
Extending a Persistent Object Framework to Enhance Enterprise
Application Server Performance

John Grundy1, Steve Newby2, Thomas Whitmore2 and Peter Grundeman2
1Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

2XSol Ltd

Parnell, Auckland, New Zealand
{steve, thomas, peter}@xsol.com

Abstract
High-volume transaction processing speed is critical for
adequate performance in many enterprise application servers.
We describe our experiences using an object-oriented
persistency framework to achieve greatly enhanced server
response by the transparent use of main-memory database
technology. We took an application server whose data
persistency is abstracted via a persistent object framework and
replaced a version of the framework using a relational database
for persistency with one that uses a memory database. No
changes to any of the application server components were
necessary to achieve this and we achieved between 10-20 times
transaction processing performance improvement. We briefly
discuss some extensions to our memory database and mapping
framework necessary for large-scale enterprise systems support
and for data-oriented systems integration. We hope our
experiences will be useful for others, both in terms of
techniques for abstracting object persistency mechanisms and in
approaches to application server performance enhancement.

Keywords: persistent object frameworks, main-memory
databases, transaction processing performance

1 Introduction
Most E-commerce systems use a standard multi-tier
architecture: multiple clients (web-based for customers;
typically desktop applications for staff; and other
organisation's servers for Business-to-Business data
exchange) connect to middle-tier application server(s),
which in turn connect to database server(s) (Aleksy et al
1999, Bass et al 1998, Vogal, 1998). Despite the
widespread use of multiple components and threads in the
middle and database tiers, performance of the application
server is usually the key bottleneck in such a system
(Bass et al 1998, Vogal 1998). This in turn is usually due
to bottlenecks accessing and modifying data in the
database (Liu and Gorton 2000).

Copyright © 2001, Australian Computer Society, Inc.
This paper appeared at the Thirteenth Australasian
Database Conference (ADC2002), Melbourne, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 5. Xiaofang Zhou, Ed. Reproduction
for academic, not-for profit purposes permitted provided
this text is included.

Several solutions exist for this problem, including the use
of higher-performance database servers, local area
networks and database server hosts (Liu and Gorton
2000); use of object and result set caching by the database
or application server (GemStone Systems Inc 2000,
Gorton et al 2000); use of main-memory or "real-time"
databases (Kim and Bae 2000, Lu et al 1999); and further
division of application server components and database
tables across multiple hosts (Bass et al 1998, Vogal
1998). Each of these approaches has advantages and
disadvantages, many requiring considerable design and
implementation changes to the application server
components or reorganisation of the database-managed
information.

We describe our experiences in achieving a large
performance enhancement for an E-commerce application
server using a typical multiple-client, single-server,
single-database 3-tier architecture. The application server
originally used a relational database to manage enterprise
information, accessed through a object persistency
framework i.e. application server objects were made
persistent or obtained from the database via this
persistency framework. Our approach involved replacing
the RDBMS persistency store implementation with a
main-memory database (MMDB) implementation,
without modifying any of the persistency framework
interfaces the application server relied upon. The
RDBMS was retained as the MMDB "mirror" (i.e. non-
volatile physical storage) for simplicity. A very large
performance improvement was achieved for the
application server transaction throughput without having
to resort to major architectural modification, expensive
OO database or cache purchase, expensive hardware
purchase, nor even complete replacement of the RDBMS
server.

We motivate this work with an overview of our E-
commerce system architecture and compare and contrast
various possible solutions to system performance
enhancement. We describe the software architecture of
our solution, the design of our object persistency layer
and our main-memory database. We discuss the
integration of the application server with the new
persistency mechanism and discuss a variety of
performance measures taken, concluding by reviewing
the advantages and disadvantages of our solution.

