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Data Cache Parameters Measurement on Linux

Abstract

With the increasing gap between processor speed and memory speed, cache memories are
becoming more and more important to the performance of the computer system.
Nowadays not only computer architects, but also performance programmers and
algorithm designers must pay close attention to the structural and performance
parameters of memory systems. The structural parameters of cache and TLB are
becoming essential data to performance programmers and algorithm designers, and the
performance parameters of cache and TLB are becoming very important metrics for
system administrators to evaluate and tune system performance. This thesis studies the
methodology of measurement of the structural and performance parameters of data cache
and data TLB, and implements a set of micro benchmarks under the Linux operating
system to measure parameters of the data cache and data TLB. Our micro benchmarks
can measure data cache capacity, data cache block size, data cache associativity, effective
cache latency, effective data path parallelism, data TLB size, data TLB associativity, and
TLB latency. This thesis also presents experimental results on Intel Pentium II/266 and
Pentium III/500 with an explanation and analysis of these results. The measured
structural parameters of the cache and TLB on Intel Pentium II/266 and Pentium III/500
are consistent with the published data from the Intel and the measured performance

parameters are reasonable.
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Chapter 1: Introduction

1.1 Motivation

As processor speed continues to increase faster than memory speed, optimizations to use
the cache memory hierarchy efficiently become ever more important, especially in high
performance computer systems. Cache memories play more important roles in helping
bridge the cycle-time gap between faster microprocessors and relatively slower main
memories, by taking advantage of data locality in programs. Not only computer architects
but also algorithmic designers and performance programmers pay much more attention to
memory design, especially in distributed systems and parallel computer systems. Recent
studies show that the performance of the operating systems on multiprocessor memory
hierarchies can be improved by more than 30%, and the performance of cache-conscious
algorithms can be improved by more than 75%, if the structure of cache memories is
considered [1,10,11,16,24]. That is why performance tuning in terms of cache memory,
as carried out by compilers and application programmers to close the performance gap
between the achievable peak and delivered performance, becomes more and more

important and challenging [3,14,23].

Accurate information about the structural and performance parameters of cache memory
is needed by any person or compiler to optimize memory operations in programs. The
structure of a cache is primarily characterized by its cache capacity C, block size B and
associativity A. Of secondary importance are its replacement and prefetching strategies.
In the past, these parameters were not available to compiler designers, application
programmers and system administrators. Even now only some basic parameters like

cache capacity are generally known to them. We believe the most important performance
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parameters of a memory hierarchy are the data cache latency and miss penalty, the TLB
(Translation Lookaside Buffer) latency and effective data path parallelism. Such
parameters are difficult or impossible to evaluate from published data, and we know of

no automated system for their evaluation on Pentium based workstations.

Our contribution, in this thesis, is the design of micro benchmarks of cache parameter
measurement. Our goal is to provide not only the basic parameters of cache memories but
also the performance parameters of the cache and TLB to the compiler designers on
different operating systems. These micro benchmarks are programmed in high level
languages and are implemented based on our full investigation of the performance
characteristics of the cache memories and the TLB. This motivates our theoretical study

of the measurement of data cache parameters is very meaningful.

We chose to develop our micro benchmarks under the Linux Operating system for the
following reasons. Linux is a very popular operating system on many platforms (x86,
Alpha, MIPS, PowerPC, SPARC, etc.). It poses a significant near-term and even
medium-term threat to Windows NT server because of its UNIX heritage that makes its
users to perceive a scalability, interoperability, availability and manageability (SIAM)
advantage over Windows NT. Linux represents a best-of-breed UNIX since it opens
source code and has a long-term credibility that exceeds many other competitive OS’s.
We found it is very convenient to develop our micro benchmarks of cache parameter
measurement on the Linux platform, and we believe the great potential future of the

Linux will make our project more useful and meaningful [5,16].

1.2 Objectives

We commence our project by studying the methodology of measurement of the structural

parameters of data cache memories and data TLB. Based on this study, we designed and



implemented a set of micro benchmarks of cache parameter (MBCP) to measure

parameters of the data cache and data TLB.

The objectives in this thesis are

e To examine the evaluation methods of the performance of memory hierarchy,

e To summarize the progress made in the area of memory design and the
impacts of memory hierarchy on computer systems,

e To describe current research in the area of parameter measurement of cache
memories,

e To develop an analytical model of cache performance,

e To evaluate the performance parameters of the cache memories and TLB in
terms of our analytical model,

e To illustrate the principles of benchmark development and apply them into the
development of MBCP,

e To implement some key micro benchmarks to measure the parameters of data
cache memories under the Linux operating system,

e To describe experimental results on some computer systems such as Pentium
11/266 and Pentium I11/500 workstations, and

e To analyze the results.

1.3 Target Audience and Users

The potential target audience of this thesis and the target users of our micro benchmarks

MBCP may be:




o Compiler designers
¢ Performance programmers
e Algorithm designers

e System administrators for system performance tuning

1.4 Thesis Overview

Chapter 2 discusses some basic concepts about cache memory and TLB, including their
definitions, general organizations, cache write policies and replacement strategies,
operation of cache memory and TLB. Chapter 2 also mentions the evaluation metrics of
cache performance, examines briefly the evaluation methods on cache design, and
discusses cache impacts on systerﬁ performance. Chapter 2 finally has a brief discussion
about the system under test and the components under study in this project in the view of

system performance measurement.

Chapter 3 first surveys briefly current researches in the area of the measurement of
structure parameters of cache and TLB, then studies in detail the performance
characteristics of cache memories and TLB, including the primary cache and the
secondary cache. In this chapter, the methodologies used to measure the structure

parameters of cache and TLB are also discussed in detail.

Chapter 4 first illustrates the general design principles of benchmark and their application
in our micro benchmarks (MBCP) development, and then briefly describes the
development and running environment of our benchmarks. Finally the design and
implementation of some key micro benchmarks under Linux are discussed in detail.

Some kernels of the key micro benchmarks are shown in this chapter.
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Chapter 5 shows the experimental results measured on the Pentium II/266 and the
Pentium III/500 workstations using our micro benchmarks and makes some explanations

of these experimental results with reference to the theories and methodologies discussed

in Chapter 3 and 4.

In Chapter 6, a summary of the whole thesis work is made and some issues on the future

research work related to this thesis are discussed.

In the end of this thesis, the experimental data measured on Intel Pentium 1I/266 and

Pentium /500 workstations are tabulated.




Chapter 2 Cache memory and its Performance

2.1 Overview

In this Chapter, I discuss some basic concepts about cache memory and TLB, including
their definitions, general organizations, cache write policies and replacement strategies,
operation of cache memory and TLB. Then I also illustrate the evaluation metrics of
cache performance, make a brief survey on the performance evaluation methods used on
cache designs, and discuss the cache impacts on computer system performance. And
finally I investigate the system under test (SUT) and components under study (CUS) of
our micro benchmarks (MBCP).

2.2 Basic Concepts of Cache

2.2.1 Cache Definition

Cache memories are small, high speed buffer memories Jocated in CPUs or motherboards
and are used in modern computer systems to hold temporarily those portions of the
contents of main memory which are expected to be used very soon. Instructions and data
located in cache memory may be accessed in much less time than that located in main

memory [21].

The success of cache memories relies on the property of locality possessed by programs.
The principle of locality states that programs access a relatively small portion of their
address space at any instant of time, and implies that if we put this portion in the cache,
the needed information is also likely to be found in it. There are two different types of

locality:




e Temporal locality (locality in time): If an item is referenced, it will tend to be
referenced again soon. This means that information that will be in use in the near
future is likely to be in use already. This type of behavior can be expected from

program loops in which both data and instructions are reused.

e Spatial Locality (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon. That is to say, portions of
the address space that are in use generally consist of a fairly small number of
individually contiguous segments of that address space. This type of behavior can
be expected from common knowledge of programs: related data items such as
arrays, structures, classes in C++ are usually stored together, and instructions are

mostly executed sequentially.

Caches are usually classified into the following three types according to their function or

the nature of the information held in them [2].

e Instruction cache: this kind of cache holds instructions,
e Data cache: data cache stores the data stream, and

e Unified cache: this kind of cache holds both instructions and data.
In contemporary microprocessor-based computer systems, there are typically two levels
of cache. The primary (first level) cache is usually split, that is, the instruction cache and

the data cache are separated. The secondary (second level) cache is usually unified.

In this thesis, we focus on measuring the parameters of data caches and TLB, including

some basic parameters of the secondary cache.

2.2.2 General Cache Organization
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A general cache organization contains S sets, in which each set consists of A cache lines,
where A is the degree of the cache associativity. Each cache line has its own tag to

identify itself. Sometimes a cache line is called an entry.

A cache line (block) contains Z subblocks under one tag, and each subblock consists of ¥
addressable units (AU) which are the minimum unit addressed by the processor, such as

word or byte, plus control bits, like valid bit and dirty bit. /( cache block I\size B=YZ

Figure 2.1 shows the general cache organization layout. ,
Set 1 Cache line 1 Cache line 2 . Cache lineA
Set 2 Cache line 1 Cache line 2 . Cache lineA
Set S Cache line 1 Cache line 2 e Cache lineA
Subblock 1 Subbiock 2 == " subblockZ
AU1 AU2 o AUY

Figure 2.1 General cache organization layout

The cache capacity C is equal to the product of tuple (S, 4, ¥, Z), when C is measured in
Aus:

C=(S*A*Y*2)
(S *A*B).

)




The Cache size C, set size S, associativity A and block size B are the key cache structural
parameters which determine the cache’s miss behaviour (measured by miss ratio m). The

miss ratio m can be described as a function f of those parameters:
Miss ratiom =f (C,S,A,B,Fw)
where Fw represents the fetch and read/write strategy.

it is generally accepted that the miss ratio decreases as any of parameter C, S or A
increases; but that after certain point, further increases in C, S or A have little effect on m.
Cache size C is a first order determinant of cache performance. However, as cache size
increases there can be a detrimental effect on the processor clock period. The set size S
usually is determined or selected to give the desired cache size after the other parameters
are set. The cache associativity A is set to decrease the miss ratio, but should be in the

range of 2 to 16 because high level associativity is very expensive.

The number of subblocks Z in a cache line is set to improve temporal locality of the
cache by not requiring the replacement of a complete cache line. For block size B, two

cases exist: for small block size, increasing the block size reduces the miss ratio a little;

“but for large block size, increasing the block size further actually worsens the miss ratio

[2,16].

There are three classes of cache organization according to different values of associativity

A and set size S.

e Fully associative cache (S=1, A4, ¥, Z) in which blocks can be loaded anywhere in
the cache.

¢ n-way set associative cache (S, A=n, Y, Z) in which a particular block can be




loaded in n >1 different cache locations.

e Direct mapped cache (S, A=1, ¥, Z) in which a particular block can be loaded only

in a single location.
2.2.3 Cache Write Polices and Replacement Strategies

Cache write polices are employed to deal with the situations where there is a data write
from the processor, and either the memory address written is found in the cache (a write-
hit), or the address is not resident in the cache (a write-miss). There are two write polices
of the cache for the write-hit situation: write-through and write-back. The write-through
policy always writes the data back to the cache line and to main memory immediately. In
the write-back policy, the new value is written into the cache line, but not into main
memory until the cache line is replaced or the cache is flushed. For the write-miss
situation, there are also two write polices. One is called write-allocate that reads the
written cache line into the cache, and then modifies the cache line. Another one is called
no-write-allocate which will write directly through to memory. These options may be
combined with the write-hit polices, and depending on the combination there are different

behaviors on writes.

When there is a read miss or a write-allocate, it may be necessary to evict a block from
the cache to the main memory to make room for the block that is to be fetched.
Replacement polices are used to determine which block or cache line to be evicted. There
are three replacement polices in general use: random, LRU, FIFO. In the random
replacement strategy, the block to be evicted can be selected by a random choice that can
be made in number of ways, such as sampling a pseudorandom number generator. The
LRU strategy selects the block to be evicted based upon the idea that the least recently
used (LRU) block is least likely to be used in the future. Implementation of the LRU

10




requires that an activity file be maintained for each block and the activity file is probed to
find the block to evict. With the first in first out (FIFO) method, the block that has been
in the cache the longest is assumed to be the least likely to be needed again and can be
evicted. The FIFO method requires a queue of block names with the most recently
referenced block name on the top of the queue and the block name on the bottom of the

queue is selected for eviction.
2.2.4 Operation of Cache Memory and TLB

In most modern computer systems, cache memory works together with TLB which is
discussed in detail in the next section. Figure 2.2 shows the operation scheme in general

use for the cache and TLB [21,22].

The operation of the cache begins with the arrival of a virtual address that generally
comes from the CPU and the appropriate control signal. The virtual address is passed to
both the TLB and the cache component. The TLB is another kind o\ mall associative
cache memory inside the CPU, which maps virtual memory addresses to real (physical)
memory addresses. It is often organized as shown in Figure 2.3, as a number of groups

(sets) of elements (called entries), each consisting of a virtual address and a real address.

The TLB accepts the virtual page number, and uses it to select a set of elements. That set
of elements is then searched associatively for a match to the virtual address. If a match is
found, the corresponding real address is passed along to the comparator to determine
whether the target cache line is in the cache. Finally, the replacement status of each entry

in the TLB set is updated.

If the TLB does not contain the <virtual address, real address> pair needed for the

translation, then the translator is invoked. It uses the high-order bits of the virtual address

11
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as an entry into the segment and page tables for the process and then returns the address
pair to the TLB (which retains it for possible future use), thus replacing an existing TLB

entry.

The virtual address is also passed along initially to a mechanism which uses the middle
part of the virtual address (the cache line number) as an index to select a set of entries in
the cache. Each entry consists primarily of a real address tag and a line of data. The cache
line is the quantum of storage in the cache. The tags of the elements of all the selected set

are read into a comparator and compared with the real address from the TLB. If a match

From Transiator Virtual Adress from CPU »
Virtual Real Page Line Lo » To translat
B Line > or
Address Address Number Number yte in Lin
Main
CPU Memory
r AP ¢
( Real Address } Data ]
TLB Cache 7 7
PTE PTE PTE \ Address Data Address Address Data
PTE PTE PTE Address Data Address Address Data
PTE PTE PTE Address Data Address Address Data
PTE PTE PTE CS L Address Data Address Address Data
PTE PTE PTE Address Data Address Address Data
PTE PTE PTE Address Data Address Address Data
PTE PTE PTE Addrass Data Address Address Data
PTE PTE PTE Address Data Address Address Data
C Virtual | R - - -
ompare viriua ™~
re Address & Select Data
Addresses [ -~ gl Compare
y
@ = Selector v -*_*{ Byte Select & Align 1
To main
Memory ¥ Data Out Data

Figure 2.2 Operation scheme of the cache memory and TLB
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is found, the cache line (or a part of it) containing the target locations is read into a shift
register and then is shifted to select the target bytes, which are in turn transmitted to the

source of the original data request.

If a miss occurs (i.e., address tags in the cache do not match), then the real address of the
desired cache line is transmitted to the main memory. The replacement status information
is used to determine which cache line is to be removed from the cache to make room for
the target line. If the cache line to be removed from the cache has been modified, and
main memory has not yet been updated with the modification, then the cache line is
copied back to main memory; otherwise, it is simply deleted from the cache. After some
number of machine cycles, the target cache line arrives from main memory and is loaded
into the cache storage. The cache line is also passed to the shift register for the target

bytes to be selected.

