
R e m e m b e r i n g T o F o r g e t
A Competence-Preserving Case Deletion Policy for Case-Based Reasoning Systems

Barry Smyth
Hitachi Dublin Laboratory,

Trinity College Dublin,
Dublin, IRELAND.

EMail: barry.smyth@hdl.ie

Abstract
The utility problem occurs when the cost associated
with searching for relevant knowledge outweighs the
benefit of applying this knowledge. One common
machine learning strategy for coping with this
problem ensures that stored knowledge is genuinely
useful, deleting any structures that do not contribute
to performance in a positive sense, and essentially
limiting the size of the knowledge-base. We will
examine this deletion strategy in the context of case-
based reasoning (CBR) systems. In CBR the impact
of the utility problem is very much dependant on the
size and growth of the case-base; larger case-bases
mean more expensive retrieval stages, an expensive
overhead in CBR systems. Traditional deletion
strategies will keep performance in check (and
thereby control the classical utility problem) but
they may cause problems for CBR system
competence. This effect is demonstrated
experimentally and in reply two new deletion
strategies are proposed that can take both competence
and performance into consideration during deletion.

1 Introduction
The traditional wisdom in knowledge-based systems has been
that more knowledge is a good thing. However, in recent
years this view has been questioned with demonstrations that
certain "harmful" knowledge may actually degrade system
performance (usually performance is taken as problem
solving efficiency or time). This problem has been dubbed
the utility problem [Minton, 1990; Tambe et al, 1990]. In
case-based reasoning systems (CBR) a special case of the
utility problem arises called the swamping problem fFrancis
& Ram, 1993b]. The swamping problem relates to the
expense of searching large case-bases for appropriate cases
with which to solve the current problem.

One could argue that efficient parallel retrieval algorithms
are the solution to the swamping problem; in other words by
keeping retrieval time constant, increasing the case-base size
no longer threatens system efficiency. While this is true to a
degree, it is not currently realistic, and until massively
parallel machines become the norm other strategies must be
used; in fact, while massively parallel retrieval algorithms do
help in delaying performance degradation, they do not
eliminate it altogether.

Mark T. Keane
Department of Computer Science,

Trinity College Dublin,
Dublin, IRELAND.

EMail: mark.keane@cs.tcd.ie

Markovitch and Scott [1993] have characterised different
strategies for dealing with the utility problem in terms of
information filters applied at different stages in the problem
solving process (e.g., acquisition, feature extraction,
matching, learning). Two common strategies which are
especially relevant to the swamping problem are selective
utilization and selective retention. Selective utilization
filters [Markovitch & Scott, 1989] prevent the problem
solver from "seeing" certain knowledge items for some
period of time, and are often implemented in CBR systems
as indexing schemes [Kolodner, 1994] or by time bounding
the case-retrieval mechanism [Brown, 1993; Veloso, 1992].
In these approaches only a subset of the case-base is made
available to the retrieval mechanism with the attendant
disadvantage that certain cases may be missed at retrieval
time. Unfortunately, these omissions can result in
unnecessarily complex adaptation stages or even problem-
solving failures. As an alternative, selective retention filters
permanently remove knowledge from the knowledge-base
[Holland, 1986; Markovitch & Scott, 1988; Minton, 1990]
and are represented in CBR systems by techniques that only
learn certain cases or that delete cases that appear to be
redundant; the selection of a case to delete is controlled by a
deletion policy. An advantage with selective retention is that
the whole case-base is available at retrieval time but it is
critical that only high quality cases are stored to keep the
case-base small and retrieval time at acceptable levels.

In this paper, we investigate a number of traditional
deletion policies and their application to CBR. In section 2,
we argue that such policies may not be directly applicable to
CBR systems because they damage the competence
potentials of such systems over time. Section 3 introduces
two new policies designed specifically with CBR in mind.
These new policies recognise the possibility of competence
degradation through case deletion and safe-guard against it by
using an explicit model of case competence to guide
deletion. Finally, in section 4, before a concluding look at
the applicability and appropriateness of our approach, we
demonstrate its effectiveness with the aid of experimental
results.

