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Abstract. An important focus of recent CBR research is on how to
develop strategies for achieving compact, competent case-bases, as a
way to improve the performance of CBR systems. However, compact-
ness and competence are not always good predictors of performance,
especially when problem distributions are non-uniform. Consequently,
this paper argues for developing methods that tie case-base maintenance
more directly to performance concerns. The paper begins by examining
the relationship between competence and performance, discussing the
goals and constraints that should guide addition and deletion of cases. It
next illustrates the importance of augmenting competence-based crite-
ria with quantitative performance-based considerations, and proposes a
strategy for closely reecting adaptation performance e�ects when com-
pressing a case-base. It then presents empirical studies examining the
performance tradeo�s of current methods and the bene�ts of applying
�ne-grained performance-based criteria to case-base compression, show-
ing that performance-based methods may be especially important for
task domains with non-uniform problem distributions.

1 Introduction

Case-base maintenance has become an active CBR research area, producing
results with important rami�cations for both the theory and practice of CBR.
Much signi�cant work in this area focuses on developing methods for reducing
the size of the case-base while maintaining case-base competence, \the range
of target problems that can be successfully solved" (Smyth & McKenna 1999a).
Strategies have been developed for controlling case-base growth through methods
such as competence-preserving deletion (Smyth & Keane 1995) and failure-driven
deletion (Portinale, Torasso, & Tavano 1999), as well as for generating compact
case-bases through competence-based case addition (Smyth & McKenna 1999a;
Zhu & Yang 1999).
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The goal of achieving compact competent case-bases addresses important
performance objectives for CBR systems. First, su�cient competence is a sine

qua non for performance: no CBR system is useful unless it can solve a su�cient
proportion of the problems that it confronts. Second, compacting the case-base
may help to increase system e�ciency by alleviating the utility problem for re-
trieval (Francis & Ram 1993; Smyth & Cunningham 1996). As an added bene�t,
compact case-bases decrease communications costs when case-bases are used as
vehicles for knowledge sharing or are transferred in distributed CBR systems (cf.
(Doyle & Cunningham 1999)).

However, case-base compactness is only a proxy for performance in a CBR
system, rather than an end in itself. For example, decreased retrieval cost from
a smaller case-base may be counterbalanced by increased adaptation costs or
decreased quality. Thus optimizing the performance of a CBR system may re-
quire balancing tradeo�s between competence, quality, and e�ciency (Portinale,
Torasso, & Tavano 1999; Smyth & Cunningham 1996). In addition, adjusting
the case-base to optimize performance may require reasoning about the sys-
tem's performance environment, taking into account that patterns in problem
distribution make some cases more useful than others (Leake & Wilson 1999).
Consequently, e�ective maintenance requires remembering why cases are being
remembered (or forgotten)|to serve the overall performance goals of the CBR
system for a given task|and optimizing maintenance decisions accordingly. Now
that research on case-base competence is becoming mature, we believe that the
time is ripe to make performance criteria play a more direct role in guiding case
addition and deletion.

This paper examines the bene�ts of using �ne-grained performance metrics
to directly guide case addition and deletion, and presents initial experiments on
their practicality. The paper begins by discussing the competence/performance
dichotomy and the factors that should guide case-base maintenance. It then
illustrates the importance of adding direct performance considerations to main-
tenance strategies, by showing that in some cases, increased performance can be
achieved without sacri�cing either competence or compactness. It next presents
a performance-based metric, guided by cases' contributions to adaptation perfor-
mance, to guide case addition and deletion. Experiments examine the common
alternative practice of reecting performance with �xed adaptation e�ort thresh-
olds, illuminating tradeo�s in adaptation cost and case-base compression, and
then compare the e�ects of competence-based and performance-based strate-
gies. Our results show that performance-based deletion strategies are especially
promising for non-uniform problem distributions, which have received little at-
tention in previous analyses of case-based maintenance, but which are often
important in real-world contexts.



