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Abstract 
High-volume transaction processing speed is critical for 
adequate performance in many enterprise application servers. 
We describe our experiences using an object-oriented 
persistency framework to achieve greatly enhanced server 
response by the transparent use of main-memory database 
technology. We took an application server whose data 
persistency is abstracted via a persistent object framework and 
replaced a version of the framework using a relational database 
for persistency with one that uses a memory database. No 
changes to any of the application server components were 
necessary to achieve this and we achieved between 10-20 times 
transaction processing performance improvement. We briefly 
discuss some extensions to our memory database and mapping 
framework necessary for large-scale enterprise systems support 
and for data-oriented systems integration. We hope our 
experiences will be useful for others, both in terms of 
techniques for abstracting object persistency mechanisms and in 
approaches to application server performance enhancement. 

Keywords: persistent object frameworks, main-memory 
databases, transaction processing performance 

1 Introduction 
Most E-commerce systems use a standard multi-tier 
architecture: multiple clients (web-based for customers; 
typically desktop applications for staff; and other 
organisation's servers for Business-to-Business data 
exchange) connect to middle-tier application server(s), 
which in turn connect to database server(s) (Aleksy et al 
1999, Bass et al 1998, Vogal, 1998). Despite the 
widespread use of multiple components and threads in the 
middle and database tiers, performance of the application 
server is usually the key bottleneck in such a system 
(Bass et al 1998, Vogal 1998). This in turn is usually due 
to bottlenecks accessing and modifying data in the 
database (Liu and Gorton 2000). 
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Several solutions exist for this problem, including the use 
of higher-performance database servers, local area 
networks and database server hosts (Liu and Gorton 
2000); use of object and result set caching by the database 
or application server (GemStone Systems Inc 2000, 
Gorton et al 2000); use of main-memory or "real-time" 
databases (Kim and Bae 2000, Lu et al 1999); and further 
division of application server components and database 
tables across multiple hosts (Bass et al 1998, Vogal 
1998). Each of these approaches has advantages and 
disadvantages, many requiring considerable design and 
implementation changes to the application server 
components or reorganisation of the database-managed 
information.  

We describe our experiences in achieving a large 
performance enhancement for an E-commerce application 
server using a typical multiple-client, single-server, 
single-database 3-tier architecture. The application server 
originally used a relational database to manage enterprise 
information, accessed through a object persistency 
framework i.e. application server objects were made 
persistent or obtained from the database via this 
persistency framework. Our approach involved replacing 
the RDBMS persistency store implementation with a 
main-memory database (MMDB) implementation, 
without modifying any of the persistency framework 
interfaces the application server relied upon. The 
RDBMS was retained as the MMDB "mirror" (i.e. non-
volatile physical storage) for simplicity. A very large 
performance improvement was achieved for the 
application server transaction throughput without having 
to resort to major architectural modification, expensive 
OO database or cache purchase, expensive hardware 
purchase, nor even complete replacement of the RDBMS 
server. 

We motivate this work with an overview of our E-
commerce system architecture and compare and contrast 
various possible solutions to system performance 
enhancement. We describe the software architecture of 
our solution, the design of our object persistency layer 
and our main-memory database. We discuss the 
integration of the application server with the new 
persistency mechanism and discuss a variety of 
performance measures taken, concluding by reviewing 
the advantages and disadvantages of our solution. 
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Figure 1. The XSol™ application architecture

2 Motivation 
XSol Ltd have been developing a multi-tier enterprise 
system development product based around a conceptual 
framework, Enterprise Systems Logic™ (ESL) 
(Blackham et al 2001). This system provides business 
analysts facilities to define enterprise applications using a 
combination of workflows, transaction stages, and 
spread-sheet style forms and reports ("worksheets"). User 
interfaces include specification tools (business structure, 
workflow, transaction stage, worksheet design and 
reporting) and end user interfaces (workflow 
visualisation, to-do lists, worksheets and report output). 
An application server includes workflow and to-do list 
state, "reources" (data used by business transactions, like 
Customers, Products and Supplers), "transaction events" 
(business transaction state) and "accumulators" (data 
aggregation, like MonthlyProductSales and 
TotalCustomerOrders), along with various meta-data (i.e. 
workflow, worksheet, transaction and data 
specifications). A database stores application server state 
and meta-data.  