2.3 Basic Concepts of TLB

2.3.1 TLB definition

TLB (Translation Lookaside Buffer) is a hardware component inside the processor,
which is usually invisible to the program as it is loaded under hardware control. TLB is
employed to provide a buffer for storing page table entries (PTEs) in order to speed
translation between virtual address space and physical address space in a virtual memory
system. The TLB takes as input a virtual page number and returns the corresponding page
frame number and protection information. For a load or store to complete successfully,
the TLB must contain the PTE mapping that virtual location. If not, a TLB miss occurs
and the system must search the page table for the appropriate entry and place it into the
TLB.

13
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A TLB mainly exploits the property of temporal page locality of the addresses of the
applications, and usually operates together with the cache memory (see section 2.2.4).
When a page is loaded into real memory, the page table and TLB are updated. Because of
taking advantage of the page locality, caching addresses can be quite effective in
reducing the latency of page translation and the access of real memory. Its operation is

discussed in 2.2.4 in detail.

TLB can usually be classified in three categories as following according to their function

or the nature of the information held in the cache:

e Instruction TLB (ITLB): ITLB holds only the PTEs of instructions
e Data TLB (DTLB): DTLB holds only the PTEs of data
e Unified TLB (UTLB): UTLB holds the PTEs of instructions and data

The first two kinds of TLB usually work together. Sometimes these three kinds of TLB

are used to consist multilevel of address translation hierarchy [2].

2.3.2 TLB Organization

A TLB may be organized as a fully associative cache or a set-associative cache. A typical

organization of TLB is shown in Figure 2.3.

The size of a TLB is usually described in terms of the number of entries, instead of in
terms of cache lines or the number of sets. The most important parameters of a TLB are
its capacity (number of page table entries or PTEs), its degree of associativity and its
latency of page translation and the access of real memory for the performance

programiners.

14
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2.4 Evaluation Metrics of Cache Performance
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[
Tag PTE

Figure 2.3 A typical organization of the TLB

There are two widely used primary metrics to evaluate cache performance:

(1). Mean access time to the cache on a hit (the required data is in the cache).

(2). Miss ratio m which is the ratio of the number of references that are not satisfied (i.e.

a miss) by a cache at a level of the memory system hierarchy to the total number of

references made at that level.

The mean access time can be described as following:

T=m*T,+T,+E

15




Where T, is the time needed to satisfy a read miss, 7} is the time to make a main memory
reference when there is a miss, and E is a term to account for secondary metrics [21] used

to evaluate cache performance.

The miss ratio is characteristic of the workload (e.g., the memory reference trace) and is
dependent upon the cache structure and the choices of the fetch and write strategies, but

is independent of the memory access time of the requested elements.

There are a number of different conditions under which misses may occur in a cache.

They can be classified into two main sets as following:

(1) Transient misses: this type of misses results from the initial loading of a program and
its data, context switches, or other operating system events, such as interrupts and

system calls.
(2) Steady-state misses: this type of misses includes three cases:

e Compulsory misses which happen when data that were not initially loaded are
referenced for the first time.

o Capacity misses which occur when there are more memory addresses
referenced than will fit into the cache.

e Conflict misses which occur when many references to different memory

addresses map into the same set.

Similarly, the performance of TLB is usually evaluated in terms of the time needed for
page translation and the access of real memory and the TLB miss ratio, which is defined

as following [2]:

16




Number of main memory references to page table

TLB miss ratio =
Number of references generated by the program

2.5 Evaluation Methods on Cache Design

Because overall computer system performance is highly sensitive to even minor
adjustments in cache design, memory system designers are becoming increasingly
dependent on methods for evaluating cache design options before their actual
implementation. During the last three decades, intensive researches have been done and a
number of important advances have been made. Researchers have worked out a lot of
methods to evaluate cache performance. These methods are mainly classified in three

categories as following [25]:

e Trace-driven simulation: A typical trace-driven cache memory simulation consists

of three main steps to evaluate cache designs:

(1) Trace collection that is the process of determining the exact sequence of
memory references made by some workload of interest. The resulting address

traces usually are very large.

(2) Trace reduction that is the stage where some trace-reduction techniques are
used to remove unneeded or redundant data from the resulting address traces

made in the trace collection stage.

17




(3) Trace processing which is the final stage. In this stage, the trace is fed to a
program that employs some special algorithm to simulate the behavior of a

hypothetical cache memory system.

e Analytical modeling: There are categories of analytical models according their

functions and purposes:

(1) General cache modeling which extracts parameters from an address trace and
combines them with parameters defining the cache structure to derive an

analytical model of cache behavior.

(2) Optimizing-oriented modeling which focuses on some program structures like
loops and build up analytical models to predict the miss ratio of the source

code and to optimize cache use in their choice of source code transformation.

(3) Algorithm-oriented modeling which aims to study the cache performance of
some particular type of algorithms and build up analytical models of miss

ratio.

e Profiling: This method mainly involves employing some instruments or built-in
hardware components or software applications to spy the cache performance of

some software system like OSs or programs like SPEC benchmarks.

The first two methods are two separate yet complementary techniques used to investigate
the relationship between the miss ratio or the execution time (in cycle count) and each of
the cache parameters (which determine the cache structure), and are often employed to
evaluate cache design options before having to commit them to actual implementation.

Trace-driven/trap-driven is the most widely used approach and usually gives accurate

18
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estimation of miss ratio or execution time, but is extremely slow and sometimes
inefficient and frequently gives little insight into the reasons for the observed behavior.
Analytical modeling, on the other hand, if simple and tractable, can provide useful first-
cut estimates of cache configuration, and could be incorporated into optimizing compilers
to evaluate trade-offs in decisions that affect cache performance; ggtﬂllt may lack

accuracy. Profiling involves the recording of the memory or cache accesses while a
program (e.g. a benchmark) is executing on a particular or existing system, however this
maybe requires costly instrumentation and an existing cache, and only gives data for only

once cache organization [25].

In this project, we principally use the analytical modeling method to evaluate the
performance characteristics of the cache memories and TLB, and base upon this analysis
to implement a set of micro benchmarks (MBCP) to measure the parameters of the cache

memories and TLB.
2.6 Cache and TLB Impacts on System Performance

More and more high-performance applications developers realized that with the
propagation of high-performance microprocessors down to the desktop level, it is
becoming W}@ necessary for performance programmers to achieve an
understanding of how the structure of a computer’s memory hierarchy affects the
performance of applications. To design an algorithm for cache performance, the
programmer should know the cache parameters such as the capacity, block size,

associativity and miss penalty of the cache.
It is generally accepted that cache memories are a critical component of any high

performance computer system, and that the access time to the cache memory and the miss

ratio are frequently the most important factors that constrain the system performance.

19




I GEN N N (N &N N N O S e e

Cache memory allows quicker access to frequently used data. But the application can use
the cache poorly or wisely. Wise use consists of reusing data as completely as possible
before fetching and processing more data. It also implies that using all the bytes in a

cache line, rather than just in one or_two bytes for each line. { p;ﬂé
Pl

Although many Aardware and software techniqueg have been developed to improve the

] . focused on developing software

techniques/to attack the cache bottleneck caused by poor reference locality.

=1 . A
fundamental algorithms were developed without considering

caching, and mostgﬁ\algorithms developed recently do not take cg%he performancFe into
‘ ,<7Wy UED
account either. &uef—\yﬁhows that the performance of an algonriﬁf'hm/mo: mg cache

VED
(cache-conscious algorithm) caﬁ-be-igpgfeﬁed—b 40% to 90% [1,11]}
) y

Although there is little study done on the TLB impact on the performance of virtual
memory systems, some research has shown that increasing the associativity of the TLB
will help but an associative TLB with 8 cache lines is probably large enough. With the
modern pipelined processors, page translation delays have a greater impact on overall

performance [2].

2.7 SUT/CUS of This Project

Working out the system under test (SUT) and the components under study (CUSs)
correctly is very helpful to isolate the problems that must be solved before a measurement
can be made. The SUT consists of all components involved in the system, and the CUS is
some specific component or components that are to be measured and evaluated. The SUT

and CUS of a project are determined mainly according to the task of the project [8].
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The micro benchmarks (MBCP) developed in this project are supposed to accomplish the

following functions:

e Measuring the major parameters of Level-1 (the primary cache) data cache
memory (the primary data cache): capacity, block size, associtivity, latency
and penalty on a miss, and the effective data path parallelism.

e Measuring the major parameters of data TLB: page-size, capacity,
associativity, latency.

e Measuring the major parameters of Level-2 cache memory (the secondary

cache): capacity, latency and penalty on a miss.

According to these tasks of the micro benchmarks MBCP, we can determine the SUT HE @01/]

CUSs of this project. As shown in Figure 2.4, our SUT consists mainly of @E@;‘iﬁw ™
aart, code TLB, code cache, data TLB, Level-1 data cache, Level-2 data/code cache

(united cache), internal/external bus, main memory, and the Linux operating system.

Because our study focuses on measuring the parameters of the data caches and data TLB,

our CUSs are Level-1 data cache, Level-2 data cache and data TLB (see the shadow part

in Figure 2.4).

The metric chosen to reflect the performance of CUSs is the response time of computing
operations or memory accessing. Since instruction cache and instruction TLB exist in our
SUT and operate with data cache and data TLB together, the implementation of MBCP is
done in a subtle way to get rid of the effects from other components, or to make the

effects to a minimum.
In order to measure the parameters of each component accurately, we must make sure

that the measured component is the bottleneck of the measurement. This requires that the

workload for each measurement should be selected deliberately so that the measured
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component makes the greatest contribution to the measured response time. For example,
when measuring the parameters of the Level-2 cache memory, the micro benchmark
should make the Level-2 cache memory to be the measurement bottleneck, and most of
the misses should occur in Level-2 cache and there should be no or few misses occurring

in Level-1 cache and TLB. In this way the miss penalty mostly comes from the Level-2

, ;NSWT;W

cache instead of cache Level-1 or TLB.

SUT

Figure 2.4 SUT/CUS of this project
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Chapter 3 Methods of Measuring Cache Parameters

3.1 Overview

In this Chapter, I first make a brief survey of current researches in the area of the
measurement of structural parameters of cache memories and TLB, and then investigate
in detail the performance characteristics of data cache memories and data TLB, including
the primary cache and the secondary cache. In this chapter, I also discuss our
methodologies used to measure the structural parameters of data cache memories and

data TLB in detail.

3.2 Literature Review

In the last three decades, most researchers focused their study work related to cache and
TLB in the area of the evaluation techniques of cache designs and the area of the code
optimization techniques to take advantage of cache. The first one covers the trace/trap-
driven simulation methods and some analytical methods, and the second one is related to

the loop transformation and the cache protocol development. They reached a lot of great

~and wide achievements in these areas. But the study of the measurement and estimation

of the structure parameters of cache and TLB began only a few years ago.

Pyo and Lee made an estimation of cache parameters based on reference distance.
Reference distance is the number of memory blocks referenced in a reuse interval which
is a sequence of memory references between two consecutive references to the same
memory block. Pyo and Lee originally used the reference distance to measure potential
benefit of register allocation for array variables, and found some potential reference

distance as a metric for data locality to evaluate cache design or effectiveness of program
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transformations for data locality. In their experiment using Iﬁerfect benchmark programs,
distribution of reference distances were measured with re/spect to memory address, value
and memory blocks of size 4 bytes and 8 bytes’at-}eep-ﬁesz.l@éel’. Then Pyo and Lee used
these measured data to plot some reuse cover graphs (or reuse cover curves) by
inspecting the distribution of reference distance; and used the cost-effective points on the
curves to determine the cache capacity, block size and set size for set-associative cache.
Pyo and Lee’s method of estimation of cache parameters was a byproduct of their study

and is not used to measure directly the parameters of cache [17].

Saavedra and Smith developed a set of narrow spectrum benchmarks or micro
benchmarks to measure the physical and performance characteristics of the memory
hierarchy in uniprocessors, in particular, the primary and secondary caches and TLB.
Saavedra’s program consists of making two hundred observations of a single test
covering all the combinations of: 1) the size of the sequential address space touched by
the experiment and 2) the distance (stride) between two consecutive addresses sent to the
cache or TLB. Their micro benchmarks measure the average time per iteration required to
read, modify, and write a subset of the elements belonging to an array of a known array.
By varying these two dimensions following parameters can be tested: ) size of the cache
and TLB; b) the size of a cache block or the granularity of a TLB entry; ¢) the execution
time needed to satisfied a cache miss or TLB miss; and d) the cache and TLB
associativity, and e) the performance impact of write buffers [19]. Saavedra’s micro
benchmarks work under following conditions: the instruction caches and data caches are

split, and the lowest available address bits are used to select the cache set.

Li and Thomborson extended Saavedra and Smith’s research on designing micro
benchmarks to measure data cache parameters. Unlike Saavedra and Smith, Li and
Thomborson measured the cache parameters by characterizing read accesses separately

from write accesses without assuming that the address mapping function is a bit selection.
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Their micro benchmarks were developed under Windows NT and can be used to measure
cache parameters such as capacity, block size, and associativity, to determine whether a
cache allocates on write and to detect write-back and write-through polices. Because
without assuming that the address mapping function is a bit selection, Li and
Thomborson’s micro benchmarks are applicable to caching systems employing “random”
or EE-XOR set-indexing mapping functions. This is very useful, for a rgsré' recent study
of a particular set-indexing mapping function has shown great advantage on some codes

without significant disadvantage [13].

Another significant difference in Li and Thomborson’s work from Saavedra and Smith,
is that their micro benchmarks for measuring cache associativity uses a random access
sequence without repetition. Although this method was intended to get rid of the
inaccurate estimation of cache associativity yielded from the micro benchmark that is
based on a random access sequence with repetition, however, it is still not good enough
to give out an accuraté estimation of cache associativity, especially when the degree of

cache associativity is higher than 8 [12].

Li and Thomborson’s work was limited to uniprocessor systems and did not cover the

measurement of the parameters of TLB ether.

My research was based on Li and Thomborson’s work. We evaluated the performance
characteristics of data cache memories and data TLB, including the primary cache and
the secondary cache in terms of analytical modeling. And based on this study, we also
developed a set of micro benchmarks of cache parameters (MBCP) in C, and performed
all of the measurement experiments in this using MBCPs on Pentium II and Pentium III
under the Linux operating system. MBCPs produce a series of controlled random or
sequential accesses to a given address space and bring the requested data to the processor

from the target level of the memory hierarchy (the primary data cache, or the secondary
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data cache and data TLB), and make some computation or store the results back to the
target level. MBCPs record the elapse time spent on repeating above iteration in a large
number of times and average it on to each iteration. Based on the measured data, we can
make clear and accurate estimation of the cache capacity, cache block size, cache set size,
cache associativity, cache write-back or cache write-through polices, cache latency and
miss penalty, cache data path bandwidth, number of entries of TLB, associativity of TLB
and TLB latency. Other parameters of the cache and the TLB are obtained easily from the

above parameters.

My methods are, generally speaking, based on measuring the time delay experienced by a
program as a result of bringing data to the processor from different levels of the memory
hierarchy. In this chapter, we focus on characterizing the cache and TLB units by running
our MBCPs which detect their most relevant parameters by measuring the performance

impacts of miss penalties rather than measures the miss ratio (the number of misses).