2 The Competence-Performance Dichotomy

Case-base maintenance is fundamentally driven by performance concerns. For
example, Leake and Wilson's (1998) de�nition of case-base maintenance is ex-
plicitly performance-related:

Case-base maintenance implements policies for revising the contents or
organization of the case-base in order to facilitate future reasoning for a
particular set of performance objectives.

In this de�nition, the performance measure evaluates the performance of a par-
ticular CBR system for a given initial case-base and sequence of target problems.

To relate the competence and performance of CBR systems, it is useful to
revisit the notions of competence and performance. When Chomsky (1965) for-
mulated the original competence-performance dichotomy in linguistics, he used
competence to describe the \in principle" abilities of an ideal speaker, una�ected
by factors such as processing limitations, and used performance to describe how
language was actually used by real speakers under real constraints in real situ-
ations. \Competence" in CBR has a specialized meaning|the range of target
problems that a system can solve (Smyth & McKenna 1999a)|but the idea of
\problems that a system can solve" can be taken to reect an idealized compe-
tence. For example, if retrieval and adaptation time are allowed to be arbitrarily
long, the competence of the case base for a sequence of input problems depends
only on the \in principle" adequacy of system knowledge.

In practice, processing constraints are important, and current case-base com-
petence research often reects them in adaptation e�ort thresholds, which treat
a case to be \adaptable" to solve a problem only if it can be adapted within a
�xed limit on the number adaptation steps allowed (e.g., (Portinale, Torasso, &
Tavano 1999; Zhu & Yang 1999)). De�ning competence in terms of cases within
the adaptation threshold combines one aspect of \idealized" competence (that
the set of cases can be partitioned into adaptable and non-adaptable cases, with
all adaptable cases treated as being equivalent) with the pragmatic concerns
reected in guaranteeing an upper bound on the required adaptation e�ort.

This paper argues for a �ner-grained approach, which we call performance-
based, to make its decisions directly reect expected impact on top-level per-
formance goals (in these examples, goals for processing e�ciency). In order to
develop this approach, we �rst identify the relevant performance goals and their
relationships.

3 Performance Goals for Case-Base Maintenance

In general, there will be multiple performance measures for a CBR system, and
there is no guarantee that all of them can be maximized simultaneously. In
order to balance these measures to achieve the best overall performance, it is
useful to distinguish top-level goals from goals that are only instrumental, rather
than targets in themselves. For example, the goal of decreasing case-base size



is not pursued for its own sake (provided space is available), but instead, as an
instrumental goal of the higher-level goal to decrease retrieval time. Decreasing
retrieval time is itself an instrumental goal to the top-level performance goal of
improving problem-solving speed. A maintenance system that recognizes that
compactness is an instrumental goal, rather than a top-level goal, can make
better decisions about how to manage compactness compared to other goals, for
example, by sacri�cing compactness when it improves performance. However,
when compactness is used as a proxy for e�ciency and simply maximized, the
maintenance process may miss better opportunities to maximize e�ciency.

Smyth and McKenna (1999) de�ne three types of top-level goals for CBR
systems:

1. Problem-solving e�ciency goals (e.g., average problem-solving time)
2. Competence goals (the range of target problems solved)
3. Solution quality goals for problems solved (e.g., the error level in solutions)

Any case addition/deletion strategy must be shaped by these goals and the ac-
ceptable tradeo�s between them. In addition, we note that addition and deletion
strategies are also guided by the following constraints:

1. Case-base size limits (if any)
2. Acceptable long-term/short-term performance tradeo�s
3. The availability of secondary sources of cases
4. The expected distribution of future problems

For example, Smyth and Keane's (1995) competence-preserving deletion strate-
gies reect all of these constraints. Their deletion process keeps the case-base
within acceptable size limits (constraint 1); their competence-guided choices are
intended to minimize the loss of future coverage (constraint 2); their methods'
deletion choices assume a uniform distribution of problems (constraint 3); and
no other sources of cases are available for recovering deleted information (con-
straint 4), making preservation of competence a key concern. Other instantia-
tions of these constraints would give rise to di�erent strategies. For example, if
short-term performance is crucial and long-term is less important, and current
problems are concentrated in a small part of the case-base, it may be acceptable
to sacri�ce current competence and build it back through future learning. By
their very nature, competence criteria aim at maximizing coverage, rather than
trading o� coverage and e�ciency based on the expected problem distribution,
but as we show later in the paper, making such tradeo�s may be useful for
non-uniform problem distributions.