2 Coping Wi th The Uti l i ty Problem
Machine learning research offers a variety of different
deletion policies, most of which should work well to
preserve performance in CBR systems (and hence limit the

SMYTH AND KEANE 377

classical utility problem). However, they can result in a
gradual but irreversible reduction in system competence. In
short, to properly control the CBR utility problem, a
deletion policy is required that preserves both performance
and competence.

2.1 Traditional Deletion Policies
A simple deletion policy is random deletion. According to
this policy a random item is removed from the knowledge­
base once the knowledge-base size exceeds some predefined
limit. Surprisingly, random deletion can work very well and
can often be as effective as more principled (and expensive)
methods [Markovitch and Scott, 1988].

One such more principled approach is Minton's utility
metric [Minton, 1990] --

Utility=(ApplicationFreq*AverageSavings)-MatchCost

- which chooses a knowledge item for deletion based on an
estimate of its performance benefits. This utility deletion
policy removes knowledge items with negative utility.
Although it is not necessary to directly limit the size of the
knowledge-base, the frequency factor tends to indirectly
control size because as the knowledge-base grows the
application frequency of a particular item tends to drop and
so its utility estimate degrades. By using this policy
substantial performance improvements were observed in the
Prodigy/EBL system [Minton, 1990]. Similar policies have
been employed elsewhere with equally successful results
[Markovitch and Scott, 1993; Markovitch and Scott, 1988;
Keller, 1987].

2.2 Problems with Classical Deletion Policies
CBR systems are prone to utility problems (especially
swamping problems) in much the same way as other
problem solvers. The hope is that deletion policies such as
the above will transfer well to case-based systems. However,
there is one important difference between pure CBR systems
and the speed-up learning systems (epitomised by
Prodigy/EBL and SOAR) where random and utility based
deletion have been successful. Pure CBR systems do not
have a first-principles problem solver; that is, without cases,
CBR systems cannot solve problems at all. In contrast, the
case-like knowledge of systems such as Prodigy/EBL and
SOAR serves only as speed-up knowledge. Therefore, it is
perfectly fine for speed-up learners to use performance related
policies, like Minton's utility metric, because no matter
what knowledge is deleted, the system's competence is not
altered; problems can always be solved from first-principles.
However, these deletion policies can have disastrous results
for case-based reasoners. The deletion of critical cases can
significantly reduce the competence of a CBR system,
rendering certain classes of target problems permanently
unsolvable.

In CBR, all cases are not equal. Some cases contribute
mainly to the competence of the system and others may
predominantly contribute to its performance. Pivotal cases
empower the system with its basic competence. Auxiliary
cases, on the other hand, only contribute to performance.
The deletion of a pivotal case results in an irreversible
reduction in the competence a CBR system. Traditional

deletion policies are not sensitive to these different categories
of cases. Consequently, such techniques can delete pivotal
cases if they do not contribute to performance. The result is
an irreversible drop in competence.

3 Competence-Preserving Deletion
In this section, we describe how the competence of a CBR
system can be modelled and how deletion policies can
exploit this model to guard against competence depletion
while controlling the size of the case-base in a manner that
guards against the swamping problem.

3.1 Case Competence Categories
We have found it useful to consider four basic classes of
cases. First, there are pivotal and auxiliary cases that
represent the extremes of our competence model. In addition,
there are intermediate categories of spanning and support
cases that correspond to cases whose deletion may or may
not reduce competence depending on what other cases remain
in the case-base. By categorising cases according to whether
they are pivots, spanning, supporting or auxiliary, it is
possible to obtain a picture of the case-related competence of
a given system.
Coverage and Reachability
The key concepts in categorising cases are coverage and
reachability. The coverage of a case is the set of target
problems that it can be used to solve. The reachability of a
target problem is the set of cases that can be used to provide
a solution for the target. Obviously, computing these sets
for every case and target is impossible; the space of target
problems is, in general, simply too vast.