It is important to remember that the impact of the memory system is a function of three
factors: a) the miss ratios of the benchmarks, b) the delays in loading the cache and TLB

when misses occurred, ¢) and the raw performance of the CPU.

All machines attempt to exploit in many ways the spatial and temporal locality of
programs in order to improve performance, and the amount of locality present is a
function of how the instructions are executed and how the data is accessed. Because our
measuring micro benchmarks are based primarily on timing a small sequence of
instructions, which are executed many times in order to get a significant statistics, these
measurements tend to reflect what happens when locality is high. In other words, our
micro benchmarks are not instruction bounded but data bounded because they aim to

measure the parameters of data caches and data TLB.
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3.3 Characterizing the Performance of the Cache Memories

In order to explain clearly our experimental methodology, we note our underlying

assumptions:

e Instruction fetches in compact inner loops will not affect the data cache;
e Memory is byte-addressable, so that the memory access strides can be measured
in bytes;
e Each element in a array is four bytes;
e The number of sets S; in level i (i = 1, 2) cache is C/AiB;, where C; is the cache
capacity in bytes, A; is the degree of cache associativity, and B; is the block size in
bytes; oy &1 OMORE CACRTE
e There is just one block per cache line for Ml primary cache’\: Z = 11\"\’0 2 L3 j( @
e The replacement strategy is LRU;

e The M&Mﬁﬂaﬁe address bits’\are used to select the cache set.
ERET SpmiflL R (Exe LpDIvG TN Blbcya ADDEESITE 4772
Our methodology is based on inner loops that read data, or write data, or compute a

simple function on each of a subset of elements taken from a very large one-dimensional

array of N 4-byte elements:
{ep, €1,€2,€3 ..., en-1}
The subset is given by the following sequence:
(€0, €yt €204, Easit --r EN-sigk -] i
where s is the stride, measuring in byte. We adjust s to change the rate at which misses
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are generated since it controls the number of consecutive accesses to the same cache
block or page. In our experiments, the magnitude of s varies from 4 to 2N in powers of

two. Our array size N is also a power of 2.

3.3.1 Characteristics of Performance of a System with One Cache

Depending on the values of the array size N, the stride s, the primary cache capacity Cj,
the cache block size B;, the cache associativity A;, and the number of set S;, we can
identify six cases of operations (summarized in Table 3.1). Most of these cases were

identified by Saavedra and Smith [18]. Each case has a different miss behavior.

e Casel.l:1S4N<C;andl <s:

In this case, the whole array can fit into the cache and thus, for all values of the stride
s, once the array is loaded into the cache for the first time, there are no more cache

misses. The execution time per iteration of our inner loop is thus some constant T; =

Tno-mis.res-
o Casel2:C;<d4N<Ci+ S;Bjand 1<5<B;:

The array is slightly bigger than the cache. There are B)/s consecutive accesses to the
same cache line and misses occur in some cache sets. Assuming there are x (1<x<5))

sets where misses occur, we can obtain following equations:

4N =x(A1+J)B1+(SI—x)A1B1
=XB]+S]A]B]
=JCB]+C]
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From above equation we get x = (4N - C;)/ B;. There are 4N/s references in the array,
the miss ratio is thus x(A;+1)/(4N/s) = (s/B1)*(4N-C1)*(A;+1)/4N. So the execution
time per iteration is 77 = Tno-misses + Tiss1 *(s/B1) ¥ (4N-C;) * (A;+1)/ 4N, where Toig;
is the miss penalty which represents the time needed to read the data from the next

level cache.
Case 1.3: C;<4N < Cy+ S1B; and B; <s < 4N/A;:

The array is slightly bigger than the cache. The number of sets where misses occur is
(B)/s)*(4N-C1)/B; = (4N-C1)/s and the miss ratio is (4N-C;)/s*(Aj+1)/AN/s = (4N-
C1)*(A;+1)/4N. The execution time per iteration is thus T7 = Tno-misses + Tmiss1 * (4N-
C1)*(Aj+1)4N.

Case 1.4: C;+ S;Bj<4N and I <s < By:

The array is much bigger than the cache, and there are B;/s consecutive accesses to
the same cache line. The first access to the line always generates a miss, because
every cache line is displaced from the cache before it can be re-used in subsequent

iterations. The execution time per iteration is thus T; = Tno-misses + Tmiss1 57/ Bj.

Case 1.5: C; + S;B; <4N and B; <s < 4N/ Ay

The array is much bigger than the cache. There is a cache miss for every iteration,
because each element of the array maps to a different cache line. Every cache line is

displaced from the cache before it can be re-used. The execution time per iteration is

1= Tno-misses + Tonissi-
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Case 1.6: C; 4N and 4N/ A; <.

Because the stride s is so large, the associativity of the cache is wide enough to

capture all 4N/s references to the array. So the execution time per iteration is T; =

Tno-misses-
Cases | Size of Array Stride Frequency of misses Time per Iteration T;

1.1 1<4N <G, 155 No misses Tno—misscs

1.2 C) < 4NSC1 + Iss< Bl miss ratio is (S/Bl)*(4N" Tno—mi:ses+ TmissI *(S/Bl)* (4N'
S,B, Cy)*(A;+1)/4N Cp)* (A;+1)/4N

1.3 C; < 4NSC,+ | Bi=s <4N/A, miss ratio is (4N - Tromissest Tmisst * (4N -
S,B, C1)*(A;+1)/4N C1)*A;+1)/4N

1.4 C] + S;B; <4N 1<s5< By One miss every B]/S T o-misses + Tiss1 *( s/ B;)

element
1.5 C;+ S;B; <4N B; <s < 4N/A; One miss every element To-misses + Tmiss1
1.6 C, 4N 4N/A; <5 No misses Thno-misses

Table 3.1: Cache miss patterns as a function of N and s in the primary cache
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3.3.2 Characteristics of Performance of a System with Two Caches

In this section, we extend afand Smith’s analysis to cover two-cache systems. In
order to simplify the discUsster;we assume that the following properties are maintained

for set-associative caches:

Pl: Set-refinement. The set-mapping function f; refines the set-mapping function f; if
fo(x)= fo(y) implies fi(x)= fi(y), for all blocks x and y. The set mapping function f; for

cache L is used to select a set index (in the range 0, ... S;-1), given memory address x.

P2: Inclusion. Cache L, includes an alternative cache L if, for any block x after any
series of references, x is resident in Cache L; implies x is resident in Cache L,. This
property indicates that when cache L, includes cache L;, Cache L, always contains a

superset of the blocks in Cache L;.

In addition to the assumptions made for the one-cache system, we assume further that the
block size B, of Cache L, is the same as that of Cache Ly, i.e. B = B; = B;. According to
T e haoseona it (&), e the, eame. hlack. size., na-refeching and LRU replacement,
Cache L, includes Cache L; if and only if set-mapping function f; refines f; (set —
refinement) and associativity A, = A; (non-decreasing associativity), In this section, we

g A0 P24y ()

assume that Cache L, includes Cache L, &ﬁdAZZ =1.

Depending on the array size 4N, stride s, capacity Czand Cy, block size Bz and B;, and the
associativity A; and A, and the number of set S there exist seven cases of operations
(summarized in Table 3.2). These are characterized by the rate at which misses occur in

the second level cache.

o (Case2.1:1<4N<LCy:
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There is no miss in the secondary cache and misses occur only in the primary cache.

So the execution time per iteration T> is unchanged from Table 3.1: T, =T,

Case 2.2: C,<4N< Cy+ S;Band 1 Ss < B:

The array is slightly bigger than the secondary cache and the misses may occur in
both caches. Because the properties P1 and P2 hold, there are B/s consecutive
accesses to the same cache line in both caches. The deduction in Case 1.2 can be
applied here and the missﬁ;atio in this case is@j/B)*(th-Cg)*(AzH V4N. The
execution time per iteratior{@l‘ 5 = T1+Tmissz*(s/B)*(4N—C2)*(A2+] V4N, where Tpisso
is the time needed to read the main memory when a miss is encountered in the

secondary cache.

Case 2.3: C2< 4N < C2+ S2B and B <'s < 4N/Az:

In this case, the deduction in Case 1.3 can be applied here and the miss ratio is (4N-
C;)*(A;+1)/4N. The execution time per iteration is thus T2 = T + Tmss2™(4N-
C2)*¥(Az+1)/4N.

Case 2.4: C;+ S2B<4Nand 1 <5 < B:
The array is bigger than the secondary cache and the misses may occur in both

caches, and there are B/s consecutive accesses to the same cache line in both caches.

So therefore the execution time per iterationis T = 7; + Toniss2 ¥(5/B).

Case 2.5: Co+ S»:B <4N and B <'s < 4N/A;z:
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Since each element of the array maps to a different cache line and every cache line in

both caches is displaced from the caches before it can be re-used, there is a cache

miss in both caches on each iteration. Therefore the execution time per iteration is 1>

=T + T iss2-

Case 2.6: C;+ SoB <4N and 4N/A; S's < 4N/Ar:

There is no miss in the secondary cache but there is a miss in the primary cache on

each iteration. So the execution time T2 = 1].

Case 2.7: C, <4N and 4N/A,; <'s:

There is no miss in the primary and secondary cache. Therefore the execution time

per iteration is T2 = Tno-misses-

Cases | Size of Array Stride Frequency of misses | Time per Iteration T
2.1 1 SANL G, 1 S5 <4N/2 No misses T,
22 C,< 4N< Cy+ I<s< B miss ratio is (s/B)*(4N- T+ Tomiss2 *(5/B)*(4N-
S5,B Co)*(A,+1)/4N Cy)*(Ay+1)/AN
23 C,< 4N Gy + B <s < 4N/ A; miss ratio is (s/B)*(4N- T+ T issz *(4N-
5, Co)*Ar+1)/4AN Co)¥(As+1)/4N

fvo carmon )
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2.4 Co+ S:B 4N 1=s5< B One miss every Bfs Tyt Tonsss™(s/B)
element
2.3 C:+S:B=aN | Bsy< 4N/ A, One miss every clement in T7 = Toupe
each cache
I
26 Ci+ 5:B 4N 4N/A; Sr< | Onemiss every element in T
ANSA, the primary cache
27 C. 4N 4N/ <5 No misses Trpemisses
i
i

Table 3.2: Cache miss patterns as a function of & and s in the secondary cache

In the case that the inclusion between Cache L; and Cache L, does not hold, there exist at

least three possible cases:

s Cache Ly's set-mapping function /3 does not refine Cache Ly's fi.

s Cache Ls’s associativity A; is not bigger than Cache L;’s associativity Ay,

s Cache L."s cache block size B; is not equal to Cache L's cache block size B

Anyone of these three cases complicates the evaluation of the performance characterisncs

of the secondary cache memory and even makes the analytical modeling method to be too

weak to evaluate the performance of the secondary cache. For example, 1f A 15 not bigger

than A,, the inclusion property does not hold and it is possible that misses occur in Cache

L, but not in Cache Ly, so that it is very difficult to determine whether the miss penalty

come from Cache L, or Cache L;.




3.4 Characterizing the Performance of a Two-cache System with TLB

Theoretically speaking, the performance characteristics of 2 TLB are the same as that of

the caches, but the measurement of the parameters of a TLB is usually more difficult than

that of cache because more factors are involved. For example, X TLB always operates A

with the caches at the same time. In order to make accurate measurements of the TLB

paramelers, we must choose memory access parameters that cauvse TLB musses but few

cache misses.

Before characterizing the performance of the TLB, we must make some additional

assurnptions as follows:

The instruction TLB (ITLB) is separate from data TLB (DTLB}. We focus
only on the DTLB;

We measure the TLB capacity Crrg, ‘and its line size Brip by counting the
number of page table entries (PTE) they hoId%.\Bn_g =1;

Crrp << 50 that the TLLB can be referencedmx

An LRU replacement strategy is used; and

\

o sl TN

The least-significant address bits are used to select the PTEs.

We use a similar access pattern to the one we used in the measurement of cache

parameters; sequentially accessing a subset of elements

{er‘., S ryr Cope ro Cis4 Far s c (M-Tls+ry }

from a very large enough array which consists of & 4-byte elements, where M is the

number of elements of the accessed subset and vanable r, (0 ri<s} 1s used w adjust the

[¥5)
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position of the picked element in the stride block in order to avold misses in cache hine.
The size of the stride block is equal to the value of 5. The magnitude of number M vanes
from 1 to |_N/5j, In our “incremented offset” access sequence, we take r; = {iB;jmaod s. In
our “random offset” access, we use M random variates 7y, 72, 73, ..., Ty where each r, 15

i.ud in the range [0.1, .., s —1].

Depending on the values of M, stride block s, varable r;, the TLB stze Crzz, and the TLB
associativity App. we find seven possible cases arise in our experimental conditions

(summarized in Table 3.3).

In the following discussion, we use Py 1o represent the actual page size of the virual

memory system and assume that Py, is a power of 2.
o Case3.1: ) <M< Crg®™ (Psg/s)

In this case, there are number of (P, / 5) consecutively accessed elements staying
in the same page and using a same PTE in the TLB. All of the PTEs of the M
elements can fit into the TLB and there is no miss in the TLE, so the execution
time i5 Ts = TuottBomiss Where Ta.1op.miss 18 the time which consists of the time 1o

read one PTE from the TLB.

e Case 3.2 Crp» (Puge/ 8) SM < Crp * (Poin/ $)* {1+ 1/AT18). W1, 1 & Py and §

> Psi:e:

The number of PTEs of the elements is bigger than the TLB. and there is one raiss
occurring in the TLB between (Crua® (Pyee / 8} /Arrs) accesses. Therefore the

execution time of each iteration is Ts= Tuo-tLgmise + TriBamise * (M - Crrp (Psie /1Y



(Crig ® (Pyize/ 8) JAzrs), where Trsmis 18 the Ume needed to read one PTE from

the cache to TLB.

