
1

C H A P T E R 2 4

Developing Software Components with Aspects:

Some Issues and Experiences

John Grundy and John Hosking

Engineering software components is a challenging task. Existing ap-

proaches to component-based software development are for the most part

focused on functional decomposition. All have the weakness of failing to

take into account the impact of crosscutting concerns on components. In this

chapter, we outline aspect oriented component engineering. Our approach

uses aspects to help engineer better software components. Motivating our

work with a simple example of a distributed system, we describe how speci-

2 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

fications and designs can use aspects to provide additional information about

components and how aspects can be used to help implement more decoupled

software components. We show how encoded aspect information can be

used at run-time to support component plug-and-play, retrieval, and valida-

tion. We compare and contrast our approach to other component engineering

methods and aspect-oriented software development techniques.

24.1. INTRODUCTION

Component-based systems development is the composition of systems from

parts, called software components. Components encapsulate data and func-

tions. They often provide events, are self-describing, and many can be dy-

namically “plugged and played” into running applications [1,7, 36]. In build-

ing systems, we often use a mixture of newly built and existing COTS (Com-

mercial Off-The-Shelf) components. For the later, we usually have no access

to source code.

24.1. Introduction

 3

Engineering software components can be quite a challenging task.

Components must be identified and their requirements specified. Component

interaction is crucial, so both provided and required component behavior

needs identification and documentation [32, 18]. Ideally, components are

implemented using a technology that supports a high degree of component

reuse. Users of components may want to be able to understand and correctly

plug-in components at run-time.

We have found problems with most component design methods and

implementation technologies. In our experience, they do not produce com-

ponents with sufficiently flexible interfaces, run-time adaptability, or good-

enough documentation [11, 12]. A major weakness of current methodology

is the inability to describe functional and non-functional characteristics and

inter-relationships of the components.

In the past, we used aspects (crosscutting concerns) at the requirements

level to improve the description of our components [10]. When this proved

successful, we applied the concept to component design and implementation

[11, 12]. This involves using aspects to better describe the impact of cross-

4 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

cutting concerns on components at the design level. We have made use of

these aspect-oriented component designs to help build components with

more reusable and adaptable functionality. We have also used encodings of

aspects associated with software components at run-time [12]. This uses as-

pect information to support dynamic component adaptation, introspection,

indexing and retrieval, and validation.

Most aspect-oriented software development uses aspects in similar

ways to the way we do. Aspects are used to identify and codify crosscutting

concerns on objects. Similarly, some reflective systems use aspect informa-

tion to support run-time adaptation [25, 30]. Most aspect programming sys-

tems weave code into join-points of programs [20]. Some design approaches

use aspects (or “viewpoints” or “hyper-slices”) to provide multiple perspec-

tives ont the object designs [8, 16, 18, 37].

In this chapter, we provide a summary of our work applying aspects to

the development of software components. We refer readers interested in a

more comprehensive discussion of our work to our previously published pa-

pers [10, 11, 12, 14].

24.2. Motivation

 5

24.2. MOTIVATION

Consider a collaborative travel planning application that is to be used by cus-

tomers and travel agents to make travel bookings [12]. Examples of the user

interfaces provided by such a system are illustrated in Figure 24-1 (a). Some

of the software components composed to form such an application are illus-

trated in Figure 24-1 (b).

Thick Clients

Tree Viewer

Messaging

Map

Thin Clients: Web
browsers/ PDAs/
Mobile Phones…

Middleware Components

Web Servers

Application Servers

Database Comps

Travel Plan

Search

Itinerary Manager Message Server

Items Users Security

Figure 24-1 Example component-based application.

6 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

We built this component-based system by composing a set of software com-

ponents that provide the necessary facilities. These include travel itinerary

management, customer and staff data management, system integration with

remote booking systems, and various user interfaces. Some components,

such as the map visualization, database, and email server are quite general

and highly reusable. Others components, such as the travel itinerary man-

ager, travel item manager, travel booking interfaces and integration compo-

nents, are much more domain-specific.

When building such an application, a developer needs to identify and

assemble many components. These have usually been built using “functional

decomposition”: organizing system data and functions into components

based on the vertical piece(s) of system functionality they support. However,

many systemic features of an application end up crosscutting many of the

different components in the system [10, 20]. For example, user interfaces,

data persistency, data distribution, security management, and resource utili-

zation all have pandemic impact. Some components provide such functional-

24.2. Motivation

 7

ities; others require them [3]. We use the term “aspects” to describe these

crosscutting, horizontally impacting concerns.

To illustrate how systemic aspects affect components, Figure 24-2

shows three components from the travel planner system: Tree viewer,

Travel itinerary and Database. Aspects User Interface, Persistency, Collabo-

rative Work and Transactions crosscut these components’ methods and state.

The Tree viewer provides user interface and collaborative work support. The

Travel Itinerary component requires user interface and persistency support in

order to work, but provides data to render and store itinerary items. A Data-

base component provides data storage and transaction coordination support

but requires transaction coordination. The three components must work to-

gether to provide the travel plan viewing, business process and data man-

agement required by the system. Note that several aspects affect each of

these components in different ways.