4 The Value of Performance-Based Criteria

Making the right decisions about cases to retain requires augmenting competence
criteria with consideration of the performance e�ects of alternative cases. Usually
this is thought of in terms of achieving a better tradeo� between competence
and e�ciency. However, in some situations, performance considerations can even
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Fig. 1. Three example cases and their coverage.

improve e�ciency without loss of competence or compactness. We illustrate this
with a simple example.

For this example, we assume the most easily adaptable case is always re-
trieved for each problem, and that the case-base is built by from a set of can-
didates by a greedy algorithm which, for each step, adds the candidate case
that provides the greatest increment to competence, until achieving full cover-
age (Zhu & Yang 1999). Consider building a case-base from 3 cases, A, B, and
C as shown in Figure 1. The line segment at the bottom of the �gure represents
the problem space, where problems are associated with points on the line. (For
example, problems could be the desired yield strength for a metal, and solutions
the manufacturing processes to obtain it.) Suppose that if case C1 solves prob-
lem p1, the cost to adapt C1 to solve a new problem p2 is �jp1 � p2j, for some
�xed � > 0.

The horizontal positioning of A, B, and C along the problem axis reects the
speci�c problems that each one solves, and the horizontal intervals adjacent to
each case reect the space of problems that it can be adapted to solve, given the
system's adaptation knowledge. The interval surrounding A is an open interval
on the right; case A cannot be adapted to solve the problem solved by case C. All
other endpoints are closed. To build the case-base, a greedy competence-based
case addition algorithm selects �rst case A �rst and then case C, resulting in the
case-base CB1 = fA;Cg, which provides maximal competence. We note, that
CB2 = fB;Cg provides the same competence.

If the problem distribution is uniform, it can be shown that the di�erence
between the expected adaptation cost for solving problems using case-base CB1

instead of CB2 is �D2(D1�D2=4)=(D1+D2+D3). If we �x D2 and D3 and let
D1 !1, the expected average adaptation cost di�erence goes D2. (Intuitively,
almost all problems will then fall to the left of case B, and those problems will
be D2 closer to case B than to case A.) Thus for this example, there are two
competing case-bases with the same competence and the same size, but with
di�erent performance, so it is only possible to choose between them based on
performance, not competence or compactness|and in fact, a competence-based
greedy case addition algorithm picks the wrong one. This example demonstrates



that performance-based considerations, distinct from competence and compact-
ness, can play an important role in case-base selection.

5 A Performance-Based Metric for Case Selection

This section describes a strategy for performance-based case selection, inspired
by Smyth and McKenna's (1999a) RC-CNN algorithm. That algorithm compacts
case-bases using a compressed-nearest-neighbor (CNN) algorithm (Hart 1968)
whose inputs are ordered by a relative coverage (RC) metric, to give priority to
cases expected to make the largest competence contributions. By analogy to the
RC metric, which estimates each case's unique contribution to the competence
of the system, we have developed a relative performance (RP) metric aimed at
assessing the contribution of a case to the adaptation performance of the system.

Our RP metric depends on two standard de�nitions from case-base compe-
tence research, the coverage set of a case (the set of problems from the target set
that the problem solves) and the reachability set of a problem (the set of cases
that solve that problem). It also depends on the representativeness assumption
that the contents of the case-base are a good approximation of the problems the
system will encounter (see (Smyth & McKenna 1999a) for full de�nitions and
discussion), but can be weighted to reect di�erent expected problem frequen-
cies.