Case3.3: Crup ™ {Piize/ S} <M< Crp® (PS.‘ZE/S) * (]+J/An}3), W, k> Prige and §

> PSfZE:

Since the address of the accessed element may fall into the next page, it may share
the same PTE with that page, the possibility of one miss occurring in the TLB
between (Crip™ (Puize / §) fArig) accesses is less than 1. Therefore the execution
time of cach iteration in this case i Tuy1i8mizs = T3 < Trorrimiss + TTi8miss ™ (M -

CTLB*(Psz:e/S))/ (CTLB * (Ps!ze/s} /ATLB)

Case 3.4: Crp® (Pyize/ 8) SM< Crgp* (Pee/5) * (] 4+1/Ame), 5= Py

There is one miss occurring in the TLE between { Crops (Feze/ 51 /ATE) CCESSES,
But because there are (P, / 5) consecutive access elements sharing the same
PTE, the execution time of each iteration is T3 = Tao-1iBamises T L TLEmiss * (M -

CTLB*(PSEEE‘/ SD/ (CTLB * {Psz:e/ S) /ATLB) ! (Psize/ 5)-

Case 3.5 M 2Crp® (Poe/s)* (1+1/Aq8), Vi, 1 < Py and s > Py

Because each PTE of the elements maps to a different cache line in the TLB and
every line in the TLB is displaced before it can be re-used, there is a TLB miss
gvery iteration. Therefore the execution time per iteration 18 75 = ToeTipmis + Tra

mass

Case 3.6: M =2 Crp * (PS;'ZE/S]* (]+_1'/FITL3), Y1, > Piise and 5 > Pt

-1

[59)



Ror the same reason in Case3.3, the execution time per iteration 18 Ts = Tnoriamiss

+ TTLBfmn‘s‘

Case 3.7 M 2 Cps * (Page/ s)7 (1+1/Anp), and s S Py

* (IW - Crp* (‘Pm,/ S)) [ {Crie * (Ps.-‘:e/s) /Arrp) < T3< Tpp-TiBomisy + Tren

.
Combining the analysis in Case3.4 and Case3.5, the execution time per iteration
in this Caseis T3 = Tao-tLBmiss + Tregass ! {Puize/ 8.
[ Cases | Size of Subset | Stride Block | Frequency of misses | Time per lteration T; }
and Offset
31 <M< CTLB * No misses H T:m—TLB—m:.ri
(P! 53
32 Cria®* (Pan/3) 5| r; € Py and One miss cceurs between | TopmiBmes = Trisumes = (M -
M < Crp* (P’ (Crea* (P 5V ATLE) Crep(Pize/ sH (Creg ®
L P.rize
spH {1+ 1Az ) accesses (Pised $1ATLY)
i | P> Psi:e and Possibility of one miss Toott8mss S T2 Doorrsrmius
33 Same as Case 3.2 s% P oceurring between (Crus® |+ Tropmss * (M - Crig™®
Sizeg
(P /siArs) accessesis L (Po /)W (Cria ® (Pi/'s)
less than 1 FArrg}
34 Same as Case 3.2 <P ({P,../ 5) consecuiive i Too Tobersisses T 1 Tibimers (M
. access elements sharing the i - Crog™ (Pope/ )1 (Crig ™
same PTE (Pced SHATE) P e 5




35 M2Crng* (Puxt Fi < Ps::e and Cme miss occurs between Tnn—TL.B—nn'ss + TriBumiss
syt 1+ HAqs) § 5 Poe ! {Crrg™ (Patee SVATLE)
accesses
16 Same as Case 3.5 - F< P and Possibility of one miss per | Tuoris mis Trrpmig, ™ (M -
2 |- fze
iteration is less than ! Crra™ (Pyize/ )4 {Crrg ™
5> Psu,e .
(P s)Ang) ST Ty |
H
TLBmiss + T TLBumiss
37 Same as Case 3.5 sEP, One miss Too-rr8omiss + Tremise { (Poize
5}

Table 3.3: TLB miss patterns as function of M, stride s and offset r, in the TLB

3.3 Measuring the Parameters of the Cache

Our basic experiment scheme on the cache memory and the TLB begins with recording
the execution time per iteration as the function of the array size & and the stride s by
micre benchmarks. By plotting some graphs of the values of the execution time per
iteration against N or 5, we can identify where our experiments make a transition from
one case (0 the next. Based on the performance characteristics of the primary cache, the
secondary cache memories and the TLB, we can determine the values of the key
parameters of the caches and the TLB. In this section, we explain how these parameters
can be obtained in detail by reference to the discussion in Section 3.3 and Section 3.4,

These methodologies are empioved to implement our micro benchmarks MBCP in

Chapter 4.
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3.5.1 Cache Capacity

Measuring the capacity of the cache 1s achieved by increasing only the array size 4N with
the stride s is fixed. When it increases to reach some particular value &, the misses in
the primary cache occur and the execution time per jteratjon becomes significantly larger
than the Tomisses. The cache size for the primary cache is given by the largest N; such that

the average iteration time is €10%& 10 Tro-misses

When the array size 4N continues increasing until some particular value Nz, the misses in
the primary cache and the secondary cache occur and the execution time per iteration
hecomes significantly larger than the Trpmisses + T The cache size for the secondary
cache is given by the largest N, such that the average 1ime iteraticn is close to Thy migsesT

Tmmi.
3.5.2 Cache Block Size

According to the analysis of Case 1.4 and Case 1.5 in Section 3.3.1, we can see that when
the array size 4N is equal to or greater than C;+ S;B; and the stride s changes from { to B;
the change of the execution time per iteration 7 follows Tugmisees + Trmissy 8/ By When
the stride s increases to bevond By, there is a miss in the primary cache on every iteration
and the execution time per iteration Ty 18 Tgomiper T Timissl- Therefore when we increase
the stride s up to and beyond some special value si, the transition the execution time per

iteration T, between Case 1.4 and Case 1.5 will happen and the T; reaches Thomicses +

Tomisss- The special value 51 is the value of the block size B; of the primary cache.
The transition of the execution time per iteration T3 between Case 2.4 and Case 2.3 in
Secticn 3.2.2 can tell the block size B; of the secondary cache when the stride s changes

from 1 to 4N/As.
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*B*S,

The second method to obtain the associativity A of the primary cache and the sccondary
cache is based on the discussion of Case 1.3, Case 1.5 in Section 3.3.1 and Case 2.3, Case

2.5 in Section 3.3.2 respectively.

From the discussion in Case 1.3 and Case 1.5 in Section 3.3.1, we can see that that if we
increass the array size 4N from the cache capacity C; to Ci + 5B, the execution time per
iteration increases from 77 = Tngomisses 10 Tt = Tromisses + Tmissr® (FN-Cp) ¥ A+ 1)H4N for
any fixed stride 5. When the array size 4 is equal to or greater than C; + 5;B,. the

execution uime per iteration T} = Tho.misses + Lmisss- S0 We can get following cquation:

(4N-C)*(A;+1 /AN =1
then A; = C]/(4IV-C1) =C; /Dy

Where (4N-C;) = D, is the increment of the array size between the two significant points
which are respondent to one place where T = Tro.misses and another place where T = Ty,

misses T Tmi’.ssl .

In the same way, based on the discussion in Case 2.3 and Case 2.5 in Section 3.3.2, we
can also get the associativity A; of the secondary cache from Az = C2 A{4N-C2) = Ca/ D,
where (4N-Ca} = Dy is the increment of the array size between the two significant points
which are respondent to one place where 12 = Thomisies + Tuises and another place where T

= Tﬂn-mmas + Toisss + Timisa2:

The third method we can use to measure the associativity of the primary cache is the
method used in [12] to measure the associativity of the primary cache by constructing a

pseudo random permutation of the 4N/B; array indices {0, B,/4, 2B/4, ..., N- By/4) of the



4-byie elements that would load at block offset zero in the primary cache. This method is
good theoretically but the corresponding benchmark 1s more complicated and

identification is not very clear or accurate.

In this thesis, we implemented the first two methods to measurs the associativity of the

primary cache and the secondary cache.

3.5.5 Cache Latency and Miss Penalty

Cache miss penalty is two very important performance parameters related to memory
hierarchy. There are three classes of miss penalty related to memory hierarchy: cache
penalty, TLB penaity, and main memory penalty. Cache penalty is the time that is needed
tc read the required data from the next level cache or main memory when a miss accurs
in the cache. The cache miss penalty we measured by our micro benchrmarks is an
effective cache miss penalty that can usually not be provided by the manufacturers. And
here the iteration consists of only read operation on the accessed data. Sc the execution
time per iteration 7, in Section 3.3.1 and T2 Section 2.3.2 are the cache miss penalty

of the primary cache and the secondary cache.

Erom the discussion in Case 1.1 and Case 1.5 in Section 3.3.1, we can work out the
method to obtain the miss penalty of the primary cache. In Case L1, there is no miss in
the primary cache. I7 is the cache latency which is the rime needed to read data the
primary cache. Tn Case 1.5 there is one miss for every iteration, and the data needed are
always read from the next level cache, ie. the secondary cache. The execution time per
iteration T, in Case 1.5 is actually equal to the execution time per iteration 72 in Case 2.1,

So we get The primary cache miss penalty

The primary cache miss penalty Tpsr = (72— T4)



Ir the same way, from the discussion of Case 2.1 and Case 2.5 in Section 3.3.2, we can
get

The secondary cache miss penalty T = (Tom— T)
where T is the execution time in Case 2.1 in which case there is no miss in the secondary
cache. T is time needed to read data from main memory, which is equal tc the

execution time Ty in Case 2.5 in which case there is one miss for svery iteration and the

data needed are always read from the main memory.

The trick in the measurement of the cache penalty is using data dependency, in which the
data 1o be accessed is dependent on the previous data. This technique makes sure that
data access is the performance bottleneck of the benchmark, and can eliminate the effects
from the pipeline, the parallelism in the data access path, the speculative execution and
multithread, etc. The second advantage of this technique ig that it can guarantee that all
the data accesses have the same miss penalty. This methed is aiso feasible to measure the
effective miss penalty of the secondary cache and of the TLB. This technique has the

advantage to prevent its code from being optimized away.

3.5.6 Effective Parallelism of the Data path

Effective parailelism of the data path of memory hierarchy is the abillty to access cache
memory or main memory. This parameter is also us impertant as the miss penalty for the
performance of the memory hierarchy, and can not be provided by the manufacturers

gither.

When we measure the effective parallelism of the data path, we must enable the
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henchmark to access the caches or the main memory in parallel without losing the
advantages of the technigue in Section 3.5.5. In order to do this, we can build up several
independent access sequences first, and then let the benchmark access these sequences in
parallel. Each access sequence is accessed using the method discussed in the Section
355 The effective paralielism of the data path can be obtained by comparing the
measured execution time per iteration in parallel and that from the third method in

Section 3.5.5. For example,
The effective paralielism of the data path Py = Tr.ae/ Ti-poraitel

where Tiparatier i the measured execution time per iteration in parallel and Ty
represents the exscution time per iteration when only one data sequence is accessed in

the primary cache.

The effective parallelism of the data path of the secondary cache and even the main

memory can be ohtained in the same way as that of the primary cache.

3.5.7 Write Policy

We use the same methods used by Li and Thomborson to measure the cache-writs
polices. One method is called the “pre-read kernel” which can be used to test whether a
primary cache uses a write-through or write-back policy, and whether it allocates on a

write miss or not for the write-back policy.

Another method is for write accesses to evaluate the dependence of write-access time on
stride. In this method the iteration consists of read and write operations on the accessed

data [12].



3.5.8 Write Buffer Influence on the Cache Performance

Write buffers are used to allow giving priority te reads over writes by pending writes,
which are sent to maip memery, unti] the memery bus is not being used to satisly feiches
in case the cache update policy is write-through. It is helpfu! in reducing the amount of
time that the CPU has to stall waiting for writes to complete, The data can be read from
the write buffer immediately, in some designs, without waiting for the write occur if the

data are still in it when the data are required by the CPU.

The size of the write buffer is difficult to measure but ils existence and effectiveness on
the cache performance can be detected by observing how the execution time per ileration

changes as the stride s gets close to N/Z.

For the primary cache measurement, the number of different elements touched by a
particular experiment is N/s, and this number decreases as s increases, which means that
the time between two accesses t0 the same element also decreases. In a cache with a write
buffer, if s is very close to N/2, the time from the moment an element is written until it 13
read again can become smaller than the time it takes for the write to oceur, so the fetch
can be reirieved from the buffer, if the write buffer provides the facility. When this
occurs, the time per iteration will decrease by the difference in time between fetching the

data from the write buffer and fetching it from memory [19].

3.6 Measuring the Parameters of the TLB

The basic ideas behind the technigues in our benchmarks used to measure the parameters

of the cache and the TLB are based on the methodologies discussed in the Section 3.4.
From the discussion in the Section 3.4, we know that, in the case of the measurcment of
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the TLB, the array size 4N and the stride s are dealt with in a different way, and that a
new parameter M, the number of the elements in the accessed subset, is added in order to
make the accesses to the TLB to be the performance bottleneck without the caches
turning off. In this way, we can isolate the effects from the caches and make the
measurements on the TLB clearer and more accurate because the misses occur only in the

TLB but not in the caches.

3.6.1 TLB Size

Based on the discussion in Section 3.4, we can figure out the method to measure the
parameters of the TLE. By varying the number M and the siride 5. we can measure the

page size and the capacity (entries) of the TLB.

We can measure the page size P, of the virtual memory system first by comparing the
shape of the curve from the result measured using the increment offset method and of the
curve from the result measured using the random offset method. Only when the stride 5 is
equal to or less than the page size Py, the shape of the curves from the results measured

using the two methods are the most similar. This can be explained by Case 3.3.

The page size P,;,. can also be determined by observing the changes of the execution time
pag ¥ g g
per iteration. When the stride s is less than P, and hefore the misses in the TLB occur,

and the execution time per iteration 18 Too 778 misies + Tno-TLB-miss * [5 1 Psized-

From Case 3.1 and Case 3.5, we can see that when the number M is less than or equal to
Crig * {Py./ 5} the execution time T; of each iteration 18 Top e semisses- When M is greater
than CTLB * (Ps::v/ 5) * (]+1/ATLB): T5 increases up jte) Tﬂr»TLB-nli,a'.ref + Tno-T;’_B-n::J: which is

much bigger than e i pomeses. 1118 transition can be used to tell the capacity of the TLB.
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3.6.2 TLB Associativity

One method of measuring the associativity of the TLB is similar to the method used in
[1] to measure the associativily of the primary cache by constructing a pseudo random
permutation of the 4N/B; array indices {0, B4, 28,44, ..., N B4} of the 4-bwvie
elements that would load at block offset zero in the primary cache. In this case the pseudo
random permutation is of the addresses of the one element in each page. However, this
method is good theoreticaily but the corresponding benchmark is more complicated and

identification is not very clear and accurate.

My method is based on the discussion in Section 3.4. When the TLB size Urep and the
page size Py, is determined, for any fixed stride s = Py, the execution time Tz of each
iteration increases from T 7emmisses 10 Tno TL8-misses + 1 TLEmixs With the increment ratio is
(M- Crog* (Poze/ $)/ {Crin * (Pize/ 8) /A e} as M increases from Crig * (Psize/ 5)t0 Crin
% (Pu./s) * (1+1/A7s). Since the execution time Ty of each iteration 15 Tuo-rre-mises +
Trpmis when M increases up to and beyond My = Crzp * (Pu/ s) * ({+1/A7p). we can

get following equation:
(M7 - Crep* (P / SV (Crip * (Puige/ 5} AAzr) =1
then Arig= Crig * (Psize/sll / (IMJ - CTLB*(PH'ZE/S)J

= Cn_g /(1\41 - Cﬂ_g} when s = P_”:g

This method is much clearer and more accurate 1o obtain the associativity of the TLB

than the first method.
3.6.3 TLB Minimum Latency and Miss Penalty

We also use the data dependence to measure the minimum latency of the TLB in a similar
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way as in the measurement of the effective cache latency on in Section 3.5.5. According
to the discussion in Section 3.4, the address distance between the next accessed data and
the current data should be greater than the actual page size of virtual memory. Therefore,
the actual page size of virtual memory should be known first {(which can be done in
Section 3.6.1) before measuring minimum latency of TLB. But note that the measured
minimum latency of the TLB is an effective minimum latency of the TLB because it

might include the effects from the primary cache although this effect may be smail.
‘When the TLB latency is measured. we can cbtain the miss penalty of TLB by deducing

T3 = Too-tesmiss + Trigmie 1 no-TiB-misy 18 the minimum latency of TLB and Trig e 15 the TLB

Tmiss penalty.
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Chapter 4: MBCP Development under Linux

4.1 Overview

In this chapter, I first discuss the general design principles of micro benchmarks and their
application in our micro benchmark MBCPs, and then briefly describe the development
and running environment of MBCPs, and finally talk about the design and
implementation of some key micro benchmarks under Linux OS in detail. Some kemels

of the key micro benchmarks are presented in this chapter.

