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Abstract

It is shown that the centroid is a reference point for the symmetric difference with loss factor cz =

1 + 2 d2

d+1
< 1 + 2d for convex figures under affine transformations. This generalizes an earlier result

for two dimensions.

1 Introduction

We generalize the result of [3] to d > 1 dimensions. We show that the centroid is a reference point

for the symmetric difference with loss factor cz = 1 + 2 d2

d+1 < 1 + 2d for convex figures under affine

transformations.

Reference point methods are so called approximate matching methods, i.e. they yield matches which

differ only by a constant factor from the optimal match. In the case of exact matches they are therefore guar-

anteed to yield the exact result. Reference point methods reduce the degrees of freedom of the underlying

matching problem and therefore yield very efficient algorithms.

In the foundational works on reference points Alt, Behrends and Blömer [1] and Alt, Aurenhammer

and Rote [2] identified the advantages of reference point methods and presented strong results, e.g. that the

Steiner Point is a reference point for the Hausdorff metric. In [3] Alt, Fuchs, Rote and Weber obtained sharp

bounds for the centroid and the symmetric difference of convex figures in two dimensions and discussed

algorithms utilizing the reference point. The results have been discussed e.g. in [4, 5, 6].

2 Main Result

In the following we assume d > 1, since for d = 1 the centroid is trivially a reference point with optimal

loss factor 1.

Given a set Φ of figures, i.e. compact subsets of Rd, a metric δ(F, G) : Φ × Φ → R, a set of

transformations closed under composition T ⊂ (Rd)Rd

.
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Be δopt
T (F, G) = min

t∈T
δ(F, t(G)). It is well known, δopt

T fulfils the triangle inequality. We identify

points with vectors and translations, e.g. a − b is the translation that maps b to a. It is also the translation

vector. We number the directions of the axes and coordinates in R d from 1 to d, i.e. we say e.g. direction

d and d-coordinate. A characteristic point r for Φ is a function r : Φ → R d.

Definition 1 A reference point r with loss factor c for δ, Φ and T is a characteristic point for Φ with

• r is equivariant for T : for all t ∈ T : rt = tr,

• For all F, G there is a t ∈ T with r(F ) = r(t(G)) so that δ(F, t(G)) ≤ cδopt
T (F, G).

t is called a c-approximate match.

For a reference point r let δr(F, G) = min
t∈T,r(F )=r(t(G))

δ(F, t(G)).

Be lossT (F, G) = δr(F,G)

δopt
T (F,G)

.

Let z be the centroid of a figure. z is a characteristic point. Let δs(F, G) be the area of the symmetric

difference F∆G. Let A be the set of affine transformations.

Let C be the set of convex figures.

Theorem 1 z is a reference point with loss factor cz = 1 + 2 d2

d+1 for δs, C, and the translations.

Remark: Note that with the upcoming Theorem 3 z is also a reference point for affine transformations.

2.1 Preliminaries of the Proof

The height of a figure shall be the difference of minimal and maximal d-coordinates of points in F .

The bottom shall be the d − 1 dimensional plane of axes except the direction d.

The shadow of a figure shall be the projection along direction d onto the bottom. It is a figure in d − 1

dimensions; we call its d − 1-volume an area.

For a figure F let Fs be the following figure: In a kind of Cavalieri principle, think of F as being made of

infinitesimally thin sticks which are parallel to the d-axis. Stamp F so that all sticks start at the bottom.

The resulting figure is Fs; the upper hull of Fs is the upper hull of F minus the lower hull of F .

The thickness of a figure shall be the height of Fs.

A non-oblique figure is a figure, where the thickness is equal to the height.

A shear-to-fit for figure F is a shear operation q parallel to direction d so that q(F ) is non-oblique.

A pyramid is the convex hull of a d-1 dimensional set and a not coplanar point.

Lemma 1 For all convex figures F there is a shear-to-fit.

Proof: Let FO be the open set, for which F is the compact closure. Let ]ab[ be one of the longest thin

stick of F in direction d. Let F ′
O = FO − a + b. FO and F ′

O are disjoint, but b is a common limit of both

open sets. Hence there is a hyperplane h separating FO and F ′
O (See Figure 1). It must go through b and

therefore be a tangent to both sets. h can not be parallel to the d-axis due to the position of F O and F ′
O .

h−b+a is also a tangent of FO and parallel to h. The shear operation q that makes h parallel to the bottom

fulfils the demands. �

Lemma 2 Fs is convex for all convex figures F .
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Proof: As said, the upper hull of Fs is the difference of upper and lower hull of F . The lemma follows

from the fact, that the sum of two convex functions is convex. �

Lemma 3 For all figures with thickness 1 and an area of the shadow of 1, the pyramid has mimimum

volume, namely 1/d.

Proof: The volume formula for the pyramid is well known. For the rest of the claim, let F be a figure

with thickness 1 and an area of the shadow of 1, as shown in Figure 2 The thickness is also the height of

Fs. The shadows and volumes of F and Fs are equal. Let a be a point of Fs with maximal d coordinate.