A more tractable solution is to assume that the case-base
itself is a sample of the underlying distribution of target
problems. Now, we can estimate the coverage of a case by
the set of cases that can be solved by its retrieval and
adaptation, and the reachability of a case by the set of cases
that can bring about its solution (see Definition 1 and 2
respectively).

378 CASE BASED REASONING

Figure 1 illustrates the different case categories in terms of
their coverage (and reachability) sets. Each case is numbered
and its conesponding coverage set is labelled with the same
number; for example, in Figure 1(b), Coverage(2)={2,3) and
Reachable(2)={ 1,2). We will refer to these configurations in
the coming sections.
Pivotal Cases
A case is a pivotal case if its deletion directly reduces the
competence of a system (irrespective of the other cases in the
case-base). Using our above estimates of coverage and
reachability a case is pivotal if it is reachable by no other
case but itself (Definition 3).

Definition 3: Pivotal Case

Pivotal cases are generally outliers, being too isolated to
be solved by any other case. Consequently, target problems
falling within the region of pivot can only be solved by that
pivot. For example, in Figure 2(a) two pivotal cases are
shown, cases 1 and 4. It is clear that should either be deleted
then at least two target problems cannot be solved, namely
the problems corresponding to case 1 and 4.

Auxiliary Cases
Auxiliary cases do not effect competence at all. Their
deletion only reduces the efficiency of the system. A case is
an auxiliary case if the coverage it provides is subsumed by
the coverage of one of its reachable cases (Definition 4).

Definition 4: Auxiliary Case

Auxiliary cases tend to lie within clusters of cases. If one
is deleted then a nearby case can be used to solve any target
that the deleted auxiliary could solve, so competence is not
reduced. Figure 2(a) has two auxiliary cases, 2 and 3. The
coverage of each is a proper subset of the coverage offered by
case 1 and therefore any target problem that case be solved
by cases 2 or 3 can also be solved by case 1.

Spanning Cases
Spanning cases do not directly affect competence. They are
so named because their coverage spaces link (or span)
regions of the problem space that are independently covered
by other cases (see Definition 5). If cases from these linked
regions are deleted then the spanning case may be necessary.

In Figure 2(b) case 2 is a spanning case with its coverage
space joining case 1 and case 3 but offering no more
coverage that 1 and 3 provide together. However it is
important to realise that if case 3 is deleted then the
spanning case is now necessary.

Definition 5: Spanning Case

Support Cases
Support cases are a special class of spanning cases and again
do not affect competence directly. They exist in groups, each
support providing similar coverage as the others in a group.
While the deletion of any one case (or indeed any proper
subset) of a support group does not reduce competence, the
removal of the group as a whole is analogous to deleting a
pivot, and does reduce competence. More formally, the
definition of support cases is given below in Definition 6.

Definition 6: Support Case

Furthermore, a set of cases C form a support group if
they all provide the same coverage (Definition 7).

Definition 7: Support Group

Figure 2(c) shows a support group of three support cases.
The removal of any two of these cases does not influence
competence, the coverage offered by the third being
equivalent to that offered by the deleted two.

3.2 Modelling Case Competence
While computing the competence categories may be
expensive they are only computed once as a start-up cost.
Strictly speaking, during future problem solving as cases are
learned and deleted from the case-base, the case categories
must be updated by recomputing the coverage and
reachability sets of the appropriate cases and adjusting the
categories accordingly. This is obviously too expensive to
perform every time learning and deletion occurs. Instead, we
propose the following heuristics for efficiently updating the
case categories. Algorithm 1 outlines how the competence
categories change as new cases are learned.

