
Third Program Visualization Workshop 1

A Lightweight Visualizer for Java

John Hamer

Department of Computer Science

University of Auckland

New Zealand

J.Hamer@cs.auckland.ac.nz

1 Introduction

We report on a lightweight tool (LJV) that provides high-quality visualizations of Java data
structures. The key distinguishing characteristic of the tool is its effortlessness. For instruc-
tors, LJV can be easily adopted without requiring any change to the teaching environment;
i.e., you can keep the same editor, Java environment, code examples, etc. For users, the
interface to LJV is truly simple: a call to a single (static) method that takes a single (Object)
argument.

LJV works by using Java reflection to traverse the fields of an object (and the fields of
the fields, etc.), generating a textual description of the connectivity as it goes. The descrip-
tion is then passed to the graph drawing program GraphViz (North and Koutsofios, 1994)1.
GraphViz automatically produces an image of the graph, in a choice of bitmap or vector
formats.

Each visualizations depicts a single Java object. A sequence of visualizations constitutes
an animation that the user can step through, forwards and backwards, at their leisure.

LJV includes a configuration mechanism that allows broad and precise elision of detail.
Users can choose to hide certain fields or groups of fields, or show entire objects in summary
form.

This paper discusses the design of LJV and its intended learning objectives. While no
formal evaluation of the tool has been undertaken, some classroom experiences are reported.
A conclusion reflects on tools and pedagogy.

2 An illustration, and commentary

Examples of the visualizations produced by LJV are shown in Figure 1. The first diagram
shows a binary (red-black) tree containing four entries. The second is a circular doubly-linked
list with three entries. Both examples happen to be from the standard Java library, but this
is not necessary; LJV has no built-in knowledge of any particular data structures, and will
work just as well with data structures written by instructor or student.

Two further observations are in order:

æsthetics Despite the logical symmetry of the data structures, the diagrams exhibit a certain
amount of arbitrary variation:

• the entries in the linked list are not evenly spaced;

• some edges are straight while others are curved;

• the curved edges “wobble” in some places.

We feel that the organic nature of the diagrams makes them more interesting, and
therefore likely to retain a viewer’s attention longer than would a rigid layout. This
consideration was one of the factors in choosing GraphViz as the drawing tool.

1GraphViz is a free, open-source program, available for all major platforms from www.research.att.com/

sw/tools/graphviz

2 Third Program Visualization Workshop

TreeMap
size: 4

modCount: 4

Entry

key: three

value: 3

color: true

root

Entry

key: one

value: 1

color: true

left

Entry

key: two

value: 2

color: true

rightparent

Entry

key: four

value: 4

color: false

left parent

parent

(a) A binary tree

LinkedList size: 3

Entry null

header

Entry A

next

Entry C

previous

previous

Entry B

next previous

next

next

previous

(b) A linked list

Figure 1: Some example visualizations

shallow semantics The left subtrees appear to the left in Figure 1(a) by good luck. They
could just as easily have appeared on the right. This “luck” ran out in the linked list
diagram, where the list elements appear in an unconventional anti-clockwise order.

Our visualizer does not provide any means of hinting at a deeper semantic meaning in
the data structures depicted. At times, this can lead to momentary confusion by the
reader. However, the tradeoff is one of greatly simplified usage. LJV is able to draw
objects without any prior knowledge of their data type, and it generally does a good
job.

3 Design

In designing LJV, we have adopted the following principles:

• students must be engaged in active learning (Hundhausen and Douglas, 2000);

• the tool must be simple to use. As a guideline, setting the Java CLASSPATH has proven
to be “too hard” for a significant number of students;

• avoid unnecessary features that could distract students from substantive course mate-
rial (Naps, 1998);

• minimise the effort required by instructors to integrate tools into the curriculum (Naps
et al., 2003);

• software must be reliable.

LJV has a number of features that distinguish it from more traditional “heavy-weight”
visualizers:

• Setup is straightforward. Once an administrator has installed the GraphViz “dot”
utility, a user needs only to copy a single, small (600-line) Java source file into her
working directory to be immediately able to generate visualizations.

Third Program Visualization Workshop 3

• The tool is easy to use. A user inserts calls to a static method, passing the object he
wishes to display. As these methods are executed, a numbered sequence of pictures is
written to disk. He can then view the animation frame-by-frame using any standard
picture viewer.

• The visualizer works on any Java program. No specific programming conventions need
to be followed.

• Active learning is supported, as the user must decide which objects to display, where to
place the calls to draw these objects, and what to elide.