Then the convex hull of the shadow of F and a is a pyramid that lies within F s. �

Lemma 4 Of all non-oblique convex figures of height 1, which touch the bottom from above, the standing

pyramid has minimal d-coordinate of the centroid in dimension d. The centroid of the pyramid has d-

coordinate 1/(d + 1).
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In fact the shape of the pyramid’s bottom facet does not matter.

Proof: The formula for the d-coordinate of the pyramid’s centroid is well known.

We assume wlog. F = Fs (using also Lemma 2). Then F stands on the bottom.

Let a be the top of F . We cut F at the height of its centroid with a d− 1-dimensional hyperplane h parallel

to the bottom. Let i be the intersection (See Figure 3) Let P ′ be the pyramid which is the convex hull of i

and a. Let P be the smallest pyramid standing on the bottom, which contains P ′. Due to convexity:

• F must contain the pyramid P ′.

• The part of F below h must be contained within P , because the boundary of i is also boundary of F

and P .

Hence P −F lies below h and F −P lies above h. From this follows immediately, that z(P ) has a smaller

d-coordinate than z(F ). �

Lemma 5 Let be ε > 0. There are F ′, G′ with F ′ ⊂ G′ and δopt(F ′, G′) = |G′ − F ′| < ε so that

lossT (F ′, G′) ≥ lossT (F, G).

Proof: It is a straightforward consequence of the triangle inequality. let wlog. be F, G in optimal position.

Choose F = F1 ⊃ F2 ⊃ . . . ⊃ Fn = (F ∩G) ⊂ Fn+1 ⊂ . . . ⊂ Fm = G, so that all δs(Fi, Fi+1) < ε, like

in Figure 4. Because Fi∆Fi+1 are disjoint we have
∑

δs(Fi, Fi+1) = δs(F, G). The triangle inequality

gives: ∑
δr(Fi, Fi+1) ≥ δr(F, G)

Hence with lossT (F, G) = l ∑
δr(Fi, Fi+1)∑
δs(Fi, Fi+1)

≥ δr(F, G)
δs(F, G)

= l

We use the following fact about the the weighted mean as a generalized pigeon hole principle:

For a1, . . . an and positive b1 . . . bn there is a 1 ≤ j ≤ n with aj

bj
≥

P
aiP
bi

From this fact follows, that there are Fj , Fj+1, with

δr(Fj , Fj+1)
δs(Fj , Fj+1)

≥ l

Hence F ′ = Fj , G
′ = Fj+1 fulfil the lemma. �

Lemma 6 For every t ∈ A (the affine mappings) : lossA(F, G) = lossA(t(F ), t(G)).
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Figure 5: The displacement regions. One region is shaded.

Proof: The claim holds due to the equivariance of the centroid under affine mappings and the fact, that

affine mappings preserve the ratio of areas. �

2.2 Proof of Theorem 1

The proof can be seen as basically showing, that there is nothing worse than the worst case which will be

presented in theorem 2.

Because of Lemma 5, it suffices to consider F ⊂ G. Because of Lemma 6 we have enough degrees of

freedom in order to assume wlog that F, G are normalized in the following way: z(F ) − z(G) is parallel

to the d-axis, G is non-oblique (using Lemma 1) and has height 1 and an area of the shadow of 1. Using

again Lemma 5 it suffices to consider |G − F | < 1/d.

Let f = G − F, r = |f |/|G|, t = z(F ) − z(G), k = |t|. We will show, that the translation t is a c-

approximate match. The set G∆(t + G) consists of two regions as depicted in Figure 5, we call them the

two displacement regions. As shown in [3] we know that each displacement region has area smaller 1 · k.

Hence we have:

δs(F, t + G) ≤ 2k + |f | (1)

With Lemma 3 we have

r ≤ d|f | (2)
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Let l = |z(f)− z(G)|. With Lemma 4 we have, since z(f) must be in G

l ≤ d

d + 1
(3)

The relation between the d coordinates of the centroids of F, f and G is described by the law of the lever.

|z(F ) − z(G)| · |F | = |z(f) − z(G)| · |f |

k(1 − r) = lr (4)

Applying (3) gives:

k = l
r

1 − r
≤ d

d + 1
|f | d

1 − d|f | = |f | d2

(d + 1)(1 − d|f |) . (5)

The term (1 − d|f |) in the denominator is now the last obstacle for proving the loss factor c z from the

theorem.

We will therefore first deduce an inequality similar to the desired one but with a disturbed version of

the term we want to prove as loss factor c̃(d, a) = 1 + 2 d2

(d+1)(1−da) . Applying (1) and (5) we get:

δs(F, t + G) ≤ 2
d2

(d + 1)(1 − d|f |) |f | + |f | = (1 + 2
d2

(d + 1)(1 − d|f |) )|f | = c̃(d, |f |)δopt(F, G) (6)

It is clear that c̃(d, a) > cz . It is furthermore clear that lim
a→0

c̃(d, a) = cz . The disturbed loss factor

would be greater than the one we want to prove. Now we show with an asymptotic argument, that the

disturbed loss factor cannot occur as an actual loss. We show by contradiction that there is no F ⊂ G with

loss(F, G) > cz in the following way: Assume F,G with loss(F, G) = c′ > cz .