8 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

T ravel Itinerary C om ponent
-Insert/U pdate/D elete Travel Item s
-C ollection of Travel item s
-Events w hen changed
…

D atabase C om ponent
-Select/Insert/U pdate/D elete
-Transactions

T ree V iew er C om ponent
-Tree display/editing
-Tree data structure
-Lock/highlight item s

<<Persistency>>
Provides: save/load

<<T ransactions>>
P rovides: comm it/rollback
R equires: T rans co-ordinator

<<U ser Interface>>
R equires: viewer
P rovides: co llection

<<Persistency>>
Provides: data
Requires: save/load

<<U ser Interface>>
P rovides: collection viewer

<<Collaborative W ork>>
P rovides: awareness

Figure 24-2. The concept of aspects crosscutting inter-related software components.

For each aspect that affects a component, we need to provide additional in-

formation, a set of aspect details. Each aspect detail may also be constrained

by one or more aspect detail properties that describe detailed functional or

non-functional constraints. In our example, we may assert that the Persis-

tency aspect affects the Itinerary manager. We may then specify that the na-

ture of this Persistency impact is that it requires a component providing data

storage (a Persistency aspect detail). We may further specify that the data

storage provided to it must meet some level of performance constraint. For

example, 100 insert() and update() functions must be supported per second

24.2. Motivation

 9

(an aspect detail property constraint for the data storage aspect detail). Other

aspect details might specify the kind of awareness supported by the tree

viewer (e.g. highlight of changed items), the kind of authentication or en-

cryption used (Security aspect details), the upper bounds of resources used,

performance required, or concurrency control techniques they enforce.

In aspect-oriented programming languages [20], aspects support code

injection into methods. For example, in AspectJ point-cuts can specify where

to add persistency management, memory utilization, user interface and dis-

tributed communication code [6]. In aspect-oriented design [3, 18, 34, 35],

aspects are used to describe crosscutting concerns affecting the components.

In dynamic aspect-oriented programming [30, 38, 40], components might be

modified at run-time using the aspects to change their parameters or their

running code.

10 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

24.3. OUR APPROACH

We have developed aspect-oriented component engineering, a new method

for developing software components with aspects. The use of aspects pro-

vides us with “multiple perspectives” on software component designs.

Figure 24-1 illustrates our approach. Component specifications and designs,

typically UML diagrams, are augmented with aspect information (1). A key

activity is determining whether required aspects are met in proposed compo-

nent configurations. We also check whether component configurations are

consistent with respect to the aspect constraints. When implementing designs

we use the aspect information to help us develop a more decoupled compo-

nent interaction and dynamic component configuration. This enables us to

maximize the amount of component reuse and dynamic component adapta-

tion possible (2). We encode the aspect information about software compo-

nents in a run-time accessible form (3). At run-time, this information allows

components to be introspected i.e. understood by end users and other com-

ponents. We use this encoded aspect-based information to support dynamic

24.3. Our Approach

 11

run-time component reconfiguration and adaptation. We have also used it to

support component storage and retrieval from a repository and component

validation by dynamic test generation and execution (4).

Component

Component Specification
and Design

1. Extended component models with aspect
information (provided/required aspect

details and properties)
2. Component implementations: aspect

information provides description and way to
implement reflective, de-coupled interaction

Component

Component

Component

aspects

aspects

aspects

3. Components are deployed with their
associated encoded aspect information

4. Component aspect encodings are accessed
and used at run-time

Validation agents

Component(s):
Adaptation Component repository

aspects
aspects aspects

Figure 24-3 An overview of aspect-oriented component engineering.

In the following three sections, we briefly illustrate how we use aspects for

component design, decoupled and configurable component implementation,

and at run-time.

12 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

24.4. COMPONENT SPECIFICATION AND DESIGN WITH

ASPECTS

Our approach gives developers a way to capture crosscutting impacts of sys-

temic functionality and associated non-functional constraints as aspects.

Note that using aspects is only one approach of doing this. Approaches using

some form of multi-perspective or viewpoint representations are also com-

mon [1, 8, 13]. Using aspects gives developers a way to categorize the im-

pact of these concerns on different components and different parts of com-

ponents.

During requirements engineering we use aspects to document the func-

tional and non-functional properties of a component. These are then grouped

using a set of aspect categories. Common categories include User interface,

Collaborative work, Component configuration, Security, Transaction proc-

essing, Distribution, Persistency and Resource management. Domain-

specific aspects can also be used. In the example domain, these include ser-

24.4. Component Specification and Design with Aspects

 13

vices relating to Travel itinerary management, Payment and Order process-

ing.

Itinerary Editor
Component

Itinerary Item
Factory Component

<<User interface>>
+ window frame
 KIND=window frame
 DEFAULT_INTERFACE=true
 CAN_DISABLE=false
+ extensible affordance
 KIND=menu bar
 EXTENSIBLE=true
 EXTENDS_BY=add menu OR
 add m enu item
…

<<User interface>>
+ creation item
 KIND=user affordance item
 FUNCTION=com ponent creation
+ property sheet dialogue
 KIND=property sheet
- extensible affordance
 KIND=item list
 EXTENDS_BY=add item
+ property text fields
…

Add Flight

Example of the travel
itinerary editor tree editor
and its “extensible” menu

bar

Example of an
itinerary item

menu item

Tree Viewer
Component

User affordance
Component

*1

Figure 24-4 A simple component specification example using aspects.