Learning Update(target,base):
If Pivotal(base) then

Remove the base from the set of pivotal cases
Add the base and target as a new support group
and mark this group as pivotal in origin

Elself Support(base) then
Add the target to the base's support group

Elself Spanning(base) then
Make new support group from the base & target

and mark this group as spanning in origin
Elself Auxiliary(base) then

Add the target to the set of auxiliary cases
Endlf

Algorithm 1. Learning Update

SMYTH AND KEANE 379

Algorithm 2 describes what happens on deleting a case
from the case-base.

Algorithm 2. Deletion Update
Note that all of these procedures are estimates, they make

the assumption that the space of target problems is
accurately approximated by the case-base. If this is true then,
as our experiments will show, an accurate picture of
competence can be maintained and our new deletion policies
work well. If it is not true then the effectiveness of these
policies will deteriorate.

3.3 The Footprint Deletion Policy
Ideally a deletion policy should work to remove irrelevant
cases thereby guiding the case-base towards an optimal
configuration of cases (optimal in the sense that it
maximises competence while minimising size). We call this
optimal case-base the competence footprint, the competence
footprint provides the same competence as the entire case-
base but with fewer cases.

The case categories described above provide a means of
ordering cases for deletion in terms of their competence
contributions. The auxiliary cases are the least important as
they make no direct contribution to competence, next are the
support cases, then the spanning cases, and finally the
pivotal cases. This is the basis of the first of our new
policies; as outlined in the algorithm below (Algorithm 3)
auxiliary cases are selected for deletion before support cases,
which in turn are chosen before spanning and pivotal cases.

This is the basic footprint deletion (FD) strategy. In
addition, further sub-strategies must be formulated. For
example: Which auxiliary case is chosen from the set of
auxiliary cases?; Given a number of equal sized support
groups, which group is chosen and which case from this
group is selected; Finally, if a pivot must be deleted, then
which one? One approach is to choose the candidate with
the largest reachable set. This would mean that the case

chosen is the one which can be solved by the greatest
number of existing cases, thus limiting the impact of the
deletion on the real system competence. Another, approach
is to choose the case with the least coverage.

Algorithm 3. The Footprint Deletion Algorithm

3.4 Combining Competence & Performance
Footprint deletion is not designed to eliminate the need for
performance-based methods such as utility deletion. Since it
is only designed to consider competence we still need to deal
with the performance aspect. Indeed, one interesting use of
footprint deletion is in collaboration with existing
performance-based policies. For example, in partnership,
footprint and utility based policies can constrain deletion to
preserve both competence and performance.

Combining footprint deletion and utility deletion is very
simple; we will refer to the resulting hybrid strategy as
footprint-utility deletion (FUD). First, the footprint method
is used to select candidates for deletion. If there is only one
such candidate then it is deleted. If, however, there a number
of candidates, then rather than selecting the one with the
least coverage or largest reachability set, the candidate with
the lowest utility is chosen. In other words the utility metric
is used within the SclectPivot, SelectSpanning,
SelectSupport, and SelectAuxiliary procedures referred to
above; in this way utility estimates can be used to select
between a number of alternative auxiliary cases or between a
number of support cases belonging to the same support
group or between a number of pivotal cases.

In fact, a disadvantage of using footprint deletion on its
own is that low utility cases may be preserved while high
utility cases with the same competence contributions may be
deleted. By combining footprint deletion and utility deletion
this problem is immediately solved because low utility cases
will always be deleted instead of high utility cases with the
same competence characteristics.

4 Experimental Analysis
Our approach to controlling the swamping problem is to
restrict the size of the case-base to ensure retrieval costs are
kept within acceptable limits. That this strategy controls

380 CASE BASED REASONING

swamping should be clear. Our objective in the following
experiments is to provide empirical support for two claims.

First, that traditional deletion methods are subject to
competence degradation whereas as the footprint policies are
not. This is investigated in Experiment 1 by imposing a
swamping limit on the case-base and monitoring the
competence of the system as different cases are deleted
according to different policies.

Second, that the footprint policies work towards a case-
base that maximises competence while minimising size
whereas the random and utility methods do not. This is
investigated in Experiment 2 by varying the swamping limit
imposed on the case-base and again monitoring how systems
competence develops.