Client Interfaces

Resources Accumulators

Transaction
Events

Worksheet, Transaction and
Data Specifications

XML-encoded
data

Application Server Data and Functions

Workflow
Specs & State

SQL
Commands

Database

HTML

Web presentation
logic server

Desktop
Worksheets

Web Browser
Worksheets

Figure 1. The XSol™ application architecture

2 Motivation
XSol Ltd have been developing a multi-tier enterprise
system development product based around a conceptual
framework, Enterprise Systems Logic™ (ESL)
(Blackham et al 2001). This system provides business
analysts facilities to define enterprise applications using a
combination of workflows, transaction stages, and
spread-sheet style forms and reports ("worksheets"). User
interfaces include specification tools (business structure,
workflow, transaction stage, worksheet design and
reporting) and end user interfaces (workflow
visualisation, to-do lists, worksheets and report output).
An application server includes workflow and to-do list
state, "reources" (data used by business transactions, like
Customers, Products and Supplers), "transaction events"
(business transaction state) and "accumulators" (data
aggregation, like MonthlyProductSales and
TotalCustomerOrders), along with various meta-data (i.e.
workflow, worksheet, transaction and data
specifications). A database stores application server state
and meta-data.

The application server includes interfaces for XSol
clients, exchanging XML-encoded data and meta-data
with the front-end interfaces. These tools may be desktop
clients or web-based clients. An interface to the database
provides persistency management for the application
server. The application server, database and web
presentation server can run on the same host or on
different hosts. Figure 1 illustrates this basic multi-tier
architecture.

The enterprise specification tools and the workflow
enactment engine are both light-weight, with a low
number of clients and low amount of application server
and database loading. The main task of the application
server is to manage business transactions. When business
transactions are run, these typically require resources to
be looked up (find customer, product, suppler etc), a
transaction event to be generated and stored, and
accumulators (i.e. data aggregation used to control
business processing logic and for reporting) to be
updated. All of these tasks require application server data
to be loaded from and stored to the database. For
example, when ordering a product, a "ProductOrder"
transaction might be created (and stored in the database),
required customer and product sold data looked up in the
database, and several accumulators updated

(TotalProductSold for the product;
AmountBoughtPerMonth for the customer, etc). We
found that the performance of the original XSol
application server was unsatisfactory due to the overhead
of the high number of data selections and updates during
business transaction processing.

There are a number of approaches that could be taken to
improve our application server's performance. One
common way is to modify its design and implementation
to make use of a multi-tier architecture where the
application tier is split into multiple, concurrent processes
to exploit multiple processors or hosts (Bass et al 1998,
Sessions 1998, Vogal 1998). Unfortunately profiling of
the currently single process application server has shown
most of the time spent processing transactions is in the
RDBMS, so while a multi-tier solution would provide
some benefit, as demonstrated in others’ work (Liu and
Gorton 2000, Sessions 1998), this is likely to be quite
limited at a cost of major re-engineering. As the
application server uses persistent objects, management
performance may be enhanced by the use of an
OODBMS or persistent object store (GemStone Systems
Inc 2000, Excelon Corp 2001, Secant Corp 2000), or
remote objects via CORBA, COM or Enterprise Java
Beans (Liu and Gorton 2000, Sessions 1998, Vogal
1998). OODBMSs require transactions to be committed
using similar storage mechanisms to a RDBMS, however,
and DCOM and CORBA-based remote object systems
often use an RDBMS themselves. Object caching
(GemStone Systems Inc 2000, Wu 1999) and main-
memory databases (Kim and Bae 2000, Lu et al 1999,
TimesTen Inc. 2000) offer potential large performance
gains. Caching holds object state in memory, enhancing
object reads, but typically writes it through to persistent
storage on writes, which become the bottleneck. Main-
memory databases (MMDBs) utilise large main-
memories to hold the entire database, with a non-volatile
secondary storage copy of the database (typically disk).
MMDBs provide in-memory complex multi-field
indexing, which caches often do not, and typically write
update events to a high-speed transaction log rather than
doing disk-based indexed file updates like RDBMSs and
OODBMSs. The added attraction of a MMDB is that
changing an application server to make use of it is very
simple, provided the object persistency framework in the
application server adequately abstracts developers from
the persistency system.