Figure 24-4 illustrates a simple use of aspects when specifying two inter-

related software components. In this example, the travel planner’s require-

ments identify several components that must provide extensible user inter-

faces, where one component provides a user interface that another adapts

this at run-time. This adaptation is usually the structured addition of a new

user interaction “affordance”. For example, the travel itinerary construction

14 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

use case says that new “travel item” construction facilities must be able to be

added dynamically to the itinerary planning user interfaces.

Figure 24-4 shows the itinerary editor component, which uses a tree

editor and multiple itinerary item creation (factory) components. The aspects

of the itinerary editor specify that it provide (among other things) an extensi-

ble affordance user interface facility. This means other components can ex-

tend its user interface in certain, controlled ways. Another component, an

itinerary item factory, is used to create particular kinds of itinerary items—

flights, hotel rooms, rental cars. This factory requires a component with an

extensible affordance so it can add a button, menu item, or drop-down menu

item to this user interface for creating different kinds of travel items. In this

example, the provided user interface extension aspect detail in the itinerary

editor aspects satisfies the required one in the factory’s aspects. This ap-

proach can be used to describe a large range of provided and required com-

ponent functional and non-functional properties. Developers can then reason

about the inter-relationships of components.

24.4. Component Specification and Design with Aspects

 15

During design, developers refine component specifications into detailed

designs and then design implementation solutions. They also refine the as-

pect specifications to a much more detailed level. To describe their designs

developers create additional design diagrams. Each diagram focuses on par-

ticular aspects affecting a group of related components. An example from the

travel planner system is shown in Figure 24-5, an annotated Unified Model-

ing Language (UML) sequence diagram. This describes component interac-

tions in the travel planning system as a user constructs part of a travel itiner-

ary. In the example, the user interacts with a web-based thin-client interface

for the itinerary editor. This in turn interacts with application server-side

components. Additional middleware and database components provide the

infrastructure for the architecture of this design.

In this example, we have used UML stereotypes to indicate the aspects

affecting each component. Both method invocations and component objects

have been annotated in this way. We have used UML note annotations to

further characterize particular method invocations between components.

These indicate provided and requires aspect details. Some details are also

16 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

characterized by adding non-functional constraints. In this example, they in-

clude the type of security and data storage required and required perform-

ance measures of the distributed system communication.

Middleware (CORBA)
<<Distrib>>

Browser
<<UI, Distrib>>

Middleware (HTTPS)
<<Distrib, Security>>

Itinerary Editor
<<UI, Distrib>>

Itinerary Manager
<<Distrib, Trans>>

Itinerary Data
<<Persis, Trans>>

Database
<<Persis, Trans>>

<<UI, Sec>> POST
POST

validate

<<Dist>> ConfirmBooking()

<<Dist, Trans>> ConfirmBooking()
<<Trans>> BeginUpdate()

<<Per, Trans>> AddBooking()

<<Per, Trans>> AddItems()

<<Trans>> Commit()
<<Trans>> EndUpdate()

<<Security>>
+encryption
 TYPE=https
-authentication
<<Distribution>>
+send data
 RESPONSE_TIME
 < 2000 ms
<<Persistency>>
+save data

<<Transaction>>
+commit data
 NUMBER
 < 5 per second
 RESPONSE_TIME
 < 500 ms
<<Persistency>>
-data storage
 KIND=RDBMS

Figure 24-5 Component interaction design example.

Such aspect-augmented design diagrams allow developers to capture richer

information about their component designs. Developers can augment exist-

ing diagrams or create new ones. New diagrams allow them to focus in on

particular parts of a system or particular component interactions. Our aspects

24.5. Component Implementation with Aspects

 17

give developers a way to capture and document both functional and non-

functional constraints during design.

24.5. COMPONENT IMPLEMENTATION WITH ASPECTS

When implementing software components some key issues arise:

� How can reusability of components be maximized? This is desir-
able to realize the component-based development philosophy of
“building systems from reusable parts.”

� How can component interaction be decoupled, thereby minimizing
the knowledge required of other components, interfaces, and
methods? This allows greater compositional flexibility.

� How can run-time introspection of components be supported? This
allows components at run-time to be understood by other compo-
nents and by developers (or even end users) who may be reconfig-
uring a system (for example, plugging in new components).

� How can run-time adaptation and composition be best supported?
This allows dynamically evolving systems.

In our work, we have used aspects to help achieve these goals. We have de-

veloped two approaches that make use of aspect information when imple-

menting software components. Figure 24-6 (a) illustrates how information

about the aspects affecting a component can be obtained.