4.2 Design Principles of Micro Benchimarks

ldeally, a performance benchmark should be scalable, broad in architectural scope,
simple to apply and understand, representative of the way people actually use computers,
and scientifically honest. A good and proper benchmark is both a task engineered to meet
these goals and a set of rules governing the experimental procedure. It is more than just
an application program. The main design principles of performance benchmarks are
scalability, fixed-time limitation, language/architecture Independence, precision
independence, valid-figure of merit, complete task measurement, minimization of human
effort bias and accountahility. It is known that many of these goals are at odds with one
another and that a single benchmark with a single merit cannot fully characterize
performance for the entire range of computing tasks. As with any engineering design. &

certain amount of compromuse 1s necessary [4].

The purpose of our benchmark MBCPs is to measure certain important parameters of the

components in the memory hierarchy, including the primary cache memory, the

secondary cache memory and the TLB. And according to the methodclogy outlined in
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Chapter 3 the fundamental measurement in our benchmarks is the measurement of the
elapsed wall-clock time of the iteration, and from the measured data, the estimation of the

key parameters of the primary cache, the secondary cache and the TLB are made.

According to the purpose of this thesis and the performance measurement goals of our
benchmarks, the major design principles of benchmarks we considered in the
development of our micre benchmark MBCPs are scalability, language/architecture

independence, and precision independence {4,7,18].

4.2.1 Scalability

Scalability requires that benchmark should work well and give reasonable. accurate and
correct measurement when the computing power varies. This principle is applied in our
micre benchmark development in the way that MBCPs should not only measure Pentium
computer systems, but also measure Intel Pentium II, Pentium I and other computer

SYSICTHS.

4.2.2 Language/architecture independence

This principle means that the problem should be specified at a more absiract level rather
than defining the task with a particular program written in some language. From the
discussion in Chapter 3, we know that the methodologies of measuring the parameters of
data cache memories are actually language independent. and architecture independent
under some assumptions. Considering the efficiency and popularity, we mmplemen: our

micro benchmarks using C.
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4.2.3 Precision independence

Although the fundamental measurement made in our benchmarks is the elapsed wall-
clock time to complete some specified operations, mest of the parameters of this thesis,
such as the capacity and the associativity of the caches and the TLB, are derived from
this basic timing measurement except the latencies of the caches and the TLE on 2 miss.
Our micro benchmarks can measure directly the latencies of the caches and the TLB on a
computer system counting the time by using the system clock or the elapsed wall-clock
time. The precision of the former method is machine-dependent but usually accurate, the

precision of the latter methed is machine-independent but maybe inaccurate.

4.3 Environment Considerations under Linux

Linux is a powerful operating system which has been developed from a hacker system to
a general purpose system. There are many reasons why we chose Linux as our

development platform of the benchmarks. Some of them are as following [15]:

o Linux is the most portable system to other architectures such as DEC Alpha,
MIPS or Sun Sparc computers.

o Linuxis 2 UNIX-like system, with all the flexibility of UNIX.

» Linux requires significantly lower hardware supports compared with other OS
such as Windows NT and OS/2.

o Linux compiles with international standards such as POSIX and ANSI C and
supports many BED or System V extensions.

s Linux is free and its entire source code is accessible @ everybody from
Internet.

» Linux is very well documented via electronic manuals or man pages.

LN
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Another reason we choose the Linux OS as our platform is that we found the size of the

compiled C codes is much smaller than that under Windows NT. So that we can compile

our benchmarks in small enough size to measure the parameters of the secondary cache

because the secondary cache usually is a united cache.

43,1 Development Environment

The development environment involved for developing our micro benchmarks mainly

consists of operating system Linux. text editor GNU Emacs or Emacs 19 or vi, C

language compiler GNU gee for compiling C programs and its corresponding GNC C

library.

Operating System Linux

The Linux we used is the Red Hat Linux 5.2 which js a commercial package
distributed by the Red Hat distribution. The kernel of RE Linux 3.2 is the Linux

kernel version 2.0.0.

GNU Emacs

GNU Emacs is the second implementation of this highly pepular editor developed by
Richard Stallman. It integrates Lisp for writing extensions and provides an interface
to X. In addition to its own powerful command set, Emacs has extensions that

emulate other popular editors such as vi and EDT {DEC’s YMS editor).

Emucs 19 is a richer version of the Emacs editor with extensive support for the X
window system. It includes an interface to the X resourcs manager, has X toolkit
supportt, has good RCS support, and includes many updated libraries. Emacs 19 from

the FSF works equally well on character-based terminals as it ¢oes under X.

N
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» GNU C Compiler

The GNU C Compiler (GCC) is a fully functicnal, ANSI C—ompatible compiler.
Version 2 of the GNU C Compiler (gcc) supports three languages: C, C++ and
Objective-C. The Janguage selected depends on the source file suffix or a compiler
option. The runtime support required by Objective-C programs is now distributed
with gee. The GNU C Compiler is a portable optimizing compiler that supports 1ull
ANSI C, traditional C, and GNU C extensions. GNU C has been extended to support
features such as nested functions and nonlecal goto statements. Also, gee can

generate object files and debugging information in a variety of formats.

» GNU C Library

The GNU C library supports ANSI C and adds some extensions of its own. For
example, the GNU stdio library lets you define new kinds of streams and your own
printf formats. Our MBCPs use only some basic functions of the GNU C library so

that MBCPs have very geod compatibility.

4.3.2 Running Environment

Although our micro benchmark MBCPs were developed under Linux OS, they can run
under not only Linux but alse UNIX, and even under Windows NT. except the
benchmarks for measuring the secondary caches. MBCPs can be run as a normal user
under Linux or UNIX, but require that there is no other active processes running at the
same time, which guarantees that only the MBCP accesses the CPU resources and the

memory resources. Or the experimental results may be unstable.
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4.4 Design and Implementation of the Microbechmarks

In this thesis, we focused on the design and implementation of some key tmicro
benchmarks to measure the key parameters of the primary cache, the secondary cache and

the TLB. The micro benchmarks we implemented in this thesis are as following:
e Cache capacity and latency benchmark mbeel

Benchmark mbeel is used to measure cache capacity, cache latency and cache
miss penalty of the primary cache and the secondary cache. It also can be used
to measure the cache associativity based on the third methedology discussed

in Section 3.5.4 in Chapter 3.

» Cache effective data path parallelism benchmark mbeedpp
Benchmark mbeedpp measures the effective parallelism of data path of the
caches and the main memory based on the methodology discussed in Section
3.5.6 in Chapter 3.

» (Cache black size benchmark mbcbs
Benchmark mbebs is used to measure the cache block size based on the
methodologies discussed in Section 3.5.2. It also can be used to measure the
cache associativity based on the second methodology discussed in Section
3.5.4 in Chapter 3.

s TLB benchmark mbtib

TLB benchmark mbtlb measures TLB capacity, TLB associativity, and TLB
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minimum latency. Benchmark mbtlh can determine the page size of the
virual memory system. The methodology used in benchmark mbilb is

discussed in Sectien 3.6 in Chapter 3.

We explain the design and implementation of each benchmark under the assumptions
made in Chapter 3 unless the Linux does not support them. For example, memory is byte

addressable and the memory access strides are measured in bytes.

4.4.1 General Programming Considerations

Our micro benchmarks aim to measure the parameters of data cache and TLB accurately
and efficiently. In order to achieve these aims better, some ideas are emploved when we

buiid up our benchmarks.
e Use registers of CPU

Proper use of register variables can improve the performance of benchnarks.
However. the main reason behind this idea is that use of regisier variables may help 1o
lessen or eliminate the effects of accessing cache or memory from some variables
such as iteration variables of loops. These variables are accessed frequently and not

supposed to occupy the space of cache or memory.

»  Avoid use of function calls

Although use of function calls helps to improve the architecture of programs when
they become very large and complicated, excessive use of function calls may prevent
code-optimization and affect running perfermance because they need extra operations
resources. Therefore, function calls are not used i the kemnels of our micro

benchmarks.



* Avoid code being optimized away

Since our micro benchmarks are developed in high level computer language C,
programming of the kernels must be very careful so that their codes will not be
optimized away when they are compiled in different operating system platform

especially in the case that code unrolling is used.
¢ Keep the code size of the benchmark as small as possible

In order to measure the parameters of the cache and the TLB accurately, the code size
of the micro benchmarks should be made as small as possible. For the secondary
caches that are united cache, the code size of the micro benchmarks should be smaller
the size of the primary code cache so that the micro benchmarks will reside in the

primary code cache and not interfere the secondary cache.
4.4.2 Data Structure and Time Counting

According to the methodelogies discussed in Chapter 3, the accessing data pattern used to
measure the cache memory and TLB is either a sequential addresses subset or a random
addresses subset extracted from a known address space. We implement the known
address space as a large array structure of 4-byte long imteger type like long it
array_address[array_N], where array_N is number of the elements in the array
array_address. We use variable array_4N to represent the size of the array array_address

in bytes,

For different measurements, the large number arrav_4N is different. Considering the
flexibility of the benchmarks, therefore, we use the sysiem funetion call calloc( ) w0

allocate dynamically continuous addresses in the main memory, 1.e.
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volatile long *array_address;

array_address = (long) calloc{array N, sizeof(long) );

The accessing data subset will be picked up from these continuous addresses sequentially
or randomly according to the requirement in each benchmark, Declaring arrayv_address as
volatile long is another way to prevent the codes operating on array_address from being

optimized away.

We use the system function call clock( ) to record the total execution time of a series of
operations which is defined by the long integer number TOTAL_ACCESS. The
exccution lime per iteration can be obtained by averaging the total time for each

operation.
4.4.3 Cache Capacity and Latency Benchmark mbccl

Based on the methodology discussed in Chapter 3, benchmark mbecl first allocates a
continuous address space of array 4N bytes and initializes every element of it with step
STRIDE, and then record the rotal time used te read the array in TOTAL ACCESS
times. It averages the total time on each operation read each element of the subset and
gets the exscution time per operation. Figure 4.1 shows the timed kemel for measuring

cache capacity and the cache latency.

The algorithm of cache latency measurement is based on the methodology discussed in
Section 3.3.5 in Chapter 3, which uses data dependence. and is simpler and clearer than
other methods discussed in the same section. In order to do this, mbeel first ininahzes the
allocated address space as a chained sequence, that is the content of the previous element
is the address of the latter datz. And then mbeel accesses the subset using data =

array_address[data] accessing pattern so that accesses of the next dara is dependent on the



void benchmark_mbeel(long array_4N, long stride, long total_access, FILE *fp)

f U ———————EE =}
J* Funetion : measuring the capacity and Jatency of the caches. */
e am e [V — #/

{

volatile long *array_address;
regisier long data;
register long i

nnsigned long array_N, start_rime, stop_time;
double time_cost, cost_per_op;

array, N = array_4N/ sizeof(long};
array_address = {long *) calloc(array_N, sizeof(long));

for {i=0; i<array_N; i+= stride) /% Initialize to form a sequential *f
arrar_address [i} =1 + stride; /% and circular access chain *f
array_address {i- stride] = 0;

data=0;
start_time = clock{}:
for (i=0; i< total_access; i+=8) /* Repeat accessing array_address [| %/

{
data = array_address [data]; data= array_address [data]:
data = array_address [data]; data = array_address [data];
data = array_address [data]; data= array_address [data]:
data = array_address [data]; data= array_address [data]:
}

stop_time = clock();

time_cost = {double)(stop_time - stan_time)/(doubie)CLOCKS_PERLSEC;
cost_per_op = (1000000000.0%time _cost)/ total access;
[printf{fp, * %d %fn”, array_4N, cost_per_oph

Figure 4.1 The timed kernel for measuring cache capacity and latency




previous data. In Figure 4.1, we can see that the address of the next accessed element data
depends on the content of the previous accessed item, so the next accessed item could be
accessed only after the access operation of the previous one completes. In this way, the

latency of the primary cache can be measured.

The array_4N 1s a variable used to control the number of elements in the accessed subset,

Its range and increment are dependent on how accurately we want to measure the caches.
We usually change array_4N in a big range with the increment in 2 times of the previous
arrav_4IN for the first time, so that we can determine approximately the capacity of the
primary cache and the secondary cache quickly. And then we can narrow the range of
array_4N with a proper increment to measure the caches accurately. In our experiment,
the first range of array 4N is (1XB, 8192KB). The narrewer range of array_4N is (1KB,
64KB) with increment being 1XB for measuring the primary cache and the narrower
range of array_4N 1s (32KB, 1536KB) with increment being 32KB for measuring the
secondary cache, since the first results show that the capacity of the primary cache and

the secondary cache are approximatelyl16KB and 512KB.

Variable stride is used to control the interval in which the elements are accessed. Only
when stride is greater than the cache block size, the measured latency is the true latency
of the cache or main memory. Usually we set the stride to be equal to or greater than §,

that is, 32 bytes.

Variable total_zaccess is used to control how many elements to be accessed. One reason to
use total_access is because the cache is very fast and it is impossible to measure the time
of each cache access. Another reason for accessing the whole subset repeatedly in
total_access times 1s to eliminate the noise of error by averaging the total time on each
operation accessing each element of the subset. So total_access is set to a very larce

number, But too large total_access results in a slow measurement.
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4.4.4 Effective Data Path Parallelism Benchmark mbcedpp

Benchmark mbeedpp is implemented based on the methodolegy discussed in Section
3.5.6. Benchmark mbcedpp first initializes the array_address[] into several sequential
and independent data chains, and then records the time of accessing the data chains in
parallel in total_access times. Figure 4.2 shows the algorithm used to initialize the access

data chains and Figure 4.3 shows the timed kernel used in benchmark mbcedpp.

In Figure 4.2, variable num_ways defines the number of the sequential access chains 1o
be built up in side the array array_address. The meaning of variable array_address,

variable array_N and variable stride are the same as that in benchmark mbeel.

void seq_circular(volatile long *array_address, long array_N, long stride,
long num_ways)

/F ——
/* Function : build up num_ways sequential access chains. */
I R ]
{

long i, j;

for( i = 0; i<array_address-num_ways*stride; i+=num_ways*stride)
for( j = 1; ] < i+num_ways*stride; j+=stride}
array_address[j] = j+num_ways*stride;

for(i = 0; i<num_ways; i++) /* Form num_way circular */
array_address[array_N-num_ways*stride
+ i*stride] = 1: /* access sequences */
return;

Figure 4.2 The algorithm used to initialize N-way sequential access data chains
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void benchmark_mbcedpp(long array_4N, long stride, long total_access, FILE *fp)
{
#define num_ways 4

volatile long *array_address;

register long datal, data2, data3, datad;
register long 1

1+

unsigned long array_N, start_time,stop_time;
double time_cost, cost_per_op:

array_N = array_4N / (sizeof(long));
array_address = (long *)calloc(array_N, sizeof(long));

seq_circular{array_address, array_N, stride, num_ways),

datal = 0; data? = stride;
data3 = dataZ+stride; datad = data3+stride;

start_time = clock();
for (1 =0; i<total_access; i+=num_ways*8)

{
datal = array_address [datal); data2 = array_address [data2];
data3 = array_address [data3]; data4 = array_address {datad];
datal = array_address [datal]; data2 = array_address [data2];
data3 = array_address [data3); data4 = array_address [datad];
1

stop_time = clock();

time_cost = (double){stop_time - start_time¥(double}CLOCKS_PER SEC;
cost_per_op = (1000000000 .0*time_cost)/total_access.

fprintf(fp, * %d %Nn”, array_4N, cost_per_op);

Figure 4.3 The timed kernel for measuring cache effective data path parallelism




The kernel in Figure 4.3 initializes the array array_address into four independent access
data chains and accesses them in parallel using variable datal, data2, data3, and datad.

