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Abstract 
The utility problem occurs when the cost associated 
with searching for relevant knowledge outweighs the 
benefit of applying this knowledge. One common 
machine learning strategy for coping with this 
problem ensures that stored knowledge is genuinely 
useful, deleting any structures that do not contribute 
to performance in a positive sense, and essentially 
limiting the size of the knowledge-base. We will 
examine this deletion strategy in the context of case-
based reasoning (CBR) systems. In CBR the impact 
of the utility problem is very much dependant on the 
size and growth of the case-base; larger case-bases 
mean more expensive retrieval stages, an expensive 
overhead in CBR systems. Traditional deletion 
strategies will keep performance in check (and 
thereby control the classical utility problem) but 
they may cause problems for CBR system 
competence. This effect is demonstrated 
experimentally and in reply two new deletion 
strategies are proposed that can take both competence 
and performance into consideration during deletion. 

1 Introduction 
The traditional wisdom in knowledge-based systems has been 
that more knowledge is a good thing. However, in recent 
years this view has been questioned with demonstrations that 
certain "harmful" knowledge may actually degrade system 
performance (usually performance is taken as problem 
solving efficiency or time). This problem has been dubbed 
the utility problem [Minton, 1990; Tambe et al, 1990]. In 
case-based reasoning systems (CBR) a special case of the 
utility problem arises called the swamping problem fFrancis 
& Ram, 1993b]. The swamping problem relates to the 
expense of searching large case-bases for appropriate cases 
with which to solve the current problem. 

One could argue that efficient parallel retrieval algorithms 
are the solution to the swamping problem; in other words by 
keeping retrieval time constant, increasing the case-base size 
no longer threatens system efficiency. While this is true to a 
degree, it is not currently realistic, and until massively 
parallel machines become the norm other strategies must be 
used; in fact, while massively parallel retrieval algorithms do 
help in delaying performance degradation, they do not 
eliminate it altogether. 
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Markovitch and Scott [1993] have characterised different 
strategies for dealing with the utility problem in terms of 
information filters applied at different stages in the problem 
solving process (e.g., acquisition, feature extraction, 
matching, learning). Two common strategies which are 
especially relevant to the swamping problem are selective 
utilization and selective retention. Selective utilization 
filters [Markovitch & Scott, 1989] prevent the problem 
solver from "seeing" certain knowledge items for some 
period of time, and are often implemented in CBR systems 
as indexing schemes [Kolodner, 1994] or by time bounding 
the case-retrieval mechanism [Brown, 1993; Veloso, 1992]. 
In these approaches only a subset of the case-base is made 
available to the retrieval mechanism with the attendant 
disadvantage that certain cases may be missed at retrieval 
time. Unfortunately, these omissions can result in 
unnecessarily complex adaptation stages or even problem-
solving failures. As an alternative, selective retention filters 
permanently remove knowledge from the knowledge-base 
[Holland, 1986; Markovitch & Scott, 1988; Minton, 1990] 
and are represented in CBR systems by techniques that only 
learn certain cases or that delete cases that appear to be 
redundant; the selection of a case to delete is controlled by a 
deletion policy. An advantage with selective retention is that 
the whole case-base is available at retrieval time but it is 
critical that only high quality cases are stored to keep the 
case-base small and retrieval time at acceptable levels. 

In this paper, we investigate a number of traditional 
deletion policies and their application to CBR. In section 2, 
we argue that such policies may not be directly applicable to 
CBR systems because they damage the competence 
potentials of such systems over time. Section 3 introduces 
two new policies designed specifically with CBR in mind. 
These new policies recognise the possibility of competence 
degradation through case deletion and safe-guard against it by 
using an explicit model of case competence to guide 
deletion. Finally, in section 4, before a concluding look at 
the applicability and appropriateness of our approach, we 
demonstrate its effectiveness with the aid of experimental 
results. 

2 Coping Wi th The Uti l i ty Problem 
Machine learning research offers a variety of different 
deletion policies, most of which should work well to 
preserve performance in CBR systems (and hence limit the 
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classical utility problem). However, they can result in a 
gradual but irreversible reduction in system competence. In 
short, to properly control the CBR utility problem, a 
deletion policy is required that preserves both performance 
and competence. 