18 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

Component

Other
Component

XML-encoded
aspects

“aspect
information

objects”

1

2
3

4

IteneraryItem
FactroryComp

RequiredExtensinle
Affordance Detail

ItineraryEditor
Comp

ProvidedExtensible
Affordance Detail

New Menu Item Itinerary Editor
Menu Bar

5. add item to menu

1. plug in comp

2. find provides ext affordances

3. request add affordance(Itin eraryItem)

4. create menu item

6. affordance selected

Figure 24-6 Using aspects to de-couple components.

The aspect information associated with a component can be queried by other

components (1). We have developed two ways of doing this. One has the

24.5. Component Implementation with Aspects

 19

aspect information encoded using a special class hierarchy of “aspect infor-

mation objects.” The other has aspect information encoded in XML. After

obtaining aspect-based information about another component, a client com-

ponent can then invoke the component’s functionality. This can be done by

dynamically constructing method invocations (2). Alternatively, it can be

done by calling standard adaptor methods implemented by the aspect objects

(3). These translate standard method calls into particular component method

calls (4). This approach provides a way of greatly decoupling many common

component interactions by the use of a set of standard aspect-oriented inter-

actions.

Figure 24-6 (b) shows a simple example of using this decoupled approach.

An itinerary item factory component instance wants to add a user interface

affordance to the itinerary editor’s user interface. The factory component

knows nothing about how the editor’s user interface is implemented. Neither

does it know how its affordance will actually be realized (menu item, button,

etc). First, it tells its own aspect information to initialize after plug in (1). Its

required extensible affordance aspect object queries the components related

20 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

to the itinerary item factory (e.g., the itinerary editor) for its aspect informa-

tion (2). It then locates a provided extensible affordance aspect object and

requests this object to add an affordance to the itinerary editor’s user inter-

face (3). This creates a menu item (4) and adds it to the itinerary editor’s

menu bar at an appropriate place (5). The menu item notifies the factory

when it should create a new travel item of a particular kind (6). The provided

affordance aspect object knows how to create and add this affordance for its

owning itinerary editor component. In this example, it adds a menu item. If

the factory were associated with a different component that extended its in-

terface with buttons, a new button would be created and added. This would

be done without the factory having any knowledge of how this is done. We

have used this approach to implement a wide variety of software components

with highly decoupled interactions.

24.6. Using Aspects at Run-time

 21

24.6. USING ASPECTS AT RUN-TIME

As indicated in the previous section, during component implementation as-

pects are codified either using special aspect objects or using XML docu-

ments. We make use of these encoded aspects in many ways after component

deployment. This is illustrated in Figure 24-7. Client components obtain as-

pect information from a component and use this to understand the compo-

nent’s provided or required services affected by a particular systemic aspect.

They can dynamically compose method calls to invoke component function-

ality or call aspect object methods to indirectly invoke the component’s

functionality (1). We have developed a component repository that uses as-

pect information to index components (2). Aspect-based queries are issued

by users (or even other components) to retrieve components whose functions

and non-functional constraints meet those of the aspect-based query. We

have developed validation agents that use aspect information to formulate

tests on a deployed component (3). The agent then compares the test results

to the aspect-described component constraints and informs developers

22 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

whether the deployed component meets its specification in its current de-

ployment context.

Software
Components

Component aspects
in object or XML

format

Components

Repository

Information
Display to

User

Validation
Agents

Component
index

1. Gets aspect information
to auto-adapt to new
associated component

2. Gets aspect information to I)
index in repository and II)
display information to users

3. Gets information to
perform run-time deployed
component validation tests

Figure 24-7 Examples of using aspects at run-time.

Figure 24-8 (a) shows how several user interface adaptations in the collabo-

rative travel planner have been realized using dynamic discovery and invo-

cation of component functions. The itinerary editor menu has been extended

using the mechanism described in the previous section (1). Each itinerary

item factory component obtains itinerary editor component’s extensible af-

fordance object and requests it to add (in this case) a menu item allowing the

factory to be invoked by the user. The dialogue shown at the bottom of the

24.6. Using Aspects at Run-time

 23

figure is a similar example where a reusable version control component has

added check-in and check-out buttons to the button panel of a reusable event

history component (2). The version control component also obtains the dis-

tribution-providing component and persistency-supporting component of

related components in its environment. It uses their facilities to store and re-

trieve versions and to allow sharing of versions across users. The same

mechanism is used to achieve this but different aspect objects are intro-

spected and invoked. The map viewer has had a collaborative messaging bar

added to it dynamically via the same mechanism (3).

The use of aspect information at run-time in this way is an alternative to

some of the other dynamic aspect-oriented programming approaches. These

use run-time code injection or modification to achieve similar results. How-

ever, usually software components are self-contained and their source code

is often not available. Thus, we have tried to provide a way of dynamically

changing running components by using aspects to understand component

interfaces and behavioral constraints. The implementation of decoupled

component interaction by the aspect information allows run-time adaptation.

24 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

1

2

3

Components
Aspect

Information

Web/Application Servers

Validation
Agents

1

2

3
4

5

Figure 24-8 Two examples of run-time usage of aspect information.