The accesses in cach chain are dependent in the same way in benchmark mbeel.

4.4.5 Cache Subblocck Size Benchhmark mhbcbs

The algorithm used in benchmark mbebs is based on the methodology discussed in
Section 3.3 and Section 3.5.2 of Chapter 3. Figure 4.4 shows the timed kemel for

measuring the cache block size.

Benchmark mbcbs first allocates a continuous address space with fixed array size
array_4N bytes and initializes the array_N elements in this address space for each stride.
And then it records the execution time per iteration corresponding to the stride from
MIN_STRIDE to MAX_STRIDE. The stride multiplies in factor of 2. The array_4N is
set to be any integer that is greater than the size of the cache to be measured, or the
experimental results may not reflect the parameters of the measured cache because the
cache to be measured may not be teuched at all. In our experiment, we set the array_dN
to be four times of the size of the cache to be measured. For example, the array_4N is
64KB when measuring the primary cache, and the array_4IN is 2048KB when measuring
the secondary cache. The constant MIN_STRIDE and MAX_STRIDE are 1 and 512

respectively. So the stride changes from 4 bytes o 2048 bytes.

Benchmark mbceel and benchmark mbebs looks very similar. The difference between
them is that they use variable stride and variable array_4N in different ways. In
benchmark mbchs, vanable stride takes different values and variable array_4N is fixed to
some value (for example array_4N = 64KB or array_4N = 2048KB). However. in
benchmark mbecel, variable stride is fixed (for example stride = 32 bytes) and varable

array_4N changes.
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void benchmark_mbebs(long array_4N, long total_access, FILE *{p)

{

volatile long *array_address;
register iong 1, stride, data;

unsigned long array_N, start_time,stop_time;.
double  time_cost, cost_per_op;

array_N = array_4N / sizeof(long);
array_address = (long*)calloc{array_N sizeof(long));

for (stride=MIN_STRIDE; stride«=MAX_STRIDE; stride*=2)

{

for( i = 0; i<array_N; i+=stride} /* Initialize to form a sequential */
array_address[i] =i +stride; /* and circular access chain #
array_address[i-stride] = (;

data =0,
start_time = clock();
for (i =0; i<total_access; i+=8) /* Repeat accessing array_address]] #/
{
data = array_address{data); data = array_address[data];
data = array_address[data); data = array address[data];
data = array_address[data]; data = array_address[data];
data = array_address[data]; data = array_address[data):
1

stop_time = clock();
time_cost = {double){stop_time -

start_time )/ (double)CLOCKS_PER_SEC;
cost_per_op = {1000000000.0%ime_cost)/ total access;

fprintf(fp, “%d %f \n”, stride*sizeof(long), cost_per_op);

Tetum.

Figure 4.4 The timed kernel for measuring the cache block size
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4.4.8 TLB Benchmark mbtlb

TLB benchmark mbtlb is implemented based on the discussion in Section 3.4 and the
methodology in Section 3.6 both in Chapter 3. Comparing the methodologies for
measuring the parameters of cache and TLB and the methodologies for measuring the
cache memory, the key different techniques employed in benchmark mbtlb arc the
preparation methods used to build the access data subsets. For the benchmarks measuring
the TLB, the access data subset consists of some elements that are separated by some
intervals. In this case, we say that the data of the subset come from different assumed

virtual pages.

When we measure the parameters of the TLB, we must make sure that misses occur only
in the TLB but not in the primary cache. Or we can not identify the significance of the
curve comes from the cache or the TLB. In order tc prevent miss occurrences in the

primary cache, we designed two methods to build up the access data subset.

The first ene is called increment-offset method. This method needs to know the line size
of the primary cache first so that it can prevent miss occurrences in the same cache line.
Increment-offset method chooses one item from each assumed virtual page and each item
1s put into a different cache line te zvoid the misses in the primary cache. Figure 4.5
shows this algorithm used in benchmark mbtlb. In Figure 4.5, varizble num_pages is the
number of the assumed pages in the allocated continuous address space and the assumed
virtual page size 1s stride_block. Variable block_size is the block size of the primary

cache.

Another technique is called random-offset method. It also chooses one item from each
assumed page to form the access data subset, but the position of the item inside sach
assumed virtuzl page is random ranging from O to stride_block-1. So this method does

not need to know the cache line size in advance. Figure 4.6 shows the algorithm used in

o
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void increment_offset{ volatiie long *array_address. long num_pages,
long stride_block, long block_size)
{

long 1, index, offsetl, offsel2, tmp;

for( 1 = 0; i<num_pages-1; i++)
{
tmp = (i+1)*block_size;
offset2 = tmp - stride_block * (long) {tmp/stride_block);
index = i*stride_block+offset];
array_address[tndex] = (i+1)*stride_block + offset2;
offset] = offset2;
}
array_address[(num_pages-1)*stride_block+offsetl] = 0;
Tetum;

Figure 4.5: Algorithm of building up accessing pattern with increment offset

void random_offset{long *array-address, long num_pages, long stride_block)

{

long i, index, offset] = 0, offset2,

for( i =0; i<(num_pages-1)*stride_block; i = i+stride_block)
{
offset2 = (long) ( (double)stride_block*rand(} ) / RAND_MAX };
index =1 + offset];
array[index] =i + stride_block + offset2;
offset] = offset2;

}

array[{num_pages-1)*stride_block-+offsetl] = 0;
retuin;

Figure 4.6: Algorithm of building up accessing pattern with random offset

66




void benchmark _mbtlb(long array_4N, long num_pages, long stride_block,

{

long total_access. long block_size, FILE *fp}

volatile long array_address;

register long 1, j, data;

double time_cost_total, time_cost_per_op;
unsigned long array N, start_time. stop_time;

array_N = array_4N / sizeof(long);
array_address = (long *)calloc(array_N, sizeof(long});

/* Here call increment_offset() or random_offset() */

for { i = num_pages; i>0; i++)
{
data = array_address[0];
for( j=1; j< i-1; j++) £* Build the access data subset */
data = array_address[datal;
array_address[datal=0;

data = array_address[0];

start_time=clock(}; /* Start the clock tick */

for (j=0; j<total_access; j+=8)

{
data= array_address [data]; data = array_address [data];
data= array_address [data]; data = array_address [data];
data= array_address [data]; data = array_address [data):
data= array_address [data]; data = array_address [data];

}

stop_time=clock{}: /* Stop the clock tick *

time_cost = (stop_time - start_time)/{double)CLOCKS_PER_SEC;
cost_per_op = (1000000000.0*time_cost )/ total_access;
fprintf(fp, “%d %Hn" num_pages, cost_per_op);

Figure 4.7: The timed kernel for measuring the capacity of TLB
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benchmark mbtlb. The varizbles in Figure 4.6 have the same meaning as thosc in Figure

4.3 but without variable block_size.

Both of the access data subsets built up by increment-offset method and random-offset
method are sequential and circular access data sequences. Although these two methods
involve the assumed page size of virtual memory, it 18 just a guessed value. The actual
page size can be determined by comparing the curves of the results measured by

benchmark mbtlh.

The kernel of benchmark mbtlbs looks similar to that of benchmark mbeel. Figure 4.7
shows the timed kernel for measuring the TLB. Benchmark mbtlb first allocates a very
large continuous address space whose size is defined by the variable array_4N in bytes. It
then builds up a data access sequence using the increment-offset method or random-offset
method. Benchmark mbtlbs takes an accessed data subset from this data sequence
according to the variable num_pages which works a guessed TLB capacity, and records
the total time of accessing the subset in total_access times. In our experiment, the array

size of array_address is set 10 32768KB.

Since benchmark mbtlb builds up the accessing data sequence using the principle of data
dependence, in which the previous element stores the address of the next element, and
accesses the sequence using access pattern data = array_addressfdata}, mbtlb can be used

o measure the time needed to access TLB, i.e. the TLB latency.
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Chapter 5: Experimental Result Analysis

This Chapter presents in diagrams the experimental measurement on the Pentium 11/266
and the Pentium II/500 using our micro benchmarks MBCP. The structural and
performance parameters about the cache memory and the TLB of Pentium I1/266 and
Pentium /500 are obtained by applying the theories and methodologies discussed in
Chapter 3 and Chapter 4 on the measured data. The measured data are listed in Table A.l

to Table A.20 in Appendix A.

5.1 Results and Analysis of Data Cache Parameters Measurement

We made measurements of the structural and performance parameters of cache memory
and TLB on Pentium II/266 and Pentium /500 workstations by runming our micro
benchmarks MBCP. The graphs shown in the figures show the average access time per
cache read or TLB read as a function of the size of the accessed array with fixed stride or
of the stride with fixed size of the accessed array. From these graphs we can see easily
and accurately know most structural and performance parameters about the caches and

TLB on Pentium II/266 and Pentium II1/500.

The parameters of the cache memory we obtained from the measured data on Pentium
17266 and Pentium 1/500 include the capacity, sct size, block size, associativity, read
latency and the effective data path paralielism of the primary cache Ly and the secondary
cache La. In this section, we use the same symbols used in Chapter 3 plus -PII and -PTII
in subscript to represent the parameters of the caches on Pentium II/266 and Pentium
17500 respectively. For example, Cy.py and Cp.pyy represent the capacity of the primary

cache T, on Pentium II/206 and Pentium TI/500, and Ty py and Typp Tepresent the
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measured execution time per iteration of the primary cache Ly on Pentium II/266 and

Pentium III/500.

5.1.1 Cache Capacity Measurement

The cache capacity measurement on Pentium II/266 and Pentium IIV500 was done under
Linux by running our benchmark mbecl. The experimental data are listed in Table A.l to
Table A.7 in Appendix A and Figure 5.1 to Figure 5.7 show the graphs corresponding o

the data in Table A.1 1o Table A.7.

Table A.1 shows the experimental data of the capacity measurement of the cache L, and
the cache Lz on Pentium T1/266 and Pentium H1/300. In this experiment, the range of the
accessed array 4N is (1KB, 8192KB} and the increment step of the accessed array size is
equal to the power of two and the stride is fixed to 32 bytes. Figure 5.1 is the graph of the
data in Table A.l. From Table A.1 and Figure 5.1 we can obtain that Ty.pp= 11.36 ns, 7.
= 00.28 ns, Nppp=16KB, Mo pp =5312KB; and that T; pp = 6.08 ns, Topp= 44.11 ns,
Nipni=16KB, Na.py; =512KB.

So we can approximately get following results applying the method in Section 3.5.1 here:

s C.py=16KB

s (ypy=3512KB
e Cipgr= 16KB
e Crpp=5i2KB

Table A.2 and Table A.3 show the experimental results of the narrowed measurement on
the cache L and the cache L, on Pentium 1/266 and Pentium III/500. For the cache L,
the range of the accessed array 4N 1s {IKB, 64KB}, the increment step is 1KB and the

stride is fixed to 32 bytes. For the cache La the range of the accessed array 4N is (32KB,



1536KB), the increment step is 32KB and the stride is fixed to 32 bytes. Figure 5.2 and
Figure 3.3 are the graphs comesponding to the data in Table A2 and Table A3
respectively. In Figure 5.2 and Figure 5.3, the transition between Case 1.1 and Case 1.3
and the transition between Case 2.1 and Case 2.5 are shown In more detail. From them
we can accurately obtain the same conclusion as that from Table A.1 and Figure 5.1.

Figure 5.4 and Figure 5.5, corresponding to Table A4 and Table A.5, show the
experimental results on the cache L of Pentium IF/266 and Pentium ITI/500 with different
strides. These two figures tell that the read access time per iteration becomes unchanged
when the stride 1s equal to or bigger than 32 bytes. This indicates that the sub-block size
of cache L, is 32 bytes. Figure 5.6 and Figure 5.7, corresponding to Table A.6 and Table
A&, show the experimental results on the cache L; of Pentium II/266 and Pentiurn 111500
with different strides, From Figure 5.6 and Figurc 5.7, we can figure out that the block

size of the cache L;is 32 bytes in similar way.

Lock at the curves in Figure 5.1, we noticed that the shape of the cache L, are very
similar to that of the cache L;. According to the discussion in Section 3.3.2 in Chapter 3,
this happens only the conditions that A» 2 A; and B, = B; are satisfied. In fact, from the
expertmental results in following Section 5.1.2 and Section 5.1.4, we know that A;.py =

Arpy=4, Bapn= By py=32bytes and Ay pip = A7 pr = 4, Bz pin = By pm = 32 bytes.

5.1.2 Cache Block Size Measurement

We measured the block size of the cache L and the cache L; on Pentium T¥266 and

Pentium III/500 by running our benchmark mbebs.

Tabie A.8 and Table A.9 present the experimental results measured by benchmark mbcbs
on the cache Ly and cache Ls of Pentium II/266 and Pentium [iI/500. The corresponding
graphs are shown in Figure 5.8 and Figure 5.9. In Figure 5.8 and Figure 5.9, we clearly

see that the changing rate of the read access time per iteration significant decreases for
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both of the cache L, and cache L after the stride is equal to and greater than 32 bytes.

Applying the method in Section 3.5.2 to Figure 5.8 and Figure 3.9, we can conclude that

*  B;py=132Dbytes
e Bapy=32bytes
* B, py=32bytes
s By =32 bytes

However, we also noticed that Ty py or and Ty pyy are almost unchanging after the stride is
equal to and greater than 32 bytes, but for the cache Ly, To.py and Topy still increase
when the stride increases. Our explanation for this situation is that when we measure the
block size of the cache L, misses occur in the TLB because the accessed array size
arrav_4N used for measuring the cache L; needs more entries than that the TLB can
contain. When the stride increases, more misses in the TLB happen. Therefore T2 py and

T-=.pm still increase when the stride increases.

5.1.3 Cache Set Size Measurement

In cur experiment, we also used our benchmark mbecl to measure the set size of the
cache memory. Table A.10 to Tabie A.14 list the experimental data of the set size
measurement on the cache L; and the cache L; of Pentium 1I/266 and Pentium I11/500.
Figure 5.10 to Figure 5.14 show the graphs of the experimental data on the cache L,
corresponding to the size step equal to 256, 512, 1024, 2048, 4096bytes. Figure 5.15 to
Figure 5.19 show the graphs of the experimental data on the cache L; corresponding to

the size slep equal to &, 16, 32, 64, 128KB. All these figures illustrate that
D;py=20KB -16KB =4KB
Dopy = 640KB — 512KB = 128KB

Dy pyy=20KB - 16KB =4KB
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Dg_,um =640KB - 512KEB = 128KB

From Section 5.1.3 we that By.py = Bopy = By.pip = Bopyr = 32 byles. So we can obtain
the set size of the cache L, and the cache L, of Pentium /266 and Pentium TIIS00 as

following;

* Sern =Dppy/ Bipn=(4%1024)/32
= 128 blocks
* Sopy =Dopyf Bapy=(128%1024) /32

= 4096 blocks
* Sipm=Dypy! Brpm=(4%1024)7 32
= 128 blocks
®  Sopm=Dopm! Boppr = (128%1024) /32
= 4096 blocks

5.1.4 Cache Associativity Measurement

In our experiments, we can determine the cache associativity of cache L; cache L in twe

ways according to the methodologies of Section 3.5.3 in Chapter 3.