• “Wrong” data structures can be viewed (as well as correct ones). The visualizations
faithfully depict actual code behavior.

• Feedback is not immediate. The visualizations are not seen until the program completes.

We believe that a delay between “doing” and “seeing the result” can be important, as
it provides a time for anticipation and reflection on the expected outcome2.

• Visualizations can be easily incorporated in reports, www pages, and presentations.

4 Configuration

A drawing context is used to control the appearance of graph nodes and edges, to elide classes
and fields, and to control the format and naming of output files.

A default drawing context can be configured to give reasonable defaults, such as ignoring
private fields or treating all system classes as primitive types.

Configuration of the drawing context is ongoing. The operations currently supported
include:

treatAsPrimitive The specified class is treated as a primitive value; i.e., the result of calling
toString on the object is displayed in-line, rather than showing the object as a separate
node.

This is an effective mechanism for reducing the amount of clutter in a visualisation.
Most Java classes provide a toString method that conveys the content of the object as
a string. This includes all the Java collection types (lists, maps, etc.). Ellipsis (“. . . ”)
may be inserted to replace the middle of excessively long strings.

ignoreField Suppresses display of the given field; i.e., LJV pretends the field does not exist.

ignoreClass, ignorePackage Suppresses display of any field of a given class, or from a given
package.

ignorePrivateFields A boolean value. If set (the default), fields that are not normally
accessible are not displayed. This includes private and protected fields in other classes,
and package-visible fields from other packages.

setClassAttribute, setFieldAttribute Attributes include border and font colour, font
size, fill style, etc. For example, a binary tree node can be made bright pink and
different colours given to the left and right links as follows:

¨

Context ctx = getDefaultContext();
ctx.setClassAttribute(Node.class, ”color=pink”);
ctx.setFieldAttribute(”left”, ”color=red”);
ctx.setFieldAttribute(”right”, ”color=blue”);

§

2In support, we note anecdotally that a similar sentiment can be heard from “old timers,” who often claim
that the delays inherent in punch-card programming led to more a more thoughtful coding process than that
observed in the instantaneous environments of today.

4 Third Program Visualization Workshop

The available attributes are determined by the GraphViz tool.

Fields can be set by name (as above) or by specific reference.

showFieldNamesInLabels Determines whether field names should be displayed in nodes
or not.

qualifyNestedClassNames Nested classes are given compound names by the Java compiler;
e.g., a class Entry nested in a class LinkedList will be named LinkedList$Entry.
Normally, only the last part of these names is displayed. Setting this option results in
the full name being used.

outputFormat This string field determines the output format. The default is png, a widely
used image format. The ps (encapsulated postscript) format can also be used for gen-
erating high-resolution scalable graphs suitable for including in reports.

baseFileName A numeric suffix is added to give a unique name for each output graph (e.g.,
graph-0.png, graph-1.png, etc.) The set of graphs so generated can then be viewed
as a slide show using any standard image viewer.

5 Implementations

In addition to a static Java method, LJV has been integrated into a modified debugger (Fiedler,
2004) and a Java interpreter (Niemeyer, 2004). These integrated environments provide im-
mediate display of the visualization, and may prove useful in some learning contexts.

We note that these variations sacrifice some of our design principles. Setup is not as
simple, and various constraints are imposed by the environment. We feel it is best to regard
these versions as “experimental.”

5.1 BeanShell integration

The BeanShell is a Java interpreter3. As well as being used as a stand-alone interpreter,
the BeanShell has also been embedded in several popular Java development tools, including
GNU Emacs (Kinnucan, 2004), Sun Forte (Microsystems, 2004), BEA WebLogic (Inc., 2004),
and Apache Ant (Foundation, 2004). More information on the BeanShell can be found at
www.beanshell.org.

One of our students (McCall, 2003) integrated LJV into the BeanShell, providing a display
command that opens a window containing the visualization of an object. A screen dump of
the system in action is shown in Figure 2. The white-on-black window in the bottom right
is the BeanShell console, in which the user has typed a number of Java statements. Two
display commands have been issued, resulting in two image frames (one for a linked list, and
the other for an array list). The frames are sized to fit the image, and are refreshed after each
console command.

5.2 JSwat integration

JSwat is a stand-alone, graphical Java debugger written by Nathan Fiedler (Fiedler, 2004).

We have developed an experimental integration of LJV into JSwat. The interface is through
a “graph” menu command that is available when browsing values in a stack frame. Images
are refreshed each time the debugger steps or stops at a breakpoint. The integration uses
a viewer called Grappa (Mocenigo, 2004), which allows the visualization to be scrolled and
zoomed.