The RP value for a case reects how its contribution to adaptation perfor-
mance compares to that of other cases. To approximate the bene�t of adding
the case to the case-base, we �rst assume that the similarity metric will ac-
curately select the most adaptable case for any problem. For each case that
might be added to the case-base, we estimate its contribution to adaptation
performance. We have explored a number of metrics, including a \performance
bene�t" (PB) metric estimating the actual numerical savings that the addition of
each case provides. However, best results were obtained by considering a case's
relative adaptation performance, the percent savings it provides compared to
the worst alternative case that solves the problem. If we let RS(c0; c) stand for
ReachabilitySet(c0)� fcg, for a �xed case-base CB we de�ne:

RP (c) =
X

c0 2 CoverageSet(c)

1�
AdaptCost(c; c0)

maxc002RS(c0;c)AdaptCost(c00; c0)

This metric can be used to guide either case addition|favoring cases with
high RP values|or case deletion|favoring cases with low RP values. By adding
an additional weighting factor, reecting the expected probability of new prob-
lems similar to those in the case-base being encountered in the input stream,
this formula can reect expected problem distributions. Even if the distribution
is not known completely, this adjustment can re�ne case selection to improve
performance for likely \hot spots" in the case-base (Leake & Wilson 1999).

Because the actual relative performance of a particular case depends on the
other cases in the case-base, using completely accurate RP values to guide case



deletion would require recalculating RP values after additions or deletions, which
could be extremely expensive. A more practical alternative, which we will refer
to as RP-CNN, is to do a one-time RP calculation, and then to use that estimate
to order the cases presented to CNN, analogously to RC-CNN. A key question
is whether this approximate information is su�ciently accurate to improve per-
formance. We test RP-CNN and compare its e�ects to RC-CNN in Section 6.3.

6 Experimental Results

To explore the relationships between compacti�cation strategies and perfor-
mance, we conducted four experiments. These examine (1) how the choice of
adaptability thresholds a�ects system performance, (2) the tradeo�s between
compressed case-base size and expected adaptation costs for CNN, (3) the per-
formance obtained by RC-CNN compared to RP-CNN for uniformly-distributed
problems, and (4) their comparative performance for non-uniformly distributed
problems.

The experiments were conducted in a simple path planning domain that
models an inter-/intra-city transportation network. Concentrated areas of local
connectivity represent cities. Paths are viewed as di�erent modes of transport
between locations; they do not correspond directly to grid lines but do reect
the grid distance between location points. Models are generated randomly, based
on speci�cations of the number and size of the cities, the number of locations
in each city, the minimum distance between cities, and the maximum number of
paths connecting locations. The model generator ensures that all locations are
reachable through some path from all other locations, if necessary adding paths
to ensure connectivity.

The planner combines case-based planning with a generative (breadth-�rst)
path planner to adapt cases by extending their paths. This enables natural con-
trol over the allowable adaptation, by setting a threshold on the allowed number
of adaptation steps. Path cases represent the starting and ending locations, the
path between them, and the path distance. Cases are retrieved based on min-
imizing the combined distance between the starting and ending locations in a
case and new travel problem.

6.1 Performance E�ects of Competence Coverage Thresholds

Competence-preserving addition and deletion methods must determine the com-
petence contributions of cases, which depends on the system's ability to retrieve
and adapt particular cases. As described previously, the adaptability judgment
is often based on an adaptation threshold, with all cases that can be adapted
within the threshold treated as equally adaptable to the problem. This blurs
the adaptability di�erences between particular cases, sacri�cing some ability to
select high-performance cases. The �rst experiment examines a�ects the perfor-
mance of case-bases generated by RC-CNN for di�erent thresholds.



Fig. 2. Adaptation e�ort as a function of threshold (left), and reduced case-base size
as a function of threshold (right), for RC-CNN compression.

For each test, we generated a model consisting of 3 city areas of size 20 by 20,
with 40 locations in each city. We randomly generated case-bases of sizes 1000,
750, 500, and 250 from the possible starting and ending location pairs in the
model. Each case-base was then reduced in size by the RC-CNN method, and
the reduced case-base was tested with 100 randomly selected probes from the
model space. Each test was repeated 10 times, selecting a new initial case-set
and test probes for each trial and averaging the results.