XML
interface

(for
presentation
tier access)

Definitions Manager

Workflow/to-do
list

Resource
Manager

Accumulator
Manager

Transaction
Manager

Event Manager
Persistent Object
Mapping Layer

(Original Mapping
Layer: SQL to

RDBMS)

Object Tables

Objects Indexes

New Mapping
Layer: API calls to

MMDB

Writer
Daemon

Read @ start-up
from files or DB

Application server - XSol Process Manager
(XPM)

Log updates to
file & daemon

writes to files or
DB

Main-memory Database

Figure 2. Basic architecture of our application server and data management tiers

3 Application Server Architecture
In order to improve the performance of our application
server, and make it more amenable to supporting data-
oriented integration with other enterprise systems, we
developed a simple main-memory database (MMDB) to
provide its data management capabilities. The
architecture of our application server is illustrated in
Figure 2.

The application server, or XSol Process Manager (XPM),
is comprised of an XML interface for clients (effectively
the presentation tier), data definition (meta-data)
management, a workflow engine, exception manager,
resource manager, transaction manager and accumulator
manager (the middle tiers), and a persistent object
mapping framework and database (the data management
tier).

We developed a new version of our persistent object
mapping framework, preserving the original object
interfaces all of the XPM manager components used,
which utilises a simple main-memory database to provide
all XPM data. The main-memory database comprises an
API, "tables" of persistent objects, and multi-field
indexes on objects. On start-up, the MMDB loads its
object tables from files (or a database) and thereafter all
queries are handled by traversing the in-memory MMDB
indexes. Updates to MMDB objects are logged to a file in
transaction groupings (to preserve them in case of
MMDB failure). A "writer daemon" reads log entries and
applies to updates to the MMDB's disk-based mirror:
either an ISAM-style indexed file structure or a database.
We currently use an RDBMS as physical storage mirror
for our MMDB, allowing us to use the exact same
RDBMS tables the original mapping layer used, and
allowing us to swap between RDBMS and MMDB as the
application server's data management support. We built
our own MMDB rather than use a commercial one as we
only required basic data management functionality: our
XPM application server is the only client; we could use
our RDBMS as the main-memory database mirror and
only simple transaction and crash-recovery support were
necessary.

The design of the mapping framework, main memory
database and some XPM persistent objects, is outlined in

Figure 3. Classes stereotyped <<XPM>> are unchanged
in both versions of our XPM. Classes prefixed
<<MMIF>> implement the same interface as the RDBMS
interfacing persistent object classes, but provide
transparent access to the main-memory database.
MMDB-prefixed classes implement the MMDB. All
XPM objects that need to be made persistent are
specialisations of PersistentObject. All <<XPM>> and
<<MMIF>> classes in this diagram have corresponding
interfaces e.g. IPersistentObject, IPersistentBroker,
ISelectPerformer etc which are accessed by the XPM and
are the same for both versions of the framework. This
allowed us to modify the implementation classes to
provide our MMDB data persistency without having to
change any code in the XPM itself. When starting up the
XPM, either a MMDBPersistentBroker or
RDBMSPersistentBroker object is created, both
implementing the IPersistentBroker interface, to give the
XPM either RDBMS or MMDB data persistency. If using
the same RDBMS as the main-memory database mirror,
these can even be swapped over while the XPM is
running (which we found very useful for testing and
performance analysis).

Each different type of PersistentObject has a ClassMap
meta-data that specifies its corresponding DB table (or
MMDB object table) the PersistentObject is mapped to.
XPM objects can be mapped 1:1 to DB objects, split over
several DB objects, or several XPM objects can be
mapped to a single DB object. For example, Resource
XPM objects are actually comprised of a Resource object
and each resource field is represented by a Field object.
This object aggregate is mapped onto a single DB table
for efficient storage e.g. a "Product" resource object and
its field objects are mapped to a single "DBProduct"
object in the MMDB or a single row in the RDBMS.

The persistency framework provides a set of classes used
to formulate queries over persistent objects and a set to
perform updates. PersistentCriteria and its SelectCriteria
aggregates are created by the XPM to formulate multi-
field and multi-object queries. The original
SelectPerformer in our RDBMS version of the mapping
framework implementation translated these into SQL to
run on the database, and translated the SQL result set into
PersistentObject creations.