As a final example of the use of aspects with software components, consider

the issue of checking whether deployed components are correctly config-

24.6. Using Aspects at Run-time

 25

ured. The operation of most software components is affected by a variety of

deployment scenario conditions, particularly the other components they are

deployed with. We make use of aspect characterizations of components to

enable run-time test construction and validation of component behavior. This

approach is useful because many components cannot be adequately validated

until they are actually deployed.

Figure 24-8 (b) illustrates how we use aspect information to support a

concept of validation agents. These validation agents obtain aspect informa-

tion about a component (1) that has been deployed in web or application

servers (2). Different validation agents query parts of this aspect information

(3) to work out the required constraints on the component’s operation. Some

agents also make use of deployment-specific test data (4) to formulate tests

on the components. Some tests simply check that the component is accessi-

ble or that its functions work when invoked. Some check performance of

components, transaction support or resource utilization (memory, CPU or

disk space). Some validation agents run tests (5) by invoking deployed com-

ponent functionality.

26 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

24.7. RELATED WORK

A great deal of work has been done on separation of concerns in software

development [16]. Examples of such work include viewpoint-based require-

ments, designs and tools [8, 13], subject-oriented programming [16], hyper-

slices [37] and aspect-oriented programming [18, 20, 30]. Viewpoints, or

partial views on parts of software artifacts, have been used for purposes such

as requirements engineering, specification and design, user interface con-

struction and in various software tools. Aspects are in essence a specializa-

tion of the general notion of a viewpoint. An aspect captures particular cross-

cutting concerns on objects or components, and thus provides a certain par-

tial perspective on a software system design or implementation. Viewpoints

of one form or another have been used in all development methods. These

include the many component development methods like Catalysis™, Select-

Perspective™ and COMO [2, 4, 21]. However, in almost all of the current

component design methods and implementation technologies, a function de-

composition-centric approach is used. Such an approach results in the tan-

24.7. Related Work

 27

gling of systemic, crosscutting concerns in both the component designs and

in their implementation code [11, 20, 25]. This is the same kind of problem

that aspect-oriented programming tries to address for object-oriented pro-

grams. In contrast with these other approaches, we have used characteriza-

tions of crosscutting concerns to help design and implement software com-

ponents in similar way to other UML extensions with aspects [34]. We have

used aspect information in a more novel way at run-time to provide a mecha-

nism to dynamically understand and interact with other components.

Hyper-slices and subject-oriented programming are similar to aspect-

oriented design and programming [16, 29, 37]. They attempt to provide de-

velopers with alternative views of crosscutting concerns. Our aspect-oriented

component engineering views are specialized kinds of hyper-slices. We have

deployed this viewpoint mechanism to assist component development in this

work. Much recent work has gone into developing techniques to characterize

software components. Our work is but one such approach. Some component

development methods have introduced specialized views of component char-

acteristics. These notably include security and distribution issues [15]. Our

28 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

aspects adopt a similar approach but provide a uniform modeling approach

for components’ crosscutting concerns in general. Some approaches use for-

mal specifications of component behavior [28]. Others make use of charac-

terizations of services that components provide [31]. Some approaches focus

on both provided and required functional component services [19, 32]. Our

aspects provide a design, implementation-encoded and run-time accessible

characterization of software components. We have focused using common

crosscutting concerns as the “ontology” to describe components and some of

their interactions. However, we feel that this approach is ultimately compli-

mentary to other description approaches.

So far, little attention has been paid to applying aspects to component-

based systems. Adaptive plug-and-play components and composite adapters

[25, 26] make use of components that implement something similar to the

concept of our use of aspect-based decoupled interfaces. These are mixed to

help realize the separation of various concerns from component implementa-

tions. Component design methods currently provide a very limited ability to

identify overlapping concerns between components. However, the isolation

24.7. Related Work

 29

of systemic functions, (for example, communications, database access and

security), into reusable components is common in component technologies

[27, 32, 39]. This partially addresses the problems of components encapsu-

lating these systemic services. It also enables isolation of these services and

access via well-defined, component-based interfaces. However, not all as-

pects can be suitably abstracted into individual components, though some

success has been achieved with middleware-supporting components [3]. This

is due to overlaps and the eventual over-decomposition of systems. JAsCo

[35] provides a component-based development method incorporating aspects

which uses the concept of aspect beans and connectors to extend Java Beans

for aspect-oriented composition. This approach is similar to our component

aspects, but specialized for a JavaBean-based development platform.

One of the main motivations for the use of reflective techniques and the

run-time composition and configuration of components is to try to avoid

compile-time weaving [30, 38, 40]. This allows running systems and their

components to have aspects imposed on them after deployment. This is done

typically as before/after method processing. Some technologies also support

30 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

intra-method code incorporation and component reconfiguration at run-time.