2.1 Traditional Deletion Policies 
A simple deletion policy is random deletion. According to 
this policy a random item is removed from the knowledge­
base once the knowledge-base size exceeds some predefined 
limit. Surprisingly, random deletion can work very well and 
can often be as effective as more principled (and expensive) 
methods [Markovitch and Scott, 1988]. 

One such more principled approach is Minton's utility 
metric [Minton, 1990] --

Utility=(ApplicationFreq*AverageSavings)-MatchCost 

- which chooses a knowledge item for deletion based on an 
estimate of its performance benefits. This utility deletion 
policy removes knowledge items with negative utility. 
Although it is not necessary to directly limit the size of the 
knowledge-base, the frequency factor tends to indirectly 
control size because as the knowledge-base grows the 
application frequency of a particular item tends to drop and 
so its utility estimate degrades. By using this policy 
substantial performance improvements were observed in the 
Prodigy/EBL system [Minton, 1990]. Similar policies have 
been employed elsewhere with equally successful results 
[Markovitch and Scott, 1993; Markovitch and Scott, 1988; 
Keller, 1987]. 

2.2 Problems with Classical Deletion Policies 
CBR systems are prone to utility problems (especially 
swamping problems) in much the same way as other 
problem solvers. The hope is that deletion policies such as 
the above will transfer well to case-based systems. However, 
there is one important difference between pure CBR systems 
and the speed-up learning systems (epitomised by 
Prodigy/EBL and SOAR) where random and utility based 
deletion have been successful. Pure CBR systems do not 
have a first-principles problem solver; that is, without cases, 
CBR systems cannot solve problems at all. In contrast, the 
case-like knowledge of systems such as Prodigy/EBL and 
SOAR serves only as speed-up knowledge. Therefore, it is 
perfectly fine for speed-up learners to use performance related 
policies, like Minton's utility metric, because no matter 
what knowledge is deleted, the system's competence is not 
altered; problems can always be solved from first-principles. 
However, these deletion policies can have disastrous results 
for case-based reasoners. The deletion of critical cases can 
significantly reduce the competence of a CBR system, 
rendering certain classes of target problems permanently 
unsolvable. 

In CBR, all cases are not equal. Some cases contribute 
mainly to the competence of the system and others may 
predominantly contribute to its performance. Pivotal cases 
empower the system with its basic competence. Auxiliary 
cases, on the other hand, only contribute to performance. 
The deletion of a pivotal case results in an irreversible 
reduction in the competence a CBR system. Traditional 

deletion policies are not sensitive to these different categories 
of cases. Consequently, such techniques can delete pivotal 
cases if they do not contribute to performance. The result is 
an irreversible drop in competence. 

3 Competence-Preserving Deletion 
In this section, we describe how the competence of a CBR 
system can be modelled and how deletion policies can 
exploit this model to guard against competence depletion 
while controlling the size of the case-base in a manner that 
guards against the swamping problem. 

3.1 Case Competence Categories 
We have found it useful to consider four basic classes of 
cases. First, there are pivotal and auxiliary cases that 
represent the extremes of our competence model. In addition, 
there are intermediate categories of spanning and support 
cases that correspond to cases whose deletion may or may 
not reduce competence depending on what other cases remain 
in the case-base. By categorising cases according to whether 
they are pivots, spanning, supporting or auxiliary, it is 
possible to obtain a picture of the case-related competence of 
a given system. 
Coverage and Reachability 
The key concepts in categorising cases are coverage and 
reachability. The coverage of a case is the set of target 
problems that it can be used to solve. The reachability of a 
target problem is the set of cases that can be used to provide 
a solution for the target. Obviously, computing these sets 
for every case and target is impossible; the space of target 
problems is, in general, simply too vast. 

A more tractable solution is to assume that the case-base 
itself is a sample of the underlying distribution of target 
problems. Now, we can estimate the coverage of a case by 
the set of cases that can be solved by its retrieval and 
adaptation, and the reachability of a case by the set of cases 
that can bring about its solution (see Definition 1 and 2 
respectively). 
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Figure 1 illustrates the different case categories in terms of 
their coverage (and reachability) sets. Each case is numbered 
and its conesponding coverage set is labelled with the same 
number; for example, in Figure 1(b), Coverage(2)={2,3) and 
Reachable(2)={ 1,2). We will refer to these configurations in 
the coming sections. 
Pivotal Cases 
A case is a pivotal case if its deletion directly reduces the 
competence of a system (irrespective of the other cases in the 
case-base). Using our above estimates of coverage and 
reachability a case is pivotal if it is reachable by no other 
case but itself (Definition 3). 