The application server includes interfaces for XSol 
clients, exchanging XML-encoded data and meta-data 
with the front-end interfaces. These tools may be desktop 
clients or web-based clients. An interface to the database 
provides persistency management for the application 
server. The application server, database and web 
presentation server can run on the same host or on 
different hosts. Figure 1 illustrates this basic multi-tier 
architecture. 

The enterprise specification tools and the workflow 
enactment engine are both light-weight, with a low 
number of clients and low amount of application server 
and database loading. The main task of the application 
server is to manage business transactions.  When business 
transactions are run, these typically require resources to 
be looked up (find customer, product, suppler etc), a 
transaction event to be generated and stored, and 
accumulators (i.e. data aggregation used to control 
business processing logic and for reporting) to be 
updated. All of these tasks require application server data 
to be loaded from and stored to the database. For 
example, when ordering a product, a "ProductOrder" 
transaction might be created (and stored in the database), 
required customer and product sold data looked up in the 
database, and several accumulators updated 

(TotalProductSold for the product; 
AmountBoughtPerMonth for the customer, etc). We 
found that the performance of the original XSol 
application server was unsatisfactory due to the overhead 
of the high number of data selections and updates during 
business transaction processing. 

There are a number of approaches that could be taken to 
improve our application server's performance. One 
common way is to modify its design and implementation 
to make use of a multi-tier architecture where the 
application tier is split into multiple, concurrent processes 
to exploit multiple processors or hosts (Bass et al 1998, 
Sessions 1998, Vogal 1998). Unfortunately profiling of 
the currently single process application server has shown 
most of the time spent processing transactions is in the 
RDBMS, so while a multi-tier solution would provide 
some benefit, as demonstrated in others’ work (Liu and 
Gorton 2000, Sessions 1998), this is likely to be quite 
limited at a cost of major re-engineering. As the 
application server uses persistent objects, management 
performance may be enhanced by the use of an 
OODBMS or persistent object store (GemStone Systems 
Inc 2000, Excelon Corp 2001, Secant Corp 2000), or 
remote objects via CORBA, COM or Enterprise Java 
Beans (Liu and Gorton 2000, Sessions 1998, Vogal 
1998). OODBMSs require transactions to be committed 
using similar storage mechanisms to a RDBMS, however, 
and DCOM and CORBA-based remote object systems 
often use an RDBMS themselves. Object caching 
(GemStone Systems Inc 2000, Wu 1999) and main-
memory databases (Kim and Bae 2000, Lu et al 1999, 
TimesTen Inc. 2000) offer potential large performance 
gains. Caching holds object state in memory, enhancing 
object reads, but typically writes it through to persistent 
storage on writes, which become the bottleneck. Main-
memory databases (MMDBs) utilise large main-
memories to hold the entire database, with a non-volatile 
secondary storage copy of the database (typically disk). 
MMDBs provide in-memory complex multi-field 
indexing, which caches often do not, and typically write 
update events to a high-speed transaction log rather than 
doing disk-based indexed file updates like RDBMSs and 
OODBMSs. The added attraction of a MMDB is that 
changing an application server to make use of it is very 
simple, provided the object persistency framework in the 
application server adequately abstracts developers from 
the persistency system. 
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Figure 2. Basic architecture of our application server and data management tiers 

3 Application Server Architecture 
In order to improve the performance of our application 
server, and make it more amenable to supporting data-
oriented integration with other enterprise systems, we 
developed a simple main-memory database (MMDB) to 
provide its data management capabilities. The 
architecture of our application server is illustrated in 
Figure 2.  

The application server, or XSol Process Manager (XPM), 
is comprised of an XML interface for clients (effectively 
the presentation tier), data definition (meta-data) 
management, a workflow engine, exception manager, 
resource manager, transaction manager and accumulator 
manager (the middle tiers), and a persistent object 
mapping framework and database (the data management 
tier).  