SelectCriteria
<<XPM>>

PropertyMap
<<XPM>>

ClassMap
<<XPM>>

PersistentCriteria
<<XPM>>

PersistentBroker
<<MMIF>>

PersistentTransaction
<<MMIF>>

ResultSet
<<MMIF>>

<<uses>>

RetrieveCriteria
<<XPM>>

PersistentObject
<<XPM>>

1..1

0..*

1..1

<<creates>>

EqualCriteria
<<XPM>>

GreaterThanCriteria
<<XPM>>

0..*

RetrieveResults
<<MMIF>>

1..1 1..1

1..1 1..1

MMDBObject
0..* 0..*

MMDBIndex

0..*

0..*

0..*

0..*

(TTree index)

SelectPerformer
<<MMIF>>

<<uses>>

<<creates>>

<<creates>>

MMDBTable

0..*

1..1

0..*

1..1
(HTable index)

find using TTree
<<uses>>

find using HTable
<<uses>>

InsertPerformer
<<MMIF>>

<<creates>>
UpdatePerformer

<<MMIF>> <<creates>>

MMDBLogger
write SQL

write SQL

Updating

Querying
Main-memory database

Persistent Object
Meta-data

Figure 3. High-level OOD for the architecture

Our new mapping framework implementation of
SelectPerformer translates these queries into API calls on
the MMDBIndex tables, and translates lists of returned
MMDBObjects into appropriate PersistentObject
instances, using the appropriate ClassMap
transformations. The PersistentTransaction,
InsertPerformer, UpdatePerformer and DeletePerformer
implementations in the RDBMS implementation of the
framework generate SQL INSERT, UPDATE, DELETE
and begin/commit transactions.

The MMDB implementation of these classes run
MMDBTable API calls to add, update and delete
MMDBObjects. The MMDBTable logs these updates to
its transaction log, which is processed asynchronously by
the writer daemon. A MMDB transaction stores
MMDBObject updates as event objects which can be
reversed to rollback the transaction. The transaction log is
not written to until MMDB transaction commit, for
efficiency.

4 Persistent Object Mapping Layer Design
In this section we briefly describe some of the key
mapping layer interface functions, and discuss
implementation differences between the RDBMS and
MMDB versions of the framework that we developed.
The PersistentObject is the root class for all XPM objects
which need to be made persistent. It provides Save() and
Retrieve() functions used to persistent an object or load it
using its unique Object ID (Oid). Getter and setter
functions provide reflective access to a persistent object's
properties by name. A ClassMap provides a specification
for mapping persistent objects and their properties to and
from corresponding database table(s).

A PersistencyBroker provides a façade allowing
transactions to be created, object state to be saved, objects
to be deleted and objects to be retrieved based on
selection criteria. Inserts, updates and deletes are
delegated to "Performers" which use the ClassMap and
given PersistentObject type to formulate appropriate SQL
update statements to be run on the database. The
PropertyMaps associated with a PersistenctObject's
ClassMap provide names of object properties and Getter
methods are called to extract the property values for
INSERT and UPDATE commands. Transaction objects
are used to record a set of persistent objects whose state
has changed and then to action their Save() functions
within a database transaction, rolling back if an update
fails.

Objects are retrieved using their unique Oid, constraints
on one or more of their property values, or by constraints
on the properties of related persistent objects, linked to
the PersistentObject by their Oid values. The XPM
constructs a RetrieveCriteria object, adds required
property constraints, joins and order by criteria, and then
asks the PersistencyBroker to perform the query. A
SelectPerformer translates the query into a SQL SELECT
statement run against the database. After the query is run,
new PersistentObject instances are created for each object
located, the field values in the result set are copied into
the PersistentObject's properties using the Setter methods
and PropertyMap property names. The XPM obtains a list
of the newly created PersistentObject objects that
matched the query via GetObjects(). The
PersistencyBroker provides some additional functionality,
for example to create and drop tables, obtain database
meta-data and so on.