Definition 3: Pivotal Case 

Pivotal cases are generally outliers, being too isolated to 
be solved by any other case. Consequently, target problems 
falling within the region of pivot can only be solved by that 
pivot. For example, in Figure 2(a) two pivotal cases are 
shown, cases 1 and 4. It is clear that should either be deleted 
then at least two target problems cannot be solved, namely 
the problems corresponding to case 1 and 4. 

Auxiliary Cases 
Auxiliary cases do not effect competence at all. Their 
deletion only reduces the efficiency of the system. A case is 
an auxiliary case if the coverage it provides is subsumed by 
the coverage of one of its reachable cases (Definition 4). 

Definition 4: Auxiliary Case 

Auxiliary cases tend to lie within clusters of cases. If one 
is deleted then a nearby case can be used to solve any target 
that the deleted auxiliary could solve, so competence is not 
reduced. Figure 2(a) has two auxiliary cases, 2 and 3. The 
coverage of each is a proper subset of the coverage offered by 
case 1 and therefore any target problem that case be solved 
by cases 2 or 3 can also be solved by case 1. 

Spanning Cases 
Spanning cases do not directly affect competence. They are 
so named because their coverage spaces link (or span) 
regions of the problem space that are independently covered 
by other cases (see Definition 5). If cases from these linked 
regions are deleted then the spanning case may be necessary. 

In Figure 2(b) case 2 is a spanning case with its coverage 
space joining case 1 and case 3 but offering no more 
coverage that 1 and 3 provide together. However it is 
important to realise that if case 3 is deleted then the 
spanning case is now necessary. 

Definition 5: Spanning Case 

Support Cases 
Support cases are a special class of spanning cases and again 
do not affect competence directly. They exist in groups, each 
support providing similar coverage as the others in a group. 
While the deletion of any one case (or indeed any proper 
subset) of a support group does not reduce competence, the 
removal of the group as a whole is analogous to deleting a 
pivot, and does reduce competence. More formally, the 
definition of support cases is given below in Definition 6. 

Definition 6: Support Case 

Furthermore, a set of cases C form a support group if 
they all provide the same coverage (Definition 7). 

Definition 7: Support Group 

Figure 2(c) shows a support group of three support cases. 
The removal of any two of these cases does not influence 
competence, the coverage offered by the third being 
equivalent to that offered by the deleted two. 

3.2 Modelling Case Competence 
While computing the competence categories may be 
expensive they are only computed once as a start-up cost. 
Strictly speaking, during future problem solving as cases are 
learned and deleted from the case-base, the case categories 
must be updated by recomputing the coverage and 
reachability sets of the appropriate cases and adjusting the 
categories accordingly. This is obviously too expensive to 
perform every time learning and deletion occurs. Instead, we 
propose the following heuristics for efficiently updating the 
case categories. Algorithm 1 outlines how the competence 
categories change as new cases are learned. 

Learning Update( target,base): 
If Pivotal(base) then 

Remove the base from the set of pivotal cases 
Add the base and target as a new support group 
and mark this group as pivotal in origin 

Elself Support(base) then 
Add the target to the base's support group 

Elself Spanning(base) then 
Make new support group from the base & target 

and mark this group as spanning in origin 
Elself Auxiliary(base) then 

Add the target to the set of auxiliary cases 
Endlf 

Algorithm 1. Learning Update 

SMYTH AND KEANE 379 



Algorithm 2 describes what happens on deleting a case 
from the case-base. 

Algorithm 2. Deletion Update 
Note that all of these procedures are estimates, they make 

the assumption that the space of target problems is 
accurately approximated by the case-base. If this is true then, 
as our experiments will show, an accurate picture of 
competence can be maintained and our new deletion policies 
work well. If it is not true then the effectiveness of these 
policies will deteriorate. 

3.3 The Footprint Deletion Policy 
Ideally a deletion policy should work to remove irrelevant 
cases thereby guiding the case-base towards an optimal 
configuration of cases (optimal in the sense that it 
maximises competence while minimising size). We call this 
optimal case-base the competence footprint, the competence 
footprint provides the same competence as the entire case-
base but with fewer cases. 