Aspects in such systems can be formulated at run-time and added or re-

moved from programs and components dynamically. The crosscutting con-

cerns are encapsulated within the introduced aspect code. Currently most

code incorporation-based techniques have a high cost of expensive perform-

ance overheads. A further issue is a current lack of design abstractions. Our

aspect-oriented design approach does not preclude implementation with any

of these technologies. However, our aim with decoupled interaction and in-

trospection via aspect information was to produce software components that

make use of aspect-related services in other components via well-defined

component interfaces. This approach allows for controlled and efficient dy-

namic reconfiguration support via standardized component-supported or

delegate aspect object-supported functionality access. In addition, our as-

pect-oriented component designs provide a consistent set of design abstrac-

tions. Our dynamic discovery approach using aspect information has some

similarities with the UDDI discovery mechanism developed for web services

[24]. A major difference with current UDDI registries is the ability to use

24.7. Related Work

 31

categorized functional and non-functional information with our aspect-based

approach.

Our use of aspect information at run-time for component repositories

and deployed component validation contrasts with most other approaches.

Most software repositories use type-based, keyword-based, or execution-

based indexing [17]. The component interface, comments, or behavior, when

executed with same data, is used to index and retrieve components. Run-time

adaptation can also be very well-supported by aspects, illustrated in our own

work and that of others more recently [5, 38]. Using aspects in addition to

one or more of these techniques gives further perspectives on components

that can be indexed and queried. Current component testing and validation

techniques mainly focus on exhaustive functional interface testing [22, 23].

Using aspect-encoded information associated with components allows vali-

dation agents to query for expected functional behavior and non-functional

constraints. Tests can then be automatically assembled, run and feedback

given to developers on whether or not a component meets its aspect-codified

constraints in its current deployment situation.

32 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

24.8. EVALUATION

We have used aspect-oriented component engineering on a range of prob-

lems. These have included the construction of adaptive user interfaces,

multi-view software tools, plug-and-play collaborative work-supporting

components and several prototype enterprise systems. We have built some of

these systems using our custom JViews component architecture and some

with Java 2 Enterprise Edition software components. Using aspects to assist

in engineering these components has helped us to design and build more re-

usable and adaptable components. We have carried out a basic empirical

evaluation of aspect-oriented component engineering by having a group of

developers design and prototype a set of components. These included ex-

perienced industry designers and post-graduate OO technology students.

Feedback from the evaluation indicated that the designers found the aspect-

based perspectives on their UML designs useful. This was both when de-

signing components and when trying to understand others people’s compo-

nents and their compositions. Using aspects to assist in developing decoup-

24.8. Evaluation

 33

led components is effective though needs good tool support. Run-time vali-

dation of software components with aspects is potentially an important long-

term contribution of this work.

We have identified several key advantages of component development

with aspect-oriented techniques.

� Crosscutting properties of a system can be explicitly represented in
design diagrams. This provides a way for developers to see the im-
pact of these crosscutting concerns on their components, and the
components interfaces, operations and relationships.

� Adding aspect information allows crosscutting behavior (aspect
details) and related non-functional constraints (aspect detail prop-
erties) to be expressed together. This allows these to be more eas-
ily understood and reasoned about when building component com-
positions.

� Using aspect-oriented designs when implementing software com-
ponents can result in greater decoupling of components.

� Using encodings of aspect information at run-time can provide a
useful approach to providing run-time adaptability and run-time
accessible knowledge about component behavior and constraints.

However, there are also several potential disadvantages to our ap-

proach.

� There is possibly considerable added complexity to the specifica-
tions and designs. Some of our component designers found the ad-
ditional diagrams and aspect annotations come with a high over-

34 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

head. Others were unclear what aspect details and properties they
should use and were unsure whether adding new aspect details and
properties to their model was a good or bad thing.

� Currently we have limited tool support for AOCE. Our tools are
tuned to producing our custom JViews architecture’s components,
rather than more general J2EE or .NET components. This means
that while developers can use aspect annotations in conventional
CASE tools, these lack formal foundations and checking. The as-
pect designs are not yet supported by good code generation or re-
verse engineering tools.

� A considerable amount of effort must be put in by implementers to
encode aspect information for association with software compo-
nents. This can be overcome to a degree by extended tool support
and by use of a component architecture that directly supports as-
pect encoding and decoupled interaction.

� The use of different aspect ontologies by different developers or
teams is an issue. Some developers might want to make use of dif-
ferently named aspect details and properties that express the same
information. Of course, developers could agree on the same set of
aspects. However, third-party sourced components using different
characterizations would need a mapping of one ontology to an-
other. This is a difficult problem to solve in general.

24.9. FUTURE RESEARCH DIRECTIONS

We are developing further extensions to our method and prototype support-

ing tools to overcome some of these problems. Aspects can be prefixed with

an ontology “name space” (much as can XML namespaces) and transforma-

24.10. Conclusions

 35

tions may be defined between different aspect ontologies. This supports

translation between different component descriptions. We are investigating

the use of an adaptable commercial CASE tool with notations that are more

tailorable, and meta-models to enable integrated support for aspects and the

UML. This would also include some formal correctness checking support. In

addition, we have been exploring code generation from XML-encoded com-

ponent characterizations using XSLT transformation scripts. This would

generate component skeleton code. We are investigating the use of new

.NET reflective technologies to enable efficient run-time weaving of aspect-

implementing code with .NET components. This would enable supporting

third party component run-time extensions.

