, vol. 5, no. 1.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Support for end user specification of workflows, work
coordination and tool integration,” Journal of End User
Computing, vol. 10, no. 2.

[10] Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F.,
and Wilner, W., “The Rendezvous Architecture and
Language for Constructing Multi-User Applications,”
ACM Transactions on Computer-Human Interaction,
vol. 1, no. 2, 81-125, June 1994.

[11] ter Hofte, H., Van de Lugt, H., and Bakker, H., “A
CORBA Platform for Component Groupware,” in Proc.
OZCHI96 Workshop on the Next Generation of CSCW
Systems, November 1996.

[12] Magnusson, B., Asklund, U., and Minör, S., “Fine-
grained Revision Control for Collaborative Software
Development ,” in Proc. of the1993 ACM SIGSOFT
Conference on Foundations of Software Engineering,
Los Angeles CA, December 1993, pp. 7-10.

[13] Microsoft, Inc, Microsoft NetMeeting 2.1, 1998. See:
http://www.microsoft.com/netmeeting/.

[14] Microsystems, S., “Java Beans 1.0 Specification,”
1997. See: http://www.javasoft.com/

[15] Netscape, Inc, CoolTalk for Netscape Navigator, 1996.
http://home.netscape.com/comprod/products/.

[16] Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit,” ACM
Transactions on Computer-Human Interaction, vol. 3,
no. 1, 1-37, March 1996.

[17] Roseman, M. and Greenberg, S., “A Tour of
Teamrooms,” in Video Proc. of ACM SIGCHI'97, ACM
Press, Atlanta, Georgia, March 22-27 1997.

[18] Roseman, M. and Greenberg, S., “Simplifying
Component Development in an Integrated Groupware
Environment. ,” in Proc. of the ACM UIST'97
Conference, ACM Press, 1997.

[19] Streitz, S., Haake, J.M., Hannemann, J., Lemke, A.,
Schuler, W., Schütt, H., Thüring, M. SEPIA: A
Cooperative Hypermedia Authoring Environment,
Proc. 4th ACM Conference on Hypertext, Italy,
November 30 - December 4, 1992.