The case categories described above provide a means of 
ordering cases for deletion in terms of their competence 
contributions. The auxiliary cases are the least important as 
they make no direct contribution to competence, next are the 
support cases, then the spanning cases, and finally the 
pivotal cases. This is the basis of the first of our new 
policies; as outlined in the algorithm below (Algorithm 3) 
auxiliary cases are selected for deletion before support cases, 
which in turn are chosen before spanning and pivotal cases. 

This is the basic footprint deletion (FD) strategy. In 
addition, further sub-strategies must be formulated. For 
example: Which auxiliary case is chosen from the set of 
auxiliary cases?; Given a number of equal sized support 
groups, which group is chosen and which case from this 
group is selected; Finally, if a pivot must be deleted, then 
which one? One approach is to choose the candidate with 
the largest reachable set. This would mean that the case 

chosen is the one which can be solved by the greatest 
number of existing cases, thus limiting the impact of the 
deletion on the real system competence. Another, approach 
is to choose the case with the least coverage. 

Algorithm 3. The Footprint Deletion Algorithm 

3.4 Combining Competence & Performance 
Footprint deletion is not designed to eliminate the need for 
performance-based methods such as utility deletion. Since it 
is only designed to consider competence we still need to deal 
with the performance aspect. Indeed, one interesting use of 
footprint deletion is in collaboration with existing 
performance-based policies. For example, in partnership, 
footprint and utility based policies can constrain deletion to 
preserve both competence and performance. 

Combining footprint deletion and utility deletion is very 
simple; we will refer to the resulting hybrid strategy as 
footprint-utility deletion (FUD). First, the footprint method 
is used to select candidates for deletion. If there is only one 
such candidate then it is deleted. If, however, there a number 
of candidates, then rather than selecting the one with the 
least coverage or largest reachability set, the candidate with 
the lowest utility is chosen. In other words the utility metric 
is used within the SclectPivot, SelectSpanning, 
SelectSupport, and SelectAuxiliary procedures referred to 
above; in this way utility estimates can be used to select 
between a number of alternative auxiliary cases or between a 
number of support cases belonging to the same support 
group or between a number of pivotal cases. 

In fact, a disadvantage of using footprint deletion on its 
own is that low utility cases may be preserved while high 
utility cases with the same competence contributions may be 
deleted. By combining footprint deletion and utility deletion 
this problem is immediately solved because low utility cases 
will always be deleted instead of high utility cases with the 
same competence characteristics. 

4 Experimental Analysis 
Our approach to controlling the swamping problem is to 
restrict the size of the case-base to ensure retrieval costs are 
kept within acceptable limits. That this strategy controls 
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swamping should be clear. Our objective in the following 
experiments is to provide empirical support for two claims. 

First, that traditional deletion methods are subject to 
competence degradation whereas as the footprint policies are 
not. This is investigated in Experiment 1 by imposing a 
swamping limit on the case-base and monitoring the 
competence of the system as different cases are deleted 
according to different policies. 

Second, that the footprint policies work towards a case-
base that maximises competence while minimising size 
whereas the random and utility methods do not. This is 
investigated in Experiment 2 by varying the swamping limit 
imposed on the case-base and again monitoring how systems 
competence develops. 

The experiments were run on a simple CBR system for 
residential property valuation using a simple nearest-
neighbour retrieval algorithm; this domain has been 
introduced in Smyth & Cunningham [1995]. 

4.1 Experiment 1 
An initial case-base of 50 cases and a set of 160 target 
problems were formulated. First, to test the basic 
competence of the case-base the target problems were 
presented to the system with no learning taking place. The 
result was a benchmark competence of 100% for the given 
case-base and problem set; that is, the test case-base was 
capable of solving all of the target problems. In the next 
studies, learning was allowed but the size of the case-base 
was restricted to 75 cases, the swamping limit. 

Four studies were carried out by using the same target 
problems but by varying the deletion policy. During each 
run, learning proceeded unhindered until the case-base size 
reached the swamping limit. Subsequent learning could only 
take place after a case had been removed from the case-base. 