Choose a so that c̃(d, a) < c′. Then by Lemma 5 there are F ′, G′ with F ′ ⊂ G′,

δopt(F ′, G′) = |G − F | < a so that loss(F ′, G′) ≥loss(F, G) = c′. But the inequality (6) yields a

loss(F ′, G′) ≤ c̃(d, a) and by definition c̃(d, a) < c′. Therefore there cannot be such F, G. Hence cz is a

loss factor. �

3 Minimality

We now prove that the loss factor from Theorem 1 is minimal.

Theorem 2 There is no c < cz = 1 + 2 d2

d+1 with: z is a reference point with loss factor c for δs, C, and

the translations.

Proof. We give a class of bad cases, by giving one G and a class of figures {F ε} for which

lim
ε→0

loss (Fε, G) = 1 + 2 d2

d+1

Let G be the cone of area 1 and height 1, and F ε its frustrum of height 1−ε. We make some error-estimation

for ε → 0. In contrast to (1) we have to estimate δs(Fε, G) from below. The inequality in (1) is caused

by two sources of error, we call them b(ε) for the periphery of the displacement regions and h(ε) for the

overlap of the cap and the displacement region (See Figure 6).

δs(Fε, G) > 2k + |f | − b(ε) − h(ε) (7)
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Figure 6: The worst case. The figures are aligned so that the centroids match. The sources of error

addressed in the proof are visualized.

The thickness of the displacement region is O(εd). therefore b(ε) = O(εd+1) and h(ε) = O(ε2d−1).

Hence for d > 1

δs(Fε, G) > (2k + |f |)(1 + O(ε)) (8)

It therefore is sufficient to show lim
ε→0

2k + |f | = cz . Straightforward computation gives

2k + |f | = 2(
d

d + 1
(1 − ε)|f | d

1 − d|f | + |f | = (1 + 2(
d2

d + 1
)

1 − ε

1 − εd
)|f | (9)

Therefore lim
ε→0

2k + |f | = cz .

�

4 Regular Reference Points

It seems interesting to consider a special class of reference points:

Definition 2 Let T be closed under composition and containing the translations. Then a regular reference

point with regular loss factor c for δ, Φ, and the translations is a characteristic point with

• r is equivariant for T .

• For all F, G with δ(F, G) = δopt(F, G): δ(F − r(F ), G − r(G)) ≤ cδopt(F, G)

A regular reference point is a reference point even for translations. In the definition we use the fact

that because of the equivariance one can look solely at figures in optimal matching position. If we have

a regular reference point, then translating the optimal match, so that the regular reference points coincide,

yields a approximate match. For a general reference point in contrast it is only known, that one approximate

solution has coincident reference points.

It seems best to discuss regularity always for the loss factor, not for the reference point itself, because

the latter may theoretically be also a general reference point with a smaller loss factor.

Currently no loss factor for a reference point seems to be known which is not at the same time a regular

loss factor. It would of course be interesting to have loss factors that are not regular loss factors, i.e. either

there is no regular loss factor or it is greater. Artificial examples may be cases, where the transition set is
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artificially reduced, so that it is not closed under translations and hence the definition of regularity does not

apply. However, even this is not trivial.

It is easy to see in the proof of Theorem 1, that the loss factor is regular, because the transformation

used in the proof is a translation.

If we have a reference point in translations, then this is already a regular reference point with the same

loss factor for all translations, for which it is equivariant. The following theorem was presented e.g. for the

centroid in [3].

Theorem 3 Given a set Φ of figures in Rd, a metric δ(F, G) : Φ × Φ → R, a set of transformations

closed under composition T ⊂ (Rd)Rd

and containing the translations, a reference point r : F → R with

loss factor c > 1 for δ, Φ, and the translations . Furtermore r be equivariant for T . Then r is a regular

reference point with regular loss factor c for δ, Φ, and the translations.

Proof.

Be topt ∈ T a transformation, which brings G in optimal position, i.e. δ(F, t opt(G)) = δopt
T (F, G).

Be G′ = topt(G), Be t = r(F ) − r(G′), hence t(r(G′)) = r(F ).

Be to(f) := t(topt(f)), to ∈ T because of closedness.

We have to prove: to is a approximate match, i.e.r(to(G)) = r(F ) and δ(F, to(G)) ≤ cδopt
T (F, G)

We have to(G) = t(topt(G)) = t(G′)

With equivariance we have: r(to(G)) = r(t(G′)) = t(r(G′)) = r(F ).

Because r is reference point for translations:

δ(F, to(G)) = δ(F, t(G′)) = c ≤ δ(F, G′) = cδopt
T (F, G)

�
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