SelectCriteria
PropertyMap : PropertyMap
Value : String

<<XPM>>

PropertyMap
PropType : Enumerated
AttributeName : String
ColmnName : String

<<XPM>>

ClassMap
TableName : String
ClassType : TClass
ClassOid : Integer
ClassName : String

GetMapInfoList()

<<XPM>>

PersistentCriteria
<<XPM>>

EqualCriteria
<<XPM>>

GreaterThanCriteria
<<XPM>>

PersistentObject
Oid : Integer
IsDirt y : Boolean
IsPersistent : Boolean

Save()
Retrieve()
Delete()
ForProperties()
ForProperty()
GetInteger(Name : String)
GetString(Name : String)
Get...()
SetInteger()
Set...()
<<class>> CreateClassMap()

<<XPM>>

1..10..* 1..10..*

RetrieveCriteria
ClassType
ClassMap

AddSelectEqual()
AddGreaterThan()
Add...()
GetSelectionCriterias()
Perform()
AddOrderBy()
AsObjects()
GetObject()

<<XPM>>

<<creates>>

IB_PersistencyBroker

ProcessRetrieve()
ProcessDelete()
SaveObject()
MakeTransaction()

<<uses>>

<<uses>>

Figure 4. The persistent object mapping framework design

The XPM application server, persistent object layer and
main-memory database are implemented in Delphi. The
RTTI reflection mechanism is used to dynamically
determine and call the get and set functions for
PersistentObject subclass properties. This allows any
XPM class to be made persistent by inheriting from
PersistentObject and declaring its object attributes to be
made persistent as properties, specifying set and get
functions for each property. By performing all persistent
operations via this persistent object framework, the XPM
application server is isolated from the actual persistency
mechanism used. By exchanging our original RDBMS
persistency broker implementation, leaving unchanged
the mapping layer interfaces the XPM uses, we re-
implemented the mapping layer to use a main-memory
database. The XPM runs as before but with its persistency
needs provided by memory-resident data.

5 MMDB Design and Implementation
In this section we briefly discuss the design and
implementation of our main-memory database and the re-
implemented mapping framework classes that provide the
XPM transparent persistency via this MMDB. Figure 5
shows some of the classes and their functions used in the
mapping framework implementation and MMDB. The
main-memory database comprises a set of MMDBTable
objects, one for each group of same-typed
MMDBObjects. An MMDBTable corresponds to an in-
memory version of a RDBMS or OODBMS table. It
indexes its MMDBObjects via a hashtable, keyed by the
MMDBObject unique Object ID (Oid). An MMDBObject

holds PersistentObject property values in a "packed" form
to minimise memory usage. Each table has a single
hashtable index on the Oid value of each MMDBObject it
manages. Each MMDBTable also has zero or more
MMDBIndex objects, which implement secondary T-
Tree based ordered indexes. We use a T-tree rather than a
B-Tree to provide multi-field, ordered indexes, as the T-
tree gives better in-memory performance than a B-Tree
(more commonly used for RDBMS indexes) (Lu et al
1999).

The UpdatePerformer and InsertPerformer classes
originally constructed SQL update commands to achieve
object creation and mofication, used to implement a
PersistentObject.Save(). We modified these to instead
look-up, create and modify MMDBObjects using the
MMDBTable hash index. They also log the new
MMDBTable state using a MMDBLogger. Currently they
log SQL commands which are asynchronously run on the
RDBMS mirror of the main-memory database (though we
plan to log more compact change events and use indexed
files for the MMDB mirror in the future).

Queries are translated by a SelectPerformer into
findObjects(low_value, high_value) function calls on a
MMDBIndex. Only simple optimisation of queries is
currently used by our MMDB, but these have proved
sufficient for our XPM's query needs to date. The index
used returns a list of MMDBObjects which are further
filtered by any criteria not used in the index. Joins are
made to other MMDBTables using Oid references and
filtering applied to joined MMDBObject property values.