Figure 2 shows the results obtained. The first thing to 
notice is that the two competence preserving policies, 
footprint deletion (FD) and footprint-utility deletion (FUD) 
managed to maintain overall competence at its benchmark 
level of 100%. In contrast, as predicted, the random deletion 
(RD) and utility deletion (UD) policies resulted in significant 
drops in competence as important cases were deleted over the 

course of the experiment; almost immediately on reaching 
the swamping limit (after 25 trials) competence begins to 
drop as crucial cases are removed, and their absence renders 
certain target problms unsolvable. In the end overall 
competence had fallen to 80% and 86% of its former level 
for the utility and random deletion policies respectively. 

4.2 Experiment 2 
In CBR systems it is generally desirable to optimise the 
competence provided by the case-base. That is, a deletion 
policy should maximise the competence of the case-base 
while minimising its size. So it is not enough that the 
deletion policy simply guard against the deletion of cases 
that contribute to competence. It is also necessary to ensure 
that if a competence contributing case must be deleted, that 
this case is carefully selected to minimise the inevitable 
competence loss; alternatively, if a case can be added to the 
case-base then the one chosen should provide the greatest 
competence contribution. The four different deletion policies 
are tested for this property in the following experiment. 

The previous experiment were re-run a number of times 
with a different swamping limit imposed each time and the 
results are shown in Figure 3. The swamping limit is varied 
from 5 cases to 95 cases. After each re-run the overall 
competence is noted and graphed. 

Clearly the two footprint policies are optimising 
competence whereas the traditional policies are not; the 
curves of the former rise to the maximum benchmark level 
much more rapidly that the curves of the latter. This means 
that as more and more cases are allowed into the case-base, 
the two footprint policies seek out those which make the 
largest competence contributions. In contrast, because the 
traditional random and utility based methods have no 
understanding of competence, a competence contributing case 
is only stored in the case-base if it is beneficial from the 
performance viewpoint. 

In fact, the qualitative nature of the footprint deletion and 
footprint-utility deletion results can be explained in terms of 
the distribution of pivotal, spanning, support, and auxiliary 
cases in the case-base. Table 1 shows this distribution in the 
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For the residential property cases an optimal case-base can 
be constructed from all the pivotal cases plus one case from 
each support group; that is, to achieve benchmark 
competence the case-base must contain at least 27 cases (all 
of the pivots plus 7 of the supports, one from each group). 
So one would expect that if the ideal deletion policy (ideal 
from the point of view of preserving competence) constrains 
the case-base towards this optimal competence configuration, 
then competence should reach the benchmark maximum once 
the swamping limit facilitates a case-base of at least 27 
cases. This is what happens in the above experiment. In 
Figure 3, both footprint deletion and footprint-utility 
deletion reach about 90% of the benchmark competence once 
the swamping limit is just over 25 cases, whereas the 
random and utility policies only reach about 60% 
competence at this same swamping limit. 

5 Conclusion 
This paper demonstrated that while traditional deletion 
policies are effective in controlling the swamping problem 
from a performance perspective, they may lead to 
competence degradation in many CBR systems. The solution 
proposed uses a model of case competence to guide the 
learning and deletion of cases. We outlined a suite of 
algorithms for constructing and efficiently maintaining this 
competence model at runtime, and two new deletion policies 
(footprint deletion and footprint-utility deletion) were 
presented which can preserve competence by referring to this 
model at deletion time. The preliminary experimental results 
are promising in demonstrating that the competence 
estimates did prove useful in preserving the actual system 
competence. In particular, the hybrid footprint-utility 
deletion method should enjoy the same performance 
advantages as the traditional utility methods while at the 
same time guarding against competence degradation. 

The main assumption on which the new policies are based 
is that the case distribution is a good representation of the 
target distribution. If the case distribution is not a reliable 
estimate of the target distribution then the competence model 
will not be reliable. Consequently, the effectiveness of the 
competence deletion policy will be limited. It is our 
contention that, while not every domain may be characterised 
in this way, many can and by exploiting this property we 
can safe-guard against the utility problem while at the same 
time avoiding the possibility of competence degradation. 

Our competence modelling approach may also be used 
during the initial case acquisition stage of system 
development. It is often undesirable to store every available 
case in the initial case-base; for one thing there is the utility 

problem and secondly irrelevant cases may introduce noise 
into the retrieval stage and lead to the selection of sub-
optimal cases or difficulties in tuning the similarity metric. 
By modelling the competence of the available casts an 
optimal initial case-base can be formed, providing a more 
manageable source of problem solving expertise. 
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