We developed a new version of our persistent object 
mapping framework, preserving the original object 
interfaces all of the XPM manager components used, 
which utilises a simple main-memory database to provide 
all XPM data. The main-memory database comprises an 
API, "tables" of persistent objects, and multi-field 
indexes on objects. On start-up, the MMDB loads its 
object tables from files (or a database) and thereafter all 
queries are handled by traversing the in-memory MMDB 
indexes. Updates to MMDB objects are logged to a file in 
transaction groupings (to preserve them in case of 
MMDB failure). A "writer daemon" reads log entries and 
applies to updates to the MMDB's disk-based mirror: 
either an ISAM-style indexed file structure or a database. 
We currently use an RDBMS as physical storage mirror 
for our MMDB, allowing us to use the exact same 
RDBMS tables the original mapping layer used, and 
allowing us to swap between RDBMS and MMDB as the 
application server's data management support. We built 
our own MMDB rather than use a commercial one as we 
only required basic data management functionality: our 
XPM application server is the only client; we could use 
our RDBMS as the main-memory database mirror and 
only simple transaction and crash-recovery support were 
necessary. 

The design of the mapping framework, main memory 
database and some XPM persistent objects, is outlined in 

Figure 3. Classes stereotyped <<XPM>> are unchanged 
in both versions of our XPM. Classes prefixed 
<<MMIF>> implement the same interface as the RDBMS 
interfacing persistent object classes, but provide 
transparent access to the main-memory database. 
MMDB-prefixed classes implement the MMDB. All 
XPM objects that need to be made persistent are 
specialisations of PersistentObject. All <<XPM>> and 
<<MMIF>> classes in this diagram have corresponding 
interfaces e.g. IPersistentObject, IPersistentBroker, 
ISelectPerformer etc which are accessed by the XPM and 
are the same for both versions of the framework. This 
allowed us to modify the implementation classes to 
provide our MMDB data persistency without having to 
change any code in the XPM itself. When starting up the 
XPM, either a MMDBPersistentBroker or 
RDBMSPersistentBroker object is created, both 
implementing the IPersistentBroker interface, to give the 
XPM either RDBMS or MMDB data persistency. If using 
the same RDBMS as the main-memory database mirror, 
these can even be swapped over while the XPM is 
running (which we found very useful for testing and 
performance analysis). 

Each different type of PersistentObject has a ClassMap 
meta-data that specifies its corresponding DB table (or 
MMDB object table) the PersistentObject is mapped to. 
XPM objects can be mapped 1:1 to DB objects, split over 
several DB objects, or several XPM objects can be 
mapped to a single DB object. For example, Resource 
XPM objects are actually comprised of a Resource object 
and each resource field is represented by a Field object. 
This object aggregate is mapped onto a single DB table 
for efficient storage e.g. a "Product" resource object and 
its field objects are mapped to a single "DBProduct" 
object in the MMDB or a single row in the RDBMS. 

The persistency framework provides a set of classes used 
to formulate queries over persistent objects and a set to 
perform updates. PersistentCriteria and its SelectCriteria 
aggregates are created by the XPM to formulate multi-
field and multi-object queries. The original 
SelectPerformer in our RDBMS version of the mapping 
framework implementation translated these into SQL to 
run on the database, and translated the SQL result set into 
PersistentObject creations.  
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Figure 3. High-level OOD for the architecture 

Our new mapping framework implementation of 
SelectPerformer translates these queries into API calls on 
the MMDBIndex tables, and translates lists of returned 
MMDBObjects into appropriate PersistentObject 
instances, using the appropriate ClassMap 
transformations. The PersistentTransaction, 
InsertPerformer, UpdatePerformer and DeletePerformer 
implementations in the RDBMS implementation of the 
framework generate SQL INSERT, UPDATE, DELETE 
and begin/commit transactions.  

The MMDB implementation of these classes run 
MMDBTable API calls to add, update and delete 
MMDBObjects. The MMDBTable logs these updates to 
its transaction log, which is processed asynchronously by 
the writer daemon. A MMDB transaction stores 
MMDBObject updates as event objects which can be 
reversed to rollback the transaction. The transaction log is 
not written to until MMDB transaction commit, for 
efficiency.  

4 Persistent Object Mapping Layer Design 
In this section we briefly describe some of the key 
mapping layer interface functions, and discuss 
implementation differences between the RDBMS and 
MMDB versions of the framework that we developed. 
The PersistentObject is the root class for all XPM objects 
which need to be made persistent. It provides Save() and 
Retrieve() functions used to persistent an object or load it 
using its unique Object ID (Oid). Getter and setter 
functions provide reflective access to a persistent object's 
properties by name. A ClassMap provides a specification 
for mapping persistent objects and their properties to and 
from corresponding database table(s). 