After we measured the cache capacity, cache set size and sub-block size of cache L, and
cache 1z of Pentinm I1/266 and Pentium HI/500 using our benchmark mbeel and mbcbs,

we can deduce the cache associativity using A = €'/ 5B as following:

¢ Appy =Crpu/ SppnBren = (16%1024)/{128%32)
=4

* Azpy =Copp/ SzpyBopy = (512%1024)/ (4096%32)
=4

* Arpw = Crpm/ SipmBrpm = (16%1024) / (128%32)



=4
o Aopm = Copi/ 82 pr Bz e = (512%1024) 7 {4096%32)
=4

Another method to determine the cache associativity is using A = C/ D discussed in
Section 3,5.4. From Section 5.1.1, we know that Cj.p; = Cppy = 16KB and Cs pyy = Coppy
= 312KB. From Section 5.1.3, we know that that Dy.py = Dj_ppr = 4KB and Ds.py = Dapy
= 128KB. So the assoctativity of Pentium II/260 and Pentium PII/S00 also can be

computed as following:

o Arpp =Crpp/ Drpy =1614

=4

e Appy =Copy/ Dopp = 5127128
=4

o Arpm=Crpn/! Diypyr =16/ 4
=4

o Aspm=Copm! Doppy = 5127128
=4

5.1.5 Cache Latency and Miss Penalty Measurement

We can also use our benchmark mbeel to measure the cache read latency. Table A.2 and
Table A3 list the measured data we can used to calculate the miss penalty of the cache L,
and the cache L: on Pentium /266 and Pentium I/500. From Section 5.1.1, we can
obtain the read latency of the cache L and the cache L; of Pentium II/266 and Pentium

I13/300 as following:

*  Tromisssopn = Tipn =11.36 08

¢ Thomuszrn = Topy =60.28 ns
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hd Tno—nnss[—f’H! =T pm=6.08 ns

¢ Topmissapin = T’./‘-PHI =44 11 ns.

We know that the machine clocks of Pentium 117266 and Pentium II/500 are 3.76 ns and
2 ns respectively. Read data from the cache L, on both Pentium II/266 and Pentium
111/500 takes (11.36/3.76} = (6.08/2) = 3 machine clocks. Read data from the cache L-on
both Pentiumn 117266 and Pentium II/500 takes (60.28/3.76) = 17 machine clocks and

(44.11/2) = 23 machine clocks respectively.

We use Tppmpy and Tpry 10 represent the time needed to read data from the main
memory of the workstation of Pentium II/266 and Pentium 11500 respectively. From
Table A.3 and Figure 5.3, we can know the average Ty py and Topm.pyr are 229.73 ns and

[41.02 ns respectively.
Therefore the miss penalty of the cache L; and the cache L, of Pentium ILF266 and
Fentium II/500 can be computed according to the discussion in Section 3.5.5 in Chapter

3 as following:

* Toisrry =Toen—Trpy  =6028 - 11.36

=48.92 ns

¢ Towerrn = Tompy—Topy =22973 - 60,28
= 169.45 ns

* Toussirr = Topm— Tipn =44.11 -6.08
=38.03 ns

¢ Twisszrmr = Tomeprir = Toopiy = 141.02 - 4411
=096.91 ns



will be the same only the stride 5 i3 equal to the actual page size of virtual memoryv.
Comparing Figure 5.22 and Figure 3.23, it is clear that the shape of two curves for stride
5 = 4096 bytes is the most close. Therefore the actual page size of virtual memory on the
Pentium I1/266 workstation is 4096 bytes. In the same way, we can also determine that
the actual page size of virtual memory on the Pentium ITI/500 workstation is 4096 bytes

too, So we get the results about the actual page size:

* Pu.py =4KB
¢ Puepy =4KB

3.2.2 TLB Size Measurement

After the actual page size of virtual memory is determined, we can figure out the TLB
size from Figure 5.22 according to the discussion in Case 3.1 and Case 3.2 or Case 3.7 in

Section 3.4.

Look at the curve of the stride s = 4096 bytes (the actual page size) in Figure 522, we
can see that the TLB miss occurs when the number of entries is bigger than 64. So the
TLB size of Pentium 117266 is 64 entries. When the stride s is set to other value such as 2
KB, BKB, 16KB, the corresponding curves in Figure 5.22 shows it is true that there is no

TLB misses when J <M < Crg* (Pyz./ s).

From Figure 5,24, we can determine that the TLB size of Pentium 11500 is 64 entries in

the same way. We conclude eon the TLB capacity of Pentium I1/266 and Pentium ITI/500:

. CTLB-FH = 04 entries

. Cﬂ_,g.pm = 64 entries
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5.2.3 TLB Associativity Measurement

In Figure 3.22, we can see that M, gy = 80, 40, 20 entries when the stride s is 4KB, SKB
and 16KB. According to the method in Section 3.6.5, we can obtain the associativity of

the TLB on Pentium II/266 as following:

o Angpr= Crp * (Pzerpy/ $Y (Mrpi - Croaen™ {Puizerir/ 5))
=04*¥4/4y/(80-64%4/4) =4 s=4KB
= 64%(4/8)/(40-64%4/8) =4  s=8KB
=64%{(4/16)/(20-064*4/16) = 4 s =16KB

From Figure 5.22, we can see that M; gy = 80, 40, 20 entries when the stride s is 4KB,
8KB and 16KB. The associativity of the TLB on Pentium /500 can be calculated as

following:

o Anpgpm = Crrppin * Posze pinr/ 3 (M1 pr - Crvg-pur™ (Puice-pin/ 5))
=04*(4/4)/(B0-64*4/4) =4 s =4KB
=64 (4/8)/(40—64%4/8) =4  s=8KB
—64%(4/16)/(20-64%4/16) = 4 5= 16KB

5.2.4 TLB Minimum Latency and Miss Penalty Measurement

When 7 €M < Crg * (Pyze /8 ), there will be not TLB misses. Look at the curve of the
stride 5 = 4096 bytes (the actual page size) in Figure 5.22 and Figure 2.24, there is no
TLB miss when / <M < 64. The TLB minimum latency on Pentium II/266 and Pentium

IT}/500 can be figured out from Table A.19 and Table A.20 in average:

¢ TootiBmiss-pir = 11.33 ns

*  ThoTrBmiss-Prr = 6 1S
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When M =80 (s = 4096 bytes), there is one for every TLB access. From Table A.19 and
Table A.20, we know that average Tspy = 29.98 ns and Ts.pp = 15.98 ns. The TLB miss

penalty on Pentium 117266 and Pentium II1/500 can be obtained as following:

*  Triamins et = 150 - Tootrsmins-pir
= 2998 -11.33 =18.65n3

*  Tiibmins.rin = Tapmr - Dno-tiBemins-Plil

=1598-6 =598 ns

5.3 Summary of Measurement on PII/266 and PIII/500

The analysis resuits of the measured data on Pentium II/266 and Pentium III/500 are
summarized in Table 5.1 and Table 5.2. In these two tables, some published parameters
about Inte] Pentium II/266 and Pentium /500 are listed and most of the published data
are structural paramelers [20]. Comparing the parameters from two sources shows that
our benchmarks MBCP can accurately measure the structural parameters of the cache
memory and the TLB of Intel CPUs. We believe that the performance parameters of the

cache memory and the TL.B measured by cur benchmarks MBCP are reasonable.
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Parameters of Pentium II/266 Measured : Published
Capacity Cy gy 16KB 16KB
Primary
Setrsize Sipp 128 128
cache
Block size B, py; 32 bytes 32 bytes
Associarivity Arpy 4 4
Read latency T,pmiser.rr 11.36ns Y1128 15 (3 clocks)
Read miss penalry Toyren 48.97 ng
Daw paralielism Ppy 3
Secondary | Capacity Cy.py 16KB 16KR
cache Set size Sy pp 128 128
Block size Bi ey | 32 bytes 32 byies
Associativity Ay py 4 4
Read latency T,pmia.pn 60.28 ns ‘
Read miss penalry Tpyzopn 16943 ns
Data paratlelism P;.py 2
TLB Capacity Cyrg.pr 64 antries ! 64 entrieg
Assoeiariviry Arrg.pn 4 4
TLE lateney T 1t pomiss-pre 1133 ns
TLB miss penalty Trgomisspy | 18.65 ns
‘ Page size Py ey 4096 bytes

Table 5.1 The measured and published Parameter of Pentium T1/266
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Parameters of Pentium I11/500 Measured Published
| Capagity Cr.pr 16KB 16K3
Primary
Set size Sypus 128 128
cache
Block size Bppy 32 bytes 32 bytes
Associaiiviry Ay pin 4 4
Read larency T, pissopniy 6.08 ns 6 s (3 clocks)
Read miss peralty T eny 3R.03 ns
Dara parallelism Popy 3
Secondary Capacity C.ppy 16KR 16KB
cache Ser size Szpypy 128 128
Block size Bipy 32 byles 32 bytes
Associarivity Az.ppy 4 4
Read latency Toomises onir 44.11 ns
Read miss penalty T 96.91 ns
Dara parallelismn Pa gy P
TLB Capacity Crpg pyy 64 entries 64 entries
Associariviry Ay g pm 4 4
TLEB latency T, 1i8.musspif) 6 ns
TLB miss penclty Trrgom 9.98 ns
Fage size Py.pm 4096 bytes

Table 5.2 The measured and published Parameter of Pentium [11/500
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Chapter 6: Conclusion

6.1 Summary

As cache memory plays a more important role in bridging the speed gap between
processor and main memory, the parameters of cache memory are becoming visible
to algorithm designers, performance programmers and system administrators as well
as system designers. Measurement of cache memories and TLB not only provides
the structural parameters about cache memories and TLB, such as cache capacity,
cache associtivity, cache line size, TLB capacity and its associtivity, but also
provides some performance parameters about cache memories and TLB. These
performance parameters include the cache miss latency, minimum latency of TLB on
a miss and effective data path parallelism. It is hard for the hardware manufacturers

to provide these performance parameters.

This thesis investigated the performance evaluation methods of memory hierarchy
and the impacts of cache memory and TLB on the performance of computer systems,

and figured out a SUT and CUS according to the aims of this thesis.

This thesis evaluated the performance characteristics of the primary and secondary
data cache memories and data TLB in terms of an analytical modeling method which
uses the response time of the iteration as the performance metric. And based on the
performance evaluation of cache memories and TLB, this thesis established
experimental methodologies to measure the structural and performance parameters

of the data cache memories and data TLB.

According to the established methodologies, this project developed a set of micro

benchmarks MBCP in C under Linux operating system. The parameters MBCP can
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measure include measure data cache capacity, data cache line size, data cache
associativity, cache latency and miss penalty, effective data path parallelism, data
TLB size, data TLB associativity, TLB latency and TLB miss penalty. MBCP can
run under Linux OS and UNIX as a normal user task. Using MBCP, experimental
measurements on Pentium II/266 and Pentium III/500 were made. The experimental
results showed that our MBCP works well on Intel Pentium-based computer systems

under the Linux operating system.

6.2 Future Work

Further research could be directed on refinement of the evaluation method and
extend its applicable scope. Our research is limited on data cache memories and data
TLB. This work could be extended to the cases where instruction cache memories

and instruction TLB can be evaluated and measured.

Another short-term improvement could be transformation of MBCP from a set of
independent benchmarks to a standard C/C++ class library, so that algorithm
designers, performance programmers and system administrators can use them. In

addition, it would be useful to make MBCP into standard commercial benchmarks.
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Appendix A:
Measurement Results on P11/266 and PIILI/500

Table A.1 Capacity Measurement of Level-I and Level-II Cache

Array_size(KB) Pll/266 PIll/500
1 11.474 5.960
2 11.325 6.258
4 11.325 5.960
8 11.250 5.960
16 11.399 6.258
32 59.977 43.809
64 59.977 44.107
128 59.977 43.809
256 59.977 43.809
512 61.467 45.002
1024 229.776 141.561
2048 229.776 141.263
4096 229.776 141.263
8192 229.701 141.263

Table A.2 Capacity Measurement of Level-I Cache

Array_size(KB) PIl/266 PINI/500
1 11.474 6.109
2 11.325 6.035
3 11.325 6.035
4 11.399 6.035
5 11.325 6.035
6 11.250 6.035
7 11.250 6.035
8 11.325 6.109
9 11.250 5.960

10 11.250 6.035
11 11.250 5.960
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58 59.977 43.958

59 59.977 43.958
60 59.977 43.958
61 59.977 43.958
62 59.977 43.958
63 59.977 44.033
64 59.977 44.033

Table A.3 Capacity Measurement of Level-II Cache

Array_size(KB) PlI/266 PIII/500
32 60.126 43.958
64 60.052 44.033
9 60.052 43.958

128 60.052 44.033
160 59.977 43.958
192 59.977 43.958
224 60.052 43.958
256 59.977 43.958
288 59.977 44.107
320 60.201 44.033
352 60.201 44.033
384 60.126 44.107
416 60.275 44107
448 61.020 44.480
480 61.542 44.480
512 61.542 44.927
544 111.386 72.941
576 154.972 98.720
608 195.056 118.241
640 229.776 138.730
672 229.850 141.189
704 229.627 141.114
736 229.776 141.189
768 229.701 141.114
800 229.776 141.114
832 229.925 141.189
864 229.627 141.039
896 229.850 141.114
928 229,552 140.965
960 229.850 141.189
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992
1024
1056
1088
1120
1152
1184
12186
1248
1280
1312
1344
1376
1408
1440
1472
1504
1536

229.627
229.925
220.627
229.403
229.850
229.776
229.478
229.776
229.850
229.552
229.552
229.850
229.925
229.627
229.850
229.850
229.552
229.701

141.039
141.189
141.039
140.890
141.189
141.189
140.965
141.189
141.114
141.039
140.965
141.189
141.263
141.039
141.188
141.189
140.965
141.039

Table A.4 Measurement of Level-I Cache Capacity

Machine name: PII/266

Stride(bytes) 4 8 16 32 64
2 11.399  11.325  11.325 11399  11.325
4 11250 11.250 11.250 11.399  11.325
6 11.250 11.325 11.325  11.325  11.250
8 11.325 11.250 11.325  11.250  11.250

10 11.325 11325 11250 11.250  11.325
12 11250 11.325 11.325  11.250  11.325
14 11250 11250 11250 11250  11.325
16 11.474 11474 11697 11.325 11.325
18 14.454  20.787  30.249  38.370  38.296
20 16913  28.163 45002 59.977  59.977
22 16.913  28.163  44.927 59.977  60.052
24 16913 28163 45002 59.977  59.977
26 16.913 28.163 45076 60.052  59.977
28  16.913 28.089 45002 59.977  59.977
30 16.913  28.089 45002 59.977  60.052
32 16.838 28.163 45002 60.052  59.977
34 16.838 28.163 45002 60.052  59.977
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36
38
40
42