The experiments were run on a simple CBR system for
residential property valuation using a simple nearest-
neighbour retrieval algorithm; this domain has been
introduced in Smyth & Cunningham [1995].

4.1 Experiment 1
An initial case-base of 50 cases and a set of 160 target
problems were formulated. First, to test the basic
competence of the case-base the target problems were
presented to the system with no learning taking place. The
result was a benchmark competence of 100% for the given
case-base and problem set; that is, the test case-base was
capable of solving all of the target problems. In the next
studies, learning was allowed but the size of the case-base
was restricted to 75 cases, the swamping limit.

Four studies were carried out by using the same target
problems but by varying the deletion policy. During each
run, learning proceeded unhindered until the case-base size
reached the swamping limit. Subsequent learning could only
take place after a case had been removed from the case-base.

Figure 2 shows the results obtained. The first thing to
notice is that the two competence preserving policies,
footprint deletion (FD) and footprint-utility deletion (FUD)
managed to maintain overall competence at its benchmark
level of 100%. In contrast, as predicted, the random deletion
(RD) and utility deletion (UD) policies resulted in significant
drops in competence as important cases were deleted over the

course of the experiment; almost immediately on reaching
the swamping limit (after 25 trials) competence begins to
drop as crucial cases are removed, and their absence renders
certain target problms unsolvable. In the end overall
competence had fallen to 80% and 86% of its former level
for the utility and random deletion policies respectively.

4.2 Experiment 2
In CBR systems it is generally desirable to optimise the
competence provided by the case-base. That is, a deletion
policy should maximise the competence of the case-base
while minimising its size. So it is not enough that the
deletion policy simply guard against the deletion of cases
that contribute to competence. It is also necessary to ensure
that if a competence contributing case must be deleted, that
this case is carefully selected to minimise the inevitable
competence loss; alternatively, if a case can be added to the
case-base then the one chosen should provide the greatest
competence contribution. The four different deletion policies
are tested for this property in the following experiment.

The previous experiment were re-run a number of times
with a different swamping limit imposed each time and the
results are shown in Figure 3. The swamping limit is varied
from 5 cases to 95 cases. After each re-run the overall
competence is noted and graphed.

Clearly the two footprint policies are optimising
competence whereas the traditional policies are not; the
curves of the former rise to the maximum benchmark level
much more rapidly that the curves of the latter. This means
that as more and more cases are allowed into the case-base,
the two footprint policies seek out those which make the
largest competence contributions. In contrast, because the
traditional random and utility based methods have no
understanding of competence, a competence contributing case
is only stored in the case-base if it is beneficial from the
performance viewpoint.

In fact, the qualitative nature of the footprint deletion and
footprint-utility deletion results can be explained in terms of
the distribution of pivotal, spanning, support, and auxiliary
cases in the case-base. Table 1 shows this distribution in the

SMYTH AND KEANE 381

For the residential property cases an optimal case-base can
be constructed from all the pivotal cases plus one case from
each support group; that is, to achieve benchmark
competence the case-base must contain at least 27 cases (all
of the pivots plus 7 of the supports, one from each group).
So one would expect that if the ideal deletion policy (ideal
from the point of view of preserving competence) constrains
the case-base towards this optimal competence configuration,
then competence should reach the benchmark maximum once
the swamping limit facilitates a case-base of at least 27
cases. This is what happens in the above experiment. In
Figure 3, both footprint deletion and footprint-utility
deletion reach about 90% of the benchmark competence once
the swamping limit is just over 25 cases, whereas the
random and utility policies only reach about 60%
competence at this same swamping limit.