A PersistencyBroker provides a façade allowing 
transactions to be created, object state to be saved, objects 
to be deleted and objects to be retrieved based on 
selection criteria. Inserts, updates and deletes are 
delegated to "Performers" which use the ClassMap and 
given PersistentObject type to formulate appropriate SQL 
update statements to be run on the database. The 
PropertyMaps associated with a PersistenctObject's 
ClassMap provide names of object properties and Getter 
methods are called to extract the property values for 
INSERT and UPDATE commands. Transaction objects 
are used to record a set of persistent objects whose state 
has changed and then to action their Save() functions 
within a database transaction, rolling back if an update 
fails. 

Objects are retrieved using their unique Oid, constraints 
on one or more of their property values, or by constraints 
on the properties of related persistent objects, linked to 
the PersistentObject by their Oid values. The XPM 
constructs a RetrieveCriteria object, adds required 
property constraints, joins and order by criteria, and then 
asks the PersistencyBroker to perform the query. A 
SelectPerformer translates the query into a SQL SELECT 
statement run against the database. After the query is run, 
new PersistentObject instances are created for each object 
located, the field values in the result set are copied into 
the PersistentObject's properties using the Setter methods 
and PropertyMap property names. The XPM obtains a list 
of the newly created PersistentObject objects that 
matched the query via GetObjects(). The 
PersistencyBroker provides some additional functionality, 
for example to create and drop tables, obtain database 
meta-data and so on. 
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Figure 4. The persistent object mapping framework design 

The XPM application server, persistent object layer and 
main-memory database are implemented in Delphi. The 
RTTI reflection mechanism is used to dynamically 
determine and call the get and set functions for 
PersistentObject subclass properties. This allows any 
XPM class to be made persistent by inheriting from 
PersistentObject and declaring its object attributes to be 
made persistent as properties, specifying set and get 
functions for each property. By performing all persistent 
operations via this persistent object framework, the XPM 
application server is isolated from the actual persistency 
mechanism used. By exchanging our original RDBMS 
persistency broker implementation, leaving unchanged 
the mapping layer interfaces the XPM uses, we re-
implemented the mapping layer to use a main-memory 
database. The XPM runs as before but with its persistency 
needs provided by memory-resident data. 

5 MMDB Design and Implementation 
In this section we briefly discuss the design and 
implementation of our main-memory database and the re-
implemented mapping framework classes that provide the 
XPM transparent persistency via this MMDB. Figure 5 
shows some of the classes and their functions used in the 
mapping framework implementation and MMDB. The 
main-memory database comprises a set of MMDBTable 
objects, one for each group of same-typed 
MMDBObjects. An MMDBTable corresponds to an in-
memory version of a RDBMS or OODBMS table. It 
indexes its MMDBObjects via a hashtable, keyed by the 
MMDBObject unique Object ID (Oid). An MMDBObject 

holds PersistentObject property values in a "packed" form 
to minimise memory usage. Each table has a single 
hashtable index on the Oid value of each MMDBObject it 
manages. Each MMDBTable also has zero or more 
MMDBIndex objects, which implement secondary T-
Tree based ordered indexes. We use a T-tree rather than a 
B-Tree to provide multi-field, ordered indexes, as the T-
tree gives better in-memory performance than a B-Tree 
(more commonly used for RDBMS indexes) (Lu et al 
1999). 

The UpdatePerformer and InsertPerformer classes 
originally constructed SQL update commands to achieve 
object creation and mofication, used to implement a 
PersistentObject.Save(). We modified these to instead 
look-up, create and modify MMDBObjects using the 
MMDBTable hash index. They also log the new 
MMDBTable state using a MMDBLogger. Currently they 
log SQL commands which are asynchronously run on the 
RDBMS mirror of the main-memory database (though we 
plan to log more compact change events and use indexed 
files for the MMDB mirror in the future). 