24.10. CONCLUSIONS

We have been working on using the concept of an “aspect”—a piece of

crosscutting systemic functionality—to clearly identify the impact of these

concerns on parts of software components, and on providing tools to enable

36 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

developers to represent aspects using augmented component specification

and design diagrams. These extended component descriptions allow devel-

opers to more easily reason about inter-component provided and required

functionality and constraints. We have found these aspect characterizations

provide a useful way of decoupling implemented component interaction.

They also provide a practical component description approach. Using encod-

ings of aspect information and making these available at run-time enables

more sophisticated component introspection and dynamic component adap-

tation. It also enables doing better component dynamic validation, storage,

and plug-and-play. Developers must balance the potential advantages of this

approach with the overhead of describing aspects for components.

REFERENCES

1. ALLEN, P. 2000. Realizing E-Business with Components. Addison-Wesley, Reading, Massachu-

setts.

2. ALLEN, P. AND FROST, S. 1998. Component-based Development for Enterprise Systems: Applying

the SELECT Perspective. Cambridge University Press, Cambridge, UK.

24.10. Conclusions

 37

3. COYLER, A. AND CLEMENT, A. Large-scale AOSD for Middleware, In 2004 Int'l Conf. Aspect-

Oriented Software Development (Lancaster, UK). ACM, 56-65.

4. D'SOUZA, D. F. AND WILLS, A. C. 1999. Objects, Components, and Frameworks with UML: The

Catalysis Approach. Addison-Wesley, Reading, Massachusetts.

5. DUZAN, G., LOYALL, J. AND SCHANTZ, R. 2004. Building adaptiveadaptive distributed applications

with middleware and aspects, In Int'l Conf. Aspect-Oriented Software Development (Lancaster

UK). ACM, 66-73.

6. ERNST, E. AND LORENZ, D.H. 2003. Aspects and Polymorphism in AspectJ. In Proc. 2003 Aspect-

oriented Software Development Conf. (Boston, MA). ACM, 150-157.

7. FINGAR, P. 2000. Component-based frameworks for e-commerce. Comm. ACM 43, 10, 61–67.

8. FINKELSTEIN, A. C. W., GABBAY, D., HUNTER, A., KRAMER, J., AND NUSEIBEH, B. 1994. Inconsis-

tency handling in multiperspective specifications. IEEE Transactions on Software Engineer-

ing 20, 8, 569–578.

9. GREEN, T. AND PETRE, M. 1996. Usability analysis of visual programming environments: A 'cog-

nitive dimensions' framework. Journal of Visual Languages and Computing 7, 131–174.

10. GRUNDY, J. 1999. Aspect-oriented requirements engineering for component-based software sys-

tems. In 4th IEEE Int'l Symp. Requirements Engineering (Limerick). IEEE, 84–91.

38 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

11. GRUNDY, J. 2000. Multi-perspective specification, design and implementation of software com-

ponents using aspects. Int'l Journal of Software Engineering and Knowledge Engineering 20, 6,

713–734.

12. GRUNDY, J. AND HOSKING, J. 2002. Engineering plug-in software components to support collabo-

rative work. Software Practice and Experience 32, 10, 983–1013.

13. GRUNDY, J., MUGRIDGE, W., AND HOSKING, J. 2000. Constructing component-based software

engineering environments: Issues and experiences. Journal of Information and Software Tech-

nology 42, 2 (Jan.), 117–128.

14. GRUNDY, J. AND PATEL, R. 2001. Developing software components with the UML, Enterprise

Java Beans and aspects. In 13th Australian Conf. Software Engineering, (Canberra). IEEE, 127–

136.

15. KHAN, K.M., HAN, J. 2003. A Security Characterisation Framework for Trustworthy Component

Based Software Systems. In Proc. COMPSAC 2003 (Dallas, TX). IEEE, 164-169.

16. HARRISON, W. AND OSSHER, H. 1993. Subject-oriented programming—a critique of pure objects.

In 8th Conf. Object-oriented Programming, Systems, Languages, and Applications (OOPSLA),

(Washington, D. C.). ACM, 411–428.

17. HENNINGER, S. 1996. Supporting the construction and evolution of component repositories. In

18th Int'l Conf. Software Engineering (ICSE) (Berlin). IEEE, 279–288.

24.10. Conclusions

 39

18. HO, W.M., JÉZÉQUEL, J.M., PENNANEAC'H, F., PLOUZEAU, N. 2002. A toolkit for weaving aspect

oriented UML designs, In 2002 Int'l Conf. Aspect-Oriented Software Development (Enschede,

The Netherlands), ACM, 99-105.

19. KATARA, M. AND KATZ, S. 2003. Architectural Views of Aspects, In 2003 Int'l Conf. Aspect-

Oriented Software Development (Boston, MA). ACM, 1-10.

20. KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND

IRWIN, J. 1997. Aspect-oriented programming. In ECOOP'97 Object-Oriented Programming,

11th European Conf., M. Akşit and S. Matsuoka, Eds. LNCS, vol. 1241. Springer-Verlag, Berlin,

220–242.