3Technically, a Java-compatible scripting language. The language is an extended version of Java that
supports dynamic typing.

Third Program Visualization Workshop 5

Figure 2: A session using the LJV-BeanShell integration

A screen dump is shown in Figure 3. The stack frame appears on the top left of the window,
and a single Graph Viewer window holds all the images. Not shown is a configuration screen
that provides access to the LJV elision settings.

Work is in progress in extending the debugger to support to direct manipulation of the
graph. This includes updating data values, eliding or expanding nodes, manual adjustment
to node positions, setting colour and other node and edge attributes, etc.

6 Evaluation

LJV has been deployed in three classes to date. Two of these courses were CS2-level data
structures, and the other a CS1-level introductory programming course. No formal evaluations
have yet been undertaken, but some anecdotal evidence has been gathered.

The tool has been used in two educational settings. First, a structured laboratory session
was used to both introduce the tool and to identify some common misconceptions. Later,
students were left to use or ignore the tool as they saw fit during the remaining course-work.

The laboratory presented a series of Java code fragments, for which students were asked:

. . . make a sketch in your engineering notebook of the graph you expect to see

before you run the program. If you can think of more than one plausible output,

sketch them all.

If the output differs from your expectation, write down a concise summary of the

difference and think about why your prediction was wrong.

The code fragments explored various Strings, StringBuffers, one and two-dimensional
arrays, and parameter passing. For example,

¨

String x = ”Hello”;
String y = new String(x);
Dot.drawGraph(new Object[]{ x, y });

§

Feedback from students has been positive, and no problems with the use of the system
were reported. A number of students made regular use of the tool later in the course, with
one even undertaking a significant extension (see Section 5.1). We intend to survey students
in subsequent courses to determine whether they continue using the tool.

6 Third Program Visualization Workshop

Figure 3: Exploring with the LJV-JSwat integration

7 Misconceptions

The primary benefit of the tool has been in overcoming misconceptions concerning the Java
data model. We are compiling an “inventory” of common mistakes held by novices. Such
misconceptions are often stubbornly persistent, and are regularly observed in students in
advanced courses (Holland et al., 1997). The “inventory” includes the following:

Reference semantics Java assigns object types by reference, but primitive types by value.
Many students fail to notice there is a difference, and even when told often fail to register
the significance.

Primitive string Strings in Java are objects, but string constants look like primitive val-
ues. The “primitive string” misconception is the assumption that strings have value
semantics.

Object arrays Object arrays hold references, not values. Students sometimes assume that
because arrays of primitive have value semantics, all arrays do so.

2D arrays 2-dimensional arrays are constructed from 1-dimensional arrays. Arrays thus
have several uninitialised states: a null reference, or a reference to a null array block.
Arrays can also be jagged, so the second dimension must be determined on a row-by-row
basis. These subtleties are often missed.

Static field Static fields are not part of any object, yet they share the same scope rules as
object fields. This manifests in students sprinkling the static keyword through their
code seemingly at random. The misconception is reinforced when programs compile and
“appear” to work.

Inheritance A broad category that needs further refinement. The central issue is that inher-
itance means objects are often not the same as their declared types. The misconception
leads students to use concrete types (LinkedList, Vector, etc.) in preference to an
interface type (say, List).

Third Program Visualization Workshop 7

Identity/attribute confusion This is another misconception category, from (Holland et al.,
1997). It manifests in various false beliefs, such as “only one variable can reference to a
given object at a given time” and “if you have two different variables, they must refer
to two different objects.”

LJV proved helpful in alerting many students to the fact that they held misconceptions.
By turning off all elision, students are presented with visualizations that accurately reflect
the Java data model, including deep sharing.

8 Related work

Pedagogically, Naps’s Visualizer class (Naps, 1998) shares much in common with the work
presented here, with both approaches emphasising the need for a tool simple enough for
students to use without unnecessary distraction. Our visualizer is more general, does not
require any special configuration to handle new data structures, and is easier to use. Naps’s
approach supports abstract presentations of data (e.g., bar charts for integer arrays) and
supports arbitrary customisation.

Another approach to supporting abstract presentations was taken by Korn and Appel
(1998), who developed a tool for specifying many kinds of visualizations of Java programs
in a declarative pattern-action notation. For example, the tool can produce a visualization
for a parse tree that uses bitmap images for the internal nodes (e.g., a large “plus” symbol
for an addition node). The notation is expressive enough to construct quite sophisticated
diagrams. However, it does not resemble Java code, and would require a considerable effort
for students to master. To hide the notation from novice users, a “visual pattern constructor”
was provided. The authors report some success in using the system in a compiler course.