Queries are translated by a SelectPerformer into 
findObjects(low_value, high_value) function calls on a 
MMDBIndex. Only simple optimisation of queries is 
currently used by our MMDB, but these have proved 
sufficient for our XPM's query needs to date. The index 
used returns a list of MMDBObjects which are further 
filtered by any criteria not used in the index. Joins are 
made to other MMDBTables using Oid references and 
filtering applied to joined MMDBObject property values. 
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Figure 5. Main-memory database design 

6 Performance 
The database version of our mapping layer framework 
can be deployed with the XPM in two basic 
configurations: local RDBMS and remote RDBMS. The 
main-memory database version can be deployed in three 
configurations: MMDB and XPM in the same process; 
XPM and MMDB in different processes but running on 
the same host; and remote MMDB. 

In addition, the MMDB's writer daemon and RDBMS 
mirror can be deployed on the same host as the MMDB 
or on different hosts. We briefly compare the 
performance of our XPM application server with the 
RDBMS and MMDB in some of these configurations. A 
range of XPM data processing transactions are used, 
including simple persistent object save and load, resource 
look-up (one row selected to multiple persistent objects), 
resource adjustment (multiple persistent objects to a 
single row update), and accumulator updates 
(combinations of several data lookups, computations and 
one row updates). 

Here we compare the performance of the XPM with a 
local Interbase 5.5 RDBMS optimised for a single client 
and given a large memory buffer, to our optimised 
MMDB code running as part of the XPM process (local 
Delphi calls only) and running on the same host as the 
XPM but different process, communicating via a CORBA 
interface. These are the most likely initial configurations 
of our application server and databases. Queries and 
updates were done over tables with around 5,000 rows 

and 1,000-10,000 transactions in each category were run. 
Table 1 summarises the kinds of transactions performed 
and the average transactions per second (tps) achieved 
over several runs. The first three transactions involve no 
XPM processing, just mapping layer, RDBMS and 
MMDB processing. The fourth and fifth are one DB row 
loaded to and from multiple persistent objects, involving 
limited XPM processing and substantial mapping 
framework processing. The last transaction is XPM 
processing-intensive, as well as requiring several DB 
look-ups and an update. 

Profiling of the Delphi code implementing the XPM, 
mapping framework and the MMDB shows most of the 
time spent in transactions involving the RDBMS is in 
RDBMS API calls (around 85-90%). For the MMDB 
integrated into the XPM application server process, a 
major portion of the time is spent in the mapping 
framework translating between XPM persistent objects 
and MMDB objects (around 50-75% of the time), even 
when logging object updates to secondary storage. This 
also accounts for the low tps of the 3rd transaction with 
the MMDB – almost all of the time is spent copying 
MMDB objects into persistent XPM objects. With the 
CORBA-accessed MMDB, the communication overhead 
consumes much of the time. We have run the XPM with 
the RDBMS and CORBA-accessed MMDB on different 
hosts with a 100 megabit LAN connection, but 
performance greatly degrades due to networking 
overhead (the TPS measures for both fall by around 60-
70%). 



 

Transactions Performed RDBMS on 
same host as 

XPM 

XPM and 
MMDB in 

same Process 

CORBA-accessed 
MMDB on same 

host as XPM 

Load 1 object using OID 168 tps 16,393 tps 3,846 tps 

Save 1 object 181 tps 6,250 tps 2,125 tps 

1 Select returning 30 objects 84 tps 588 tps 467 tps 

Load resource (1 row/MMDB object to 
10 XPM persistent objects) 

145 tps 2,053 tps 1,401 tps 

Save 2 resources (20 XPM persistent 
objects to 2 rows/MMDB objects) 

117 tps 1,470 tps 938 tps 

Update 1 accumulator (3 XPM object 
loads and 1 save + XPM processing) 

18 tps 264 tps 138 tps 

Table 1. Performance measures

We also experimented with a shared memory link 
between the XPM and MMDB running on the same host 
in different processes. This used Win32 memory files and 
mutexes, and gives between 65-80% TPS of the 
XPM/MMDB in same process. 