Higher threshold values increase the variance in adaptation costs for problems
that a case covers, decreasing pressure to add nearby cases. Consequently, we
expected adaptation performance to decrease as the threshold values increased.
This basic trend appears in the results in the left side of Figure 2, which shows
average adaptation e�ort on the test problems as a function of the threshold.
This e�ect is seen across all case-base starting sizes, but lower thresholds were
better at exploiting the range of cases in large case bases, selecting closer cases
(resulting in lower adaptation costs). Our explanation is that all the case-bases
in our experiments were large enough to provide adequate coverage, but that, at
high thresholds, case choice was not su�ciently selective to take full advantage
of the wider choice of cases by choosing better case distributions.

6.2 Compressed Size vs. Adaptation Cost Tradeo�s

The previous experiment illustrates how adaptation e�ort thresholds used by
RC-CNN can a�ect the adaptation e�ort required for a system to solve problems.
However, required adaptation e�ort is not the only concern: There is a tradeo�
because lower thresholds decrease the range of problems that each case can be
used to solve, making us expect less compression to be possible for a given
competence level. In this experiment we observe the e�ects of di�erent case
threshold levels on the case-base size obtained using RC-CNN.

Using the basic experimental procedure described previously, we determined
the resulting case-base size at four di�erent threshold levels, from 1 to 10, for



initial case-bases of 250, 500, 750, and 1000 cases. We expected that as the
adaptation threshold increased, the size of the case-base produced by RC-CNN
would decrease. We expected that the resulting size would be ordered by the
sizes of the case-bases, with the greatest compression being achieved for large
case-bases. These predictions are borne out in the right side of Figure 2. It is
interesting to note the very substantial compression ratio achieved for a threshold
of 10.

6.3 Comparing CNN, RC-CNN and RP-CNN for Uniform Case

Distributions

A third experiment compared the e�ects of basic CNN, RC-CNN, and RP-CNN
on case-base compression and adaptation e�ciency, using the same basic pro-
cedure and starting with a case-base of size 1000, with adaptation boundary of
5. For CNN, the mean case-base size was 262, for RC-CNN, 204, and for RP-
CNN, 284. With a uniform distribution of test problems, mean adaptation cost
for CNN was 2.96, for RC-CNN was 3.19, and for RP-CNN was 2.87. Thus as
expected, RP-CNN provided some gains in e�ciency at a cost of increased case-
base size, while RC-CNN provided substantial gains in case-based compression
at the expense of some e�ciency. This provides partial independent con�rmation
for the results of (Smyth & McKenna 1999a).

Although RP-CNN achieved slightly better performance than the other meth-
ods, more experiments are needed (e.g., to compare the performance achieved
when the size of the resulting case-bases is held constant). We have a number of
re�nements in mind that we expect to improve performance for the RP metric,
as well as for making the RP recalculation process more e�cient, in order to be
able to use more accurate RP values at each step rather than relying on a single
static approximation calculated at the start of processing.

6.4 RC vs. RP Deletion for Non-Uniform Case Distributions

In order to test the performance of our metric under non-uniform problem distri-
butions, we designed an experiment in which routes with origin and destination
in certain cities are requested more frequently. Both the number of cities that
comprise the high tra�c area and the frequency of requests for routes in that
area are parameters of the experiment. At the beginning of the experiment, a
subset of cities of the desired size is selected at random, and routes that start
from and end in those cities are considered high-tra�c routes. Test probes are
randomly generated from the high-tra�c areas in proportion to the speci�ed
frequency, with the remaining probes randomly generated from the lower-tra�c
areas.