JavaViz (Oechsle and Schmitt, 2002) can display UML object and sequence diagrams of
running Java programs. The object diagram layout is simplistic, and looks similar to DDD.
Some support is provided for visualizing concurrent threads in the sequence diagrams. No
elision support is provided.

DDD is a widely used graphical debugger (Zeller and Lütkehaus, 1996) that runs on Unix
platforms. The system supports a notation for specifying how to display the contents of a
node, including nested layout of aggregate structures. References are expanded manually,
and the system supports a simplistic automatic layout that will redisplay the current graph.
Shared references are not recognized, which can lead to diagrams in which a single object
appears in multiple places.

9 Conclusions and future research

Effort has been identified as a major impediment to the uptake of visualization tools for
teaching. Many tools come attached to large or hermetic environments, and cannot be easily
incorporated into an existing teaching setting. LJV’s primary distinction is the very low
effort required to install and run, and its ability to integrate easily into virtually any Java
environment.

Most of the tools that operate on arbitrary (student) Java programs provide limited sup-
port for controlling the amount of detail displayed. The elision controls provided by LJV offer
a powerful solution to this problem, and should prove adequate for most introductory courses.

The usefulness or otherwise of a visualization tool is ultimately determined by how widely
it is adopted. Seeing students continue to use LJV after the end of formal instruction is
evidence that the tool has real educational value. However, more formal research is needed
to drive further development. For example, we have no evidence as to whether the delayed
feedback model contributes to improved learning over a debugger model that provides instant
feedback. A formal study comparing plain LJV to the JSwat integration may shed some light
on this question. We also note a perceived demand from educators for tools that can provide

8 Third Program Visualization Workshop

abstract presentations of data structures. It remains to be seen whether LJV can be extended
to support the necessary transformations without sacrificing its essential simplicity.

References

Nathan Fiedler. JSwat, a Java debugger, April 2004. URL www.bluemarsh.com.

Apache Software Foundation. Apache Ant project, August 2004. URL ant.apache.org.

Simon Holland, Robert Griffiths, and Mark Woodman. Avoiding object misconceptions. In
SIGCSE’97 Twenty-Eighth Technical Symposium on Computer Science Education, pages
131–134, San Jose, 1997. ACM Press. ISBN 0-89791-889-4.

Christopher Hundhausen and Sarah Douglas. Using visualizations to learn algorithms: Should
students construct their own, or view an expert’s? In IEEE International Symposium on

Visual Languages, pages 21–30, September 2000.

BEA Systems Inc. BEA WebLogic platform, August 2004. URL www.bea.com.

Paul Kinnucan. Java development environment for Emacs (JDEE), August 2004. URL jdee.

sunsite.dk/.

Jeffrey L. Korn and Andrew W. Appel. Traversal-based visualization of data structures. In
Proceedings IEEE Symposium on Information Visualization, pages 11–18. IEEE Computer
Society, 1998. ISBN 0-8186-9093-3.

Sam McCall. private communication, October 2003.

Sun Microsystems. Sun Java studio, August 2004. URL www.sun.com/forte/.

John Mocenigo. Grappa: A Java graph package, August 2004. URL www.research.att.

com/∼john/Grappa.

Thomas Naps. A Java visualizer class: Incorporating algorithm visualizations into students’
programs. In ITiCSE’98 Innovation and Technology in Computer Science Education, pages
181–184, Dublin, Ireland, August 1998.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement in computer science
education. ACM SIGCSE Bulletin, 35(2):131–152, 2003. ISSN 0097-8418.

Pat Niemeyer. BeanShell: Lightweight scripting for Java, April 2004. URL www.beanshell.

org.

Stephen C. North and Eleftherios Koutsofios. Application of graph visualization. In GI’94

Graphics Interface, pages 235–245, Banff, Alberta, Canada, 1994. URL citeseer.nj.nec.

com/221206.html.

Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic program visualization with object
and sequence diagrams using the Java debug interface (JDI). In S. Diehl, editor, Revised

Lectures on Software Visualization, International Seminar, volume 2269 of LNCS, pages
176–190. Springer-Verlag, 2002. ISBN 3-540-43323-6.

Andreas Zeller and Dorothea Lütkehaus. DDD — a free graphical frontend for Unix debuggers.
SIGPLAN Notices, 31(1):22–27, January 1996.