PersistentTransaction
AddObject()
Commit()
Rollback()
ProcessTransaction()

<<MMIF>>

RetrieveResults
Next()
IsDone()
Donteger(name : String)
DoString(name : String)
Do..(name : String)
SetTarget()

<<MMIF>>

PersistentBroker
ProcessRetrieve()
ProcessDelete()
SaveObject()
MakeTransaction()

<<MMIF>>

<<uses>>

MMDBLogger
writeStmt()

InsertPerformer
MakeSQL()
ExecuteForObject()

<<MMIF>>

write SQL UpdatePerformer
MakeSQL()
ExecuteForObject()

<<MMIF>>
write SQL

MMDBTable
findObject()
addObject()

find MMDB Obj
find/add MMDBObj

MMDBIndex
findObjects()
removeObject()
addObject()

update indexes

MMDBObject
beginPack()
endPack()
packProperty(PropType, PersistentObj)
packInteger(value : Integer)
packString(value : String)
pack...()
unpackInteger() : Integer
unpack...()
getString(col : Integer) : String
getInteger(col : Integer) : Integer
get...()

pack MMDBObj

pack MMDBObj

0..* 0..*

0..* 0..*

SelectPerformer
MakeJoin()
MakeOrderBy()
retrieveByOid()
BuildForCriteria()
doRDBMSSelect()

<<MMIF>>

<<creates>>

<<creates>>

findObjects(firstKey,lastKey)

ResultSet
Next()
IsDone()
GetInteger(col : Integer) : Integer
GetString(col : Integer) : String
Get...(col : Integer) : ...

<<MMIF>>

1..1 1..1

0..* 0..*
<<creates>>

Figure 5. Main-memory database design

6 Performance
The database version of our mapping layer framework
can be deployed with the XPM in two basic
configurations: local RDBMS and remote RDBMS. The
main-memory database version can be deployed in three
configurations: MMDB and XPM in the same process;
XPM and MMDB in different processes but running on
the same host; and remote MMDB.

In addition, the MMDB's writer daemon and RDBMS
mirror can be deployed on the same host as the MMDB
or on different hosts. We briefly compare the
performance of our XPM application server with the
RDBMS and MMDB in some of these configurations. A
range of XPM data processing transactions are used,
including simple persistent object save and load, resource
look-up (one row selected to multiple persistent objects),
resource adjustment (multiple persistent objects to a
single row update), and accumulator updates
(combinations of several data lookups, computations and
one row updates).

Here we compare the performance of the XPM with a
local Interbase 5.5 RDBMS optimised for a single client
and given a large memory buffer, to our optimised
MMDB code running as part of the XPM process (local
Delphi calls only) and running on the same host as the
XPM but different process, communicating via a CORBA
interface. These are the most likely initial configurations
of our application server and databases. Queries and
updates were done over tables with around 5,000 rows

and 1,000-10,000 transactions in each category were run.
Table 1 summarises the kinds of transactions performed
and the average transactions per second (tps) achieved
over several runs. The first three transactions involve no
XPM processing, just mapping layer, RDBMS and
MMDB processing. The fourth and fifth are one DB row
loaded to and from multiple persistent objects, involving
limited XPM processing and substantial mapping
framework processing. The last transaction is XPM
processing-intensive, as well as requiring several DB
look-ups and an update.

Profiling of the Delphi code implementing the XPM,
mapping framework and the MMDB shows most of the
time spent in transactions involving the RDBMS is in
RDBMS API calls (around 85-90%). For the MMDB
integrated into the XPM application server process, a
major portion of the time is spent in the mapping
framework translating between XPM persistent objects
and MMDB objects (around 50-75% of the time), even
when logging object updates to secondary storage. This
also accounts for the low tps of the 3rd transaction with
the MMDB – almost all of the time is spent copying
MMDB objects into persistent XPM objects. With the
CORBA-accessed MMDB, the communication overhead
consumes much of the time. We have run the XPM with
the RDBMS and CORBA-accessed MMDB on different
hosts with a 100 megabit LAN connection, but
performance greatly degrades due to networking
overhead (the TPS measures for both fall by around 60-
70%).