7 Discussion 
The key advantage from the use of an MMDB is the 
transaction through-put performance boost the XPM 
application obtains. Querying speed-ups for query-
intensive data range from 20-100 times speed-up. The 
more complex the criteria being used, the better the 
performance increase as the main-memory held indexes 
provide better traversal performance than the DBMS 
ones, even when the DBMS is completely buffered in 
main-memory. Update speed improvement is 
considerably lower, as the MMDB must log updates to 
physical storage in case of a crash, but these can be 
written much more quickly than database communication 
and updates performed. We originally planned to 
dispense with a RDBMS and use indexed files to mirror 
the MMDB, but found no great advantage to doing this. 
The RDBMS mirror used can be a simple database as no 
great performance demands are placed on it. The MMDB 
can even be switched off while the XPM is in use and 
switch to the RDBMS-based persistency broker, which 
we found useful for testing and performance monitoring. 
There were no changes made to the application server 
code in the XPM in order to incorporate our MMDB-
based persistency mechanism. This is in contrast to a 
cache added to the XPM to buffer frequently-used 
persistent objects. It proved to be very limited as it could 
only support very simple queries over persistent objects, 
others requiring RDBMS SELECT calls, and writes were 
still sent directly to the RDBMS. An additional advantage 
of the MMDB approaches is that we are also able to 
incrementally enhance the main-memory database and 
make various performance optimisations to this without 
impacting at all on the XPM code. 

We encountered some deficiencies in our approach and in 
our MMDB that are important to consider before 
adopting the solution to performance problems outlined 

above. A single process MMDB is limited to 2 GB 
maximum size due to 32-bit addressing limitations on 
most common hardware platforms. This can be overcome 
by using 64-bit memory addresses or by segmenting the 
MMDB into multiple processes. The first requires 
expensive hardware not (yet) commonly available and the 
second a more complex MMDB architecture and 
performance loss due to inter-process communication 
(though this can be partially overcome by simple 
mapping layer caching and/or use of shared memory-
based communication, if all processes run on the same 
host machine). The MMDB transaction support and 
concurrency control are simplistic due to our XPM 
application server being its single client. Proper multi-
threaded, concurrent client support is necessary, along 
with transaction isolation if it were to be used by more 
complex application servers. Definition of indexing, 
meta-data support and database maintenance could all be 
enhanced. Inter-process communication between the 
application server and MMDB could utilise shared 
memory or sockets rather than CORBA to further 
enhance performance. The mapping layer framework we 
used has some deficiencies that should be rectified. For 
example, proper key support for persistent objects, 
complex query specification and explicit NULL-value 
support were areas we found our design lacking when 
enhancing the mapping layer to support our MMDB. 
Currently any external systems data required by our 
application server must be accessed and updated via data 
import or distributed transaction mechanisms, negating 
any local performance gains. 

A variety of extensions to our MMDB and mapping layer 
are in progress. These include supporting large, 
segmented datasets in the MMDB, multi-threaded client 
transaction isolation and concurrency control, and better 
crash-recovery and start-up speed of the MMDB. These 
changes again have no affect on the application server 
code. Conveniently our application server’s Enterprise 
System Logic™-based object model and processing is 
very conducive to splitting the MMDB data across 
separate, multi-threaded, potentially multi-hosted 
processes. This means multiple, concurrent XPM 
components handling different functionality, such as 



resource, transaction and accumulator processing, need 
only interact most of the time with one MMDB process. 
Our mapping layer may even cache some MMDB data 
locally in the XPM process client for further performance 
improvement. Our mapping layer is having more complex 
querying support and extensions to meta-data definitions 
added, along with various performance optimisations to 
reduce the overhead of creating persistent objects and 
reading their property values. We are also using our 
MMDB to facilitate data-based enterprise systems 
integration, by replicating external system data in the 
MMDB for use by the XPM and exchanging data update 
transactions with external systems (Blackham et al 2001). 

8 Summary 
Enhancing enterprise system application server 
performance can be a challenging task. By careful design 
and use of persistent object mapping layer abstractions 
the application server’s data management can be isolated 
from its processing functions, allowing various back-end 
optimisations to be carried out. We greatly enhanced the 
performance of our application server using a main-
memory database by storing all data and indexes in main-
memory and writing optimised transaction logs. No code 
changes to the XPM were necessary to achieve great 
performance gains. A simple main-memory database is 
not difficult to build, but more complex database 
functionality such as serialised transaction isolation, 
concurrent multiple-client access and large data sets may 
mean use of a 3rd party commercial MMDB is an 
appropriate choice. We have had good experiences in 
using a persistent object framework to isolate application 
server and data management interaction. Careful design 
of the mapping layer should be undertaken at the outset, 
however, particular attention to meta-data specification 
and management, NULL value representation and 
complex query formulation. 
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