21. LEE, S., YANG, Y., CHO, F., KIM, S., AND RHEW, S. 1999. COMO: A UML-based component

development methodology. In 6th Asia-Pacific Software Engineering Conf. (APSEC), (Taka-

matsu, Japan). IEEE, 54–61.

22. MA, Y.-S., OH, S.-U., BAE, D.-H., AND KWON, K.-R. 2001. Framework for third party testing of

component software. In 8th Asia-Pacific Software Engineering Conf. (APSEC), (Macau, China).

IEEE, 431–434.

23. MCGREGOR, J. D. 1997. Parallel architecture for component testing. Journal of Object-Oriented

Programming 10, 2 (May), 10–14.

24. MCKINLAY, M. AND TARI, Z. 2002. DynWES — a dynamic and interoperable protocol for web

services. In 3rd Int'l Symp. Electronic Commerce (ISEC), (Research Triangle Park, North Caro-

lina). http://ecommerce.ncsu.edu/ISEC/papers/09_tari_dynamic.pdf.

40 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

25. MEZINI, M. AND LIEBERHERR, K. 1998. Adaptive plug-and-play components for evolutionary

software development. In 13th Conf. Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA), (Vancouver). ACM, 97–116.

26. MEZINI, M., SEITER, L., AND LIEBERHERR, K. 2001. Component integration with pluggable com-

posite adapters. In Software Architectures and Component Technology, M. Akşit, Ed. Kluwer

Academic Publishers, Boston, 325–356.

27. MONSON-HAEFEL, R. 2001. Enterprise JavaBeans. 3rd Edition, O'Reilly, California.

28. MOTTA, E., FENSEL, D., GASPARI, M., AND BENJAMINS, R. 1999. Specifications of knowledge

components for reuse. In 11th Int'l Conf. Software Engineering and Knowledge Engineering

(SEKE) (Kaiserslautern, Germany). Knowledge Systems Institute, Skokie, Illinois, 36–43.

29. OSSHER, H. AND TARR, P. 2001. Multi-dimensional separation of concerns and the hyperspace

approach. In Software Architectures and Component Technology, M. Akşit, Ed. Kluwer Aca-

demic Publishers, Boston, 293–323.

30. PRYOR, J. L. AND BASTAN, N. A. 2000. Java meta-level architecture for the dynamic handling of

aspects. In 5th Int'l Conf. Parallel and Distributed Processing Techniques and Applications (Las

Vegas). CSREA Press, Bogart, Georgia, 257–262..

31. QIONG, W., JICHUAN, C., HONG, M., AND FUQING, Y. 1997. JBCDL: An object-oriented compo-

nent description language. In 24th Conf. Technology of Object-Oriented Languages (TOOLS),

(Beijing). IEEE, 198–205.

24.10. Conclusions

 41

32. RAKOTONIRAINY, A. INDULSKA, J. WAI LOKE, S. 2001. ZASLAVSKY, A. Middleware for Reactive

Components: An Integrated Use of Context, Roles, and Event Based Coordination, In Proceed-

ings of. Middleware 2001 (Heidelberg, Germany). LNCS 2218, Springer,77-98.

33. STEARNS, M. AND PICCINELLI, G. 2002. Managing interaction concerns in web-service systems. In

22nd Int'l Conf. Distributed Computing Systems Workshops (Vienna, Austria). IEEE, 424–429.

34. STEIN, D., HANENBERG, S., AND UNLAND, R. 2002. An UML-based aspect-oriented design nota-

tion. In 1st Int'l Conf. Aspect-Oriented Software Developmen), (Enschede, The Netherlands),

G. Kiczales, Ed. ACM, 106–112.

35. SUVIE, D. AND VANDERPERREN, W. 2003. JAsCo: An Aspect-Oriented Approach Tailored for

Component Based Software Development, In.2003 Int'l Conf. on Aspect-Oriented Software De-

velopment, (Boston, MA), ACM, 21-29.

36. SZYPERSKI, C. A. 1997. Component Software: Beyond OO Programming. Addison-Wesley,

Reading, Massachusetts.

37. TARR, P., OSSHER, H., HARRISON, W., AND SUTTON JR., S. M. 1999. N degrees of separation:

Multi-dimensional separation of concerns. In 21st Int'l Conf. Software Engineering (ICSE) (Los

Angeles). IEEE, 107 – 119.

38. TRUYEN, E., VANHAUTE, B., JOOSEN, W., VERBAETEN, P., AND JØRGENSEN, B. N. 2001. Dynamic

and selective combination of extensions in component-based applications. In 23rd Int'l Conf.

Software Engineering (ICSE) (Toronto). IEEE, 233–242.

42 Chapter 24 Developing Software Components with Aspects: Some Issues and

Experiences

39. VOGAL, A. 1998. CORBA and Enterprise Java Beans-based electronic commerce. In Int'l Work-

shop on Component-based Electronic Commerce (Berkeley).

40. WELCH, I. AND STROUD, R. 1999. Load-time application of aspects to Java COTS software. In

Int'l Workshop on Aspect-Oriented Programming (ECOOP) (Lisbon).

http://trese.cs.utwente.nl/aop-ecoop99/papers/welch.pdf.