Transactions Performed RDBMS on
same host as

XPM

XPM and
MMDB in

same Process

CORBA-accessed
MMDB on same

host as XPM

Load 1 object using OID 168 tps 16,393 tps 3,846 tps

Save 1 object 181 tps 6,250 tps 2,125 tps

1 Select returning 30 objects 84 tps 588 tps 467 tps

Load resource (1 row/MMDB object to
10 XPM persistent objects)

145 tps 2,053 tps 1,401 tps

Save 2 resources (20 XPM persistent
objects to 2 rows/MMDB objects)

117 tps 1,470 tps 938 tps

Update 1 accumulator (3 XPM object
loads and 1 save + XPM processing)

18 tps 264 tps 138 tps

Table 1. Performance measures

We also experimented with a shared memory link
between the XPM and MMDB running on the same host
in different processes. This used Win32 memory files and
mutexes, and gives between 65-80% TPS of the
XPM/MMDB in same process.

7 Discussion
The key advantage from the use of an MMDB is the
transaction through-put performance boost the XPM
application obtains. Querying speed-ups for query-
intensive data range from 20-100 times speed-up. The
more complex the criteria being used, the better the
performance increase as the main-memory held indexes
provide better traversal performance than the DBMS
ones, even when the DBMS is completely buffered in
main-memory. Update speed improvement is
considerably lower, as the MMDB must log updates to
physical storage in case of a crash, but these can be
written much more quickly than database communication
and updates performed. We originally planned to
dispense with a RDBMS and use indexed files to mirror
the MMDB, but found no great advantage to doing this.
The RDBMS mirror used can be a simple database as no
great performance demands are placed on it. The MMDB
can even be switched off while the XPM is in use and
switch to the RDBMS-based persistency broker, which
we found useful for testing and performance monitoring.
There were no changes made to the application server
code in the XPM in order to incorporate our MMDB-
based persistency mechanism. This is in contrast to a
cache added to the XPM to buffer frequently-used
persistent objects. It proved to be very limited as it could
only support very simple queries over persistent objects,
others requiring RDBMS SELECT calls, and writes were
still sent directly to the RDBMS. An additional advantage
of the MMDB approaches is that we are also able to
incrementally enhance the main-memory database and
make various performance optimisations to this without
impacting at all on the XPM code.

We encountered some deficiencies in our approach and in
our MMDB that are important to consider before
adopting the solution to performance problems outlined

above. A single process MMDB is limited to 2 GB
maximum size due to 32-bit addressing limitations on
most common hardware platforms. This can be overcome
by using 64-bit memory addresses or by segmenting the
MMDB into multiple processes. The first requires
expensive hardware not (yet) commonly available and the
second a more complex MMDB architecture and
performance loss due to inter-process communication
(though this can be partially overcome by simple
mapping layer caching and/or use of shared memory-
based communication, if all processes run on the same
host machine). The MMDB transaction support and
concurrency control are simplistic due to our XPM
application server being its single client. Proper multi-
threaded, concurrent client support is necessary, along
with transaction isolation if it were to be used by more
complex application servers. Definition of indexing,
meta-data support and database maintenance could all be
enhanced. Inter-process communication between the
application server and MMDB could utilise shared
memory or sockets rather than CORBA to further
enhance performance. The mapping layer framework we
used has some deficiencies that should be rectified. For
example, proper key support for persistent objects,
complex query specification and explicit NULL-value
support were areas we found our design lacking when
enhancing the mapping layer to support our MMDB.
Currently any external systems data required by our
application server must be accessed and updated via data
import or distributed transaction mechanisms, negating
any local performance gains.

A variety of extensions to our MMDB and mapping layer
are in progress. These include supporting large,
segmented datasets in the MMDB, multi-threaded client
transaction isolation and concurrency control, and better
crash-recovery and start-up speed of the MMDB. These
changes again have no affect on the application server
code. Conveniently our application server’s Enterprise
System Logic™-based object model and processing is
very conducive to splitting the MMDB data across
separate, multi-threaded, potentially multi-hosted
processes. This means multiple, concurrent XPM
components handling different functionality, such as

resource, transaction and accumulator processing, need
only interact most of the time with one MMDB process.
Our mapping layer may even cache some MMDB data
locally in the XPM process client for further performance
improvement. Our mapping layer is having more complex
querying support and extensions to meta-data definitions
added, along with various performance optimisations to
reduce the overhead of creating persistent objects and
reading their property values. We are also using our
MMDB to facilitate data-based enterprise systems
integration, by replicating external system data in the
MMDB for use by the XPM and exchanging data update
transactions with external systems (Blackham et al 2001).