Using the same model setup as in the earlier experiments, we tested condi-
tions in which one and two of the three cities comprised the high-tra�c routes.
We ran the experiments with a 95 percent frequency rate for high-tra�c probes,
using the RP metric, with a weight factor to reect the probability of a particular
problem occurring (based simply on whether the problem was in a high-tra�c



Fig. 3. Average adaptation e�ort for non-uniform case distributions.

area, and the probability of problems in that area). We evaluated e�ects on
compression by case deletion, �rst running CNN to determine a target size for
the compressed case-base, then ordering the candidate cases according to the
metric being tested (RC or RP), and deleting the least desirable cases accord-
ing to the metrics, until reaching the determined size. Here we expected to see
greater performance bene�ts for RP than in the previous experiment, because
RC focuses on coverage alone, while the revised RP favors useful cases in high-
tra�c areas. This was borne out in our results, which are shown in �gure 3 for
two experimental con�gurations: one high-tra�c area and two low-tra�c areas
of equal size (1/3), and two high-tra�c areas and one low-tra�c area (2/3),
for RC-CNN using an adaptation threshold of 10. The graph shows the median
e�ort to solve cases after reduction of the case-base, for cases within the adapta-
tion limit, for initial case-base sizes ranging from 250 to 1000 cases. For all but
one test, performance with RP surpasses RC. Bene�ts are strongest with more
focused areas (1/3), and bene�ts of RP appear to increase with larger initial
case-bases, perhaps because the wide range of cases allows RP to �ne-tune its
choices.

7 Comparison to Previous Research

The importance of utility-based considerations for maintenance is well-known.
Smyth and Keane's (1995) seminal competence work, for example, proposes
footprint-utility deletion, in which case deletion decisions are based �rst on com-
petence categories and then on utility. Smyth and Cunningham (1996) examine
the tradeo�s between coverage, quality, and e�ciency, illustrating how case-base
size can a�ect retrieval and adaptation costs, as well as quality. van Someren,
Surma, and Torasso (1997) suggest using on a cost model for the CBR system
to guide decisions about the size of the case-base.

Portinale, Torasso and Tavano (1998) present a case deletion strategy aimed
at favoring useful cases in a combined CBR-MBR system. Their method replaces



old cases with new cases solved by the MBR system, provided the new case covers
the problem of the replaced case, within a �xed adaptation e�ort threshold,
and requires more e�ort than the case being replaced. The Learning by Failure

with Forgetting strategy (Portinale, Torasso, & Tavano 1999) applies another
heuristic, periodically deleting cases that have remained unused longer than a
prede�ned time window and \false positive cases." These are valuable heuristic
methods, but di�er from the RP metric's more quantitative approach, which
balances the expected future performance contributions of alternative cases in
the global context of competing cases in the case-base, rather than assessing
cases independently.

As discussed previously, the framework here is based on the competence mod-
eling framework of (Smyth & McKenna 1999a). We agree with the importance
of competence criteria, and plan to develop combined competence/performance
metrics for tuning the maintenance process to achieve a desired balance between
competence and performance concerns. For example, in a combined CBR+MBR
system that can solve any problem from scratch, it may be appropriate to base
maintenance decisions solely on e�ciency, but in a domain where it is impossi-
ble to reconstruct deleted cases, competence concerns should receive considerable
weight.

8 Conclusion

An important current of CBR research studies how to develop strategies for
achieving case-bases that are competent and compact, as a proxy for good system
performance. This paper has presented an argument for integrating performance
considerations more directly into case addition and deletion procedures, in or-
der to allow �ner-grained optimization of case-base contents. The paper shows
that the relationship between competence, compactness and adaptation perfor-
mance is more subtle than a simple tradeo�|in some circumstances, adaptation
performance can be increased without sacri�cing competence or compactness|
motivating the search for ways to re�ne case addition and deletion procedures to
improve performance results. It also presents empirical studies demonstrating re-
lationships between competence criteria, adaptation performance, and case-base
size, as well as an initial step towards developing a performance-guided metric
for estimating the performance value of adding a case to a case-base.

Much remains to be done in re�ning this approach and providing a richer
model. Such work includes re�ning the performance metric; performing more
theoretical and empirical analyses of the tradeo�s and factors involved, con-
sidering both retrieval and adaptation costs; and combining competence and
performance metrics to achieve metrics that balance both factors as desired.
However, we believe that just as the direct connection of retrieval criteria to
adaptation abilities led to important progress (Smyth & Keane 1998), the direct
connection of case-base construction to performance criteria promises important
advances for case-base maintenance research.
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