5 Conclusion
This paper demonstrated that while traditional deletion
policies are effective in controlling the swamping problem
from a performance perspective, they may lead to
competence degradation in many CBR systems. The solution
proposed uses a model of case competence to guide the
learning and deletion of cases. We outlined a suite of
algorithms for constructing and efficiently maintaining this
competence model at runtime, and two new deletion policies
(footprint deletion and footprint-utility deletion) were
presented which can preserve competence by referring to this
model at deletion time. The preliminary experimental results
are promising in demonstrating that the competence
estimates did prove useful in preserving the actual system
competence. In particular, the hybrid footprint-utility
deletion method should enjoy the same performance
advantages as the traditional utility methods while at the
same time guarding against competence degradation.

The main assumption on which the new policies are based
is that the case distribution is a good representation of the
target distribution. If the case distribution is not a reliable
estimate of the target distribution then the competence model
will not be reliable. Consequently, the effectiveness of the
competence deletion policy will be limited. It is our
contention that, while not every domain may be characterised
in this way, many can and by exploiting this property we
can safe-guard against the utility problem while at the same
time avoiding the possibility of competence degradation.

Our competence modelling approach may also be used
during the initial case acquisition stage of system
development. It is often undesirable to store every available
case in the initial case-base; for one thing there is the utility

problem and secondly irrelevant cases may introduce noise
into the retrieval stage and lead to the selection of sub-
optimal cases or difficulties in tuning the similarity metric.
By modelling the competence of the available casts an
optimal initial case-base can be formed, providing a more
manageable source of problem solving expertise.

References

[Brown, 1993] M. Brown. A Memory-Model for Case
Retrieval by Activation Passing. Ph.D Thesis (UMCS-
94-2-1). University of Manchester, United Kingdom,
1993.

[Francis and Ram, 1993a] A. G. Francis and A. Ram.
Computational Models of the Utility Problem and their
Application to a Utility Analysis of Case-based
Reasoning. In Proceedings of the Workshop on
Knowledge Compilation and Speed-Up Learning, 1993.

[Francis and Ram, 1993b] A. G. Francis and A. Ram. The
Utility Problem in Case-Based Reasoning. Technical
Report (ER-93-08). Georgia Institute of Technology,
USA, 1993.

[Keller, 1987] M. R. Keller. Concept Learning in Context.
In Proceedings of the Fourth International Workshop on
Machine Learning, pages 482-487. Morgan Kaufmann,
1987.

(Kolodner, 1994] Kolodner, J. The Case Library:
Representing and Indexing Cases. Case-Based Reasoning,
pages 141-282. Morgan-Kaufmann.

[Markovitch and Scott, 1988] S. Markovitch and P. D.
Scott. The Role of Forgetting in Learning. In Proceedings
of the Fifth International Conference on Machine
Learning , pages 459-465, 1988.

[Markovitch and Scott, 1989] S. Markovitch and P. D.
Scott. Utilization Filtering: A Method For reducing The
Inherent Harmfulness of Deductively Learned Knowledge.
In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 738-743, 1989.

[Markovitch and Scott, 1993] S. Markovitch and P. D.
Scott. Information Filtering. Selection Mechanisms in
Learning Systems. Machine Learning, 10: 113-151,
1993.

[Minton, 1990] S. Minton. Qualitative Results Concerning
the Utility of Explanation-Based Learning. Artificial
Intelligence, 42:363-391,1990.

[Smyth & Cunningham, 19951 B. Smyth and P.
Cunningham. A Comparison of Incremental Case-Based
Reasoning and Inductive Learning. Topics in Case-Based
Reasoning: Proceedings of the 2nd European Workshop
on Case-Based Reasoning. Springer-Verlag, 1995.

[Tambe et al, 1990] N. Tambe, A. Newell, and P. S.
Rosenbloom. The Problem of Expensive Chunks and is
Solution by Restricting Expressiveness. Machine
Learning, 5: 299-349, 1990.

[Veloso, 1992] M. Veloso. Learning by Analogical
Reasoning in general Problem Solving. Ph.D Thesis
(CMU-CS-92-174). Carnegie Mellon University,
Pittsburgh, USA, 1992.

382 CASE BASED REASONING