8 Summary
Enhancing enterprise system application server
performance can be a challenging task. By careful design
and use of persistent object mapping layer abstractions
the application server’s data management can be isolated
from its processing functions, allowing various back-end
optimisations to be carried out. We greatly enhanced the
performance of our application server using a main-
memory database by storing all data and indexes in main-
memory and writing optimised transaction logs. No code
changes to the XPM were necessary to achieve great
performance gains. A simple main-memory database is
not difficult to build, but more complex database
functionality such as serialised transaction isolation,
concurrent multiple-client access and large data sets may
mean use of a 3rd party commercial MMDB is an
appropriate choice. We have had good experiences in
using a persistent object framework to isolate application
server and data management interaction. Careful design
of the mapping layer should be undertaken at the outset,
however, particular attention to meta-data specification
and management, NULL value representation and
complex query formulation.

9 Acknowledgments
Support for this research from a New Economy Research
Fund grant is gratefully acknowledged.

10 References

1. ALEKSY M, SCHADER M, TAPPER C. (1999):
Interoperability and interchangeability of middleware
components in a three-tier CORBA-environment-
state of the art. Proc. Third International Enterprise
Distributed Object Computing, 204-213, IEEE CS
Press.

2. BASS, L., CLEMENTS, P. AND KAZMAN, R. (1998):
Software Architecture in Practice, Addison-Wesley.

3. BLACKHAM, J., GRUNDEMAN, P. GRUNDY, J.,
HOSKING, J., MUGRIDGE, W. (2001): Supporting
Pervasive Business via Virtual Database
Aggregation, Proc. Evolve’2001: Pervasive
Business, Sydney, Australia, May 7-8 2001, DSTC.

4. ENGELHARDT, A. AND WARGITSCH, C. (1998):
Scaling workflow applications with component and
Internet technology: organizational and architectural
concepts. Proc. Thirty-First Hawaii International
Conference on System Sciences, Big Island of
Hawaii, USA, January 6 - 9, IEEE CS Press.

5. EXCELON CORP. (2001): ObjectStore white Paper,
www.excelon.com.

6. GEMSTONE SYSTEMS INC. (2000): GemStone/J
Application Server Persistent Caching,
www.gemstone.com.

7. GORTON, I., BREBNER, P., RAN, S., CHEN, S.,
LIU, A., PALMER, D. (2000): Enterprise
Middleware Evaluation Reports, CMIS, CSIRO, See:
http://www.cmis.csiro.au/adsat/publications.htm.

8. KIM, G.B. BAE, H.-Y.. (2000): Design and
implementation of a query processor for real-time
main memory database systems. Journal of Korean
Information Sciences Society 6 (2): 113-119.

9. LIU, A., GORTON, I. (2000): Evaluating Enterprise
Java Bean Technology, Proc. Software – Methods
and Tools, Wollongong, Australia, IEEE CS Press.

10. LU, H., NG, Y. Y., TIAN, Z. (1999): T-tree or B-
tree: main memory database index structure revisited.
Proc. 11th Australasian Database Conference. 65-
73. IEEE CS Press.

11. SECANT CORP, (2000): Secant Extreme Persistent
Object Service White Paper, www.secant.com.

12. SESSIONS, R. (1998): COM and DCOM:
Microsoft's vision for distributed objects, John Wiley
& Sons.

13. TIMESTEN INC, (2000): TimesTen Main Memory
Database White Paper, www.timesten.com.

14. VOGAL, A. (1998): CORBA and Enterprise Java
Beans-based Electronic Commerce, International
Workshop on Component-based Electronic
Commerce, UC Berkeley, 25th July, Fisher Center for
Management & Information Technology.

15. WU, E.. (1999): A CORBA-based architecture for
integrating distributed and heterogeneous databases.
Proc. Fifth IEEE International Conference on
Engineering of Complex Computer Systems, 143-
152. IEEE CS Press.