46
48

16.838
16.838
16.838
16.838
16.838
16.913
16.838

28.163
28.163
28.089
28.163
28.163
28.163
28.163

45.002
45.002
45.002
45.002
44.927
45.002
45.002

59.977
59.977
60.052
59.977
59.977
60.052
59.977

59.977
59.977
59.977
59.977
59.977
60.052
59.977

Table A.5 Measurement of Level-II Cache Capacity

Machine name: PII/266

Stride(bytes) 4 8 16 32 64
64  16.913  28.089 45.076  60.052  60.126
128 16.838  28.163  45.002  60.052  59.977
192 16.913 28.089 45.151 60.573 60.052
256 16.913  28.089 45.002 60.2756  59.977
320 16.913 28.163 45225 60.275 61.318
384 16.913  28.163  45.821 61.393  61.318
448  17.062  28.685  45.821 60.350  60.350
512 17.136  28.685  45.821 61.542  61.393
576 32,112  63.553 121.444 154.972 151.694
640 45449  90.823 179.792 229.850 227.168
704 45.374 90.748 181.571 229.627 231.341
768 45374  90.748 181571 229.701 231.415
832 45.374 90.823 181.645 229.850 231.490
896  45.449  90.823 181.720 229.850 231.490
960  45.449  90.823 181.720 229.850 231.564
1024 45449  90.897 181.720 229.850 231.639
1088  45.300 90.674 181.496 229.478 231.192
1152 45374  90.823 181.720 229.850 231.490
1216 45.374  90.748 181.645 229.776 231.564
1280  45.374  90.674 181.422 229.552 231.266
1344 45.449 90.823 181.720 229.850 231.564
1408 45449  90.748 181.571 229.627 231.341
1472 45.449 90.823 181.645 229.701 231.490
1536 45449  90.748 181.571 229.627 231.415
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Table A.6 Measurement of Level-I Cache Capacity

Machine name: PIII/500

Stride(bytes) 4 8 16 32 64
2 6.035  6.035 6.035 6035  6.035
4 6.035 6035 6.035 6035  6.035
6 6.035  6.035 6109 6035 5960
8 6.035 6035 6.035 6035  6.035

10 6.035 6035 6.035 6035  6.035
12 5960 6.035 6.035 6.035  6.035
14 5960 5960 5960  6.035  6.035
16 6.184  6.184 6258  6.035  6.035
18 8.494 12.890 19.670 27.195  27.195
20  10.580 18.030 30.026 43.958  43.958
22 10505 18.030 30.026 43.958  43.958
24 10505 18.030 30.026 43.958  43.958
26 10505 17.956 29.951 44.033  43.958
28 10505 18.030 29.951 43.958  43.958
30 10505 18.030 30.100 44.033  43.958
32 10505 18.030 30.026  44.033  44.033
34 10505 17.956 29.951 44.033  43.958
36 10505 17.956 29.951 43958  43.958
38 10505 18.030 29.951 43.958  43.958
40 10505 18.030 30.026 43.958  43.958
42 10580 17.956 29.951 44.033  43.958
44 10505 18.030 29.951 44.033  43.958
46 10505 18.030 29.951 43.958  43.958
48 10505 18.030 29.951 43.958  43.884

Table A.7 Measurement of Level-II Cache Capacity

Machine name: PIII/500

Stride(bytes) 4 8 16 32 64
64 10.580  18.030 30.026  43.958  44.107

128 10.431 17.881 30.026  44.107  44.107

192 10.431 18.030 30.100 44107  44.107

256 10.431 18.03 30.026  43.958  43.958

320 10.878 18.03 30.026  44.703  44.107

384 10.729 18.08 30.026  44.107  44.256

103



448
512
576
640
704
768
832
896
960
1024
1088
1152
1216
1280
1344
1408
1472
1536

10.580
10.580
20.713
28.908
28.908
28.908
28.908
28.908
28.908
28.908
28.759
28.759
28.758
28.759
28.759
28.908
28.759
28.759

18.179
18.328
40.382
57.518
57.518
57.518
57.518
57.369
57.518
57.518
57.369
57.518
57.369
57.369
57.667
57.518
57.667
57.220

30.175

30.622

77.635
115.111
115.037
115.037
115.186
115.111
115.111
115.186
115.037
115.186
1156.111
114.962
115.186
115.037
115.111
115.037

44107

44.852

98.199
141.114
140.965
140.965
141.114
140.816
141.114
141.263
140.816
140.816
140.8186
140.667
141.114
141.114
141.114
140.667

44.703

44,703

98.944
138.879
141.412
141.412
141.561
141.263
141.561
141.561
140.965
141.263
141.263
140.965
141.561
141.263
141.561
140.965

Table A.8 Sub-block Size Measurement of PII/266

Stride size(bytes) Levell Level-ll
4 17.881 45.300

8 28.610 91.791

16 45.300 182.390
32 59.605 230.074
64 59.605 231.266
128 59.605 237.226
256 59.605 244.379
512 59.605 255.108
1024 59.605 282.526
2048 60.797 338.554
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Table A.9 Sub-block Size Measurement of PIII/500

Stride size(bytes) Level-l Level-ll
4 10.524 28.610

8 18.105 57.817

16 30.193 116.229
32 44,294 141.263
64 44.201 141.263
128 44.294 141.859
256 44.201 143.051
512 44.201 145.435
1024 44.294 150.204
2048 44.201 159.740

Table A.10 Set Size Measurement of Level-I and Level-II Cache
(Step = 256bytes for Level-I cache and step = 8KB for Level-II cache)

Array size(bytes)  PIll/266 PlI/500 Array size(KB) Pli/266 PIII/500

8192 11.825 5.960 256 60.201 44107
8448 11.325 6.035 264 60.201 44.107
8704 11.325 5.960 272 60.201 44.107
8960 11.325 6.035 280 60.201 44,107
9216 10.729 5.960 288 60.201 44107
9472 11.325 6.035 296 60.201 44,107
9728 11.325 5.960 304 60.201 44,107
9984 11.325 5.960 312 60.201 44.107
10240 11.325 6.035 320 59.605 44107
10496 11.325 5.960 328 60.201 44.107
10752 11.325 6.035 336 60.201 44107
11008 10.729 5.960 344 60.201 44.107
11264 11.325 6.035 352 60.201 44,107
11520 11.325 6.035 360 60.201 44107
11776 10.729 5.960 368 60.201 44.703
12032 11.325 6.035 376 60.201 44,107
12288 11.325 5.960 384 60.201 45.300
12544 11.325 6.035 392 60.201 44,107
12800 11.325 5.960 400 60.201 44.703
13056 11.325 6.035 408 61.393 44,107
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13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
16128
16384
16640
16896
17152
17408
17664
17920
18176
18432
18688
18944
19200
19456
19712
19968
20224
20480
20736
20992
21248
21504
21760
22016
22272
22528
22784
23040
23296
23552
23808
24064
24320
24576
24832

11.325
11.325
11.325
11.325
10.729
11.325
11.325
11.325
11.325
11.325
11.325
11.325
10.729
15.497
18.477
22.650
25.630
28.610
32.187
35.763
38.147
41.127
44,107
47.088
50.068
52.452
54.836
57.220
60.201
60.201
60.201
59.605
59.605
60.201
60.201
60.201
59.605
60.201
60.201
60.201
59.605
60.201
60.201
60.201
59.605
60.201

6.035
5.960
6.035
5.960
6.035
5.960
6.035
5.960
6.035
5.960
6.035
5.960
6.035
8.941
11.697
14.529
17.136
19.819
22.277
24.661
27.120
29.430
31.665
33.900
35.912
38.147
40.084
42.096
43.958
43.958
43.958
43.958
44.033
43.958
43.958
43.958
43.958
43.958
43.958
43.958
44.033
43.958
43.958
43.958
44.033
43.958
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416
424
432
440
448
456
464
472
480
488
496
504
512
520
528
536
544
552
560
568
576
584
592
600
608
616
624
632
640
648
656
664
672
680
688
696
704
712
720
728
736
744
752
760
768
776

60.797
60.201
60.201
60.797
60.201
61.393
61.393
60.201
60.797
61.393
61.393
61.393
61.393
74.506
87.023
99.540
111.461
122.190
133.514
144.839
154.972
166.297
175.238
185.966
194.311
203.252
212.193
221.133
230.074
229.478
229.478
229.478
229.478
230.074
230.074
230.074
230.074
229.478
230.074
230.074
230.074
230.074
229.478
230.074
230.074
230.074

44107
44107
44.703
44107
44.703
44107
44.703
44107
44,703
44,703
44.703
44,703
44703
51.856
59.605
66.161
73.314
79.870
86.427
89.407
98.944
103.712
107.288
116.229
120.401
126.362
131.130
134.110
140.667
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263
141.263



25088 60.201 43.958 784 229.478 141.263

25344 60.201 43.958 792 229.478  141.263
25600 59.605 43.958 800 230.074  141.263
25856 60.201 43.958 808 230.074  141.263
26112 60.201 43.958 816 229.478  141.263
26368 60.201 43.958 824 230.074  141.263
26624 60.201 44.033 832 230.074  141.263
26880 59.605 43.958 840 230.074  141.263
27136 60.201 43.958 848 229.478  141.263
27392 60.201 43.958 856 229.478  140.667
27648 60.201 43.958 864 230.074  141.263
27904 59.605 44.033 872 230.074  141.263
28160 60.201 43.958 880 230.074  141.263
28416 60.201 43.958 888 230.074  141.263
28672 60.201 43.958 896 230.074  141.263
28928 59.605 43.958 904 229.478  141.263
29184 60.201 43.958 912 230.074  141.263
29440 60.201 44.033 920 230.074  141.263
29696 60.201 43.958 928 229.478  141.263
29952 59.605 43.958 936 230.074  141.263
30208 60.201 43.958 944 230.074  141.263
30464 60.201 43.958 952 229.478  141.263
30720 60.201 43.958 960 230.074  141.263
30976 59.605 43.958 968 230.074  141.263
31232 60.201 43.958 976 230.074  141.263
31488 60.201 44.033 984 230.074  141.263
31744 60.201 43.958 992 230.074  141.263
32000 60.201 43.958 1000 230.074  141.263
32256 60.201 43.958 1008 230.074  141.263
32512 60.201 43.958 1016 230.074  141.263
32768 60.201 44.033 1024 230.074  141.263

Table A.11 Set Size Measurement of Level-I and Level-II Cache
(Step = 512bytes for Level-I cache and step = 16KB for Level-I cache)

Array size(bytes)  PlI/266 PII/500  Array size(KB) Pll/266 PIl/500

8192 11.325 5.960 256 60.201 43.511
8704 11.325 5.960 272 60.201 44,107
9216 11.325 6.035 288 60.201 44.107
9728 11.325 5.960 304 60.201 44.107
10240 11.325 6.035 320 60.201 44107
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10752
11264
11776
12288
12800
13312
13824
14336
14848
15360
15872
16384
16896
17408
17920
18432
18944
19456
19968
20480
20992
21504
22016
22528
23040
23552
24064
24576
25088
25600
26112
26624
27136
27648
28160
28672
29184
29696
30208
30720
31232
31744
32256
32768

11.325
11.325
11.325
11.325
11.325
11.325
10.729
11.325
11.325
11.325
11.325
11.325
18.477
25.630
32.187
38.743
44,703
50.068
54.836
60.201
60.201
60.201
60.201
59.605
60.201
60.201
60.201
59.605
60.201
60.201
60.201
60.201
59.605
60.201
60.201
60.201
59.605
60.201
60.201
60.201
59.605
60.201
60.201
60.201

5.960
6.035
5.960
5.960
6.035
5.960
6.035
5.960
6.035
5.860
6.035
5.960
11.772
17.136
22.277
27.120
31.665
35.986
40.084
43.958
43.958
43.958
43.958
43.958
44.033
43.958
43.958
43.958
43.958
43.958

 44.033

43.958
43.958
44.033
43.958
43.958
43.958
44.033
43.958
43.958
43.958
43.958
44,033
43.958
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336
352
368
384
400
416
432
448
464
480
496
512
528
544
560
576
592
608
624
640
656
672
688
704
720
736
752
768
784
800
816
832
848
864
880
896
912
928
944
960
976
992
1008
1024

60.201
60.201
60.201
60.201
60.201
60.797
62.585
60.201
61.393
61.393
60.201
61.393
87.023
111.461
134.110
154.972
175.834
194.907
212.789
229.478
230.074
230.670
230.074
230.074
230.074
230.074
230.074
230.074
230.074
229.478
230.074
230.074
230.074
230.074
230.074
230.074
230.074
230.074
229.478
230.074
230.074
230.074
230.074
229.478

44107
44107
44107
44107
44107
44.703
44107
44.703
44.703
44.703
44.703
44,703
59.605
73.314
86.427
97.752
109.673
118.613
131.726
141.263
141.263
141.263
141.263
141.263
141.263
138.879
141.263
141.263
141.263
141.263
141.859
143,051
137.687
139.475
139.475
139.475
140.071
141.263
138.283
140.071
139.475
140.071
138.879
137.091



Table A.12 Set Size Measurement of Level-I and Level-II Cache
(Step = 1024bytes for Level-I cache and step = 32KB for Level-II cache)

Array size(bytes)  PIl/266 PIII/500  Array size(KB) Pll/266 PI11/500

8192 10.729 5.960 256 60.201 44,107

9216 11.325 6.035 288 60.201 44.107
10240 11.325 5.960 320 59.605 44.703
11264 10.729 5.960 352 60.797 44107
12288 11.325 6.035 384 59.605 44107
13312 11.325 5.960 416 60.797 44107
14336 11.325 6.035 448 61.393 45.300
15360 11.325 5.960 480 61.393 44703
16384 11.325 6.035 512 61.393 44,703
17408 25.630 17.136 544 111.461 73.314
18432 38.743 27.120 576 156.164 98.348
19456 50.068 35.986 608 194.311 120.401
20480 60.201 43.958 640 225.902  141.263
21504 60.201 43.958 672 229.478  141.263
22528 60.201 43.958 704 230.074  141.263
23552 60.201 44.033 736 229.478  141.263
24576 60.201 43.958 768 230.074  141.263
25600 59.605 43.958 800 230.074 - 141.263
26624 59.605 43.958 832 230.074  141.263
27648 60.201 43.958 864 230.074  141.263
28672 60.201 43.958 896 230.074  141.263
29696 60.201 43.958 928 230.074  141.263
30720 59.605 44.033 960 230.074  141.263
31744 60.201 44.033 992 230.074  141.263
32768 60.201 43.958 1024 229.478  141.263

Table A.13 Set Size Measurement of Level-I and Level-II Cache
(Step = 2048bytes for Level-I cache and step = 64KB for Level-II cache)

Array size(bytes) Pl1l/266 PilI/500 Array size(KB) Pli/266 PI1i/500

8192 11.325 5.960 256 60.201 44107
10240 11.325 6.035 320 59.805 44107
12288 11.325 5.960 384 60.797 44107
14336 11.325 6.035 448 67.949 44703
16384 11.325 5.960 512 61.393 45.300
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18432 38.743 27.120 576 155.568 98.348

20480 60.201 43.958 640 229.478  138.879
22528 60.201 43.958 704 229.478  141.263
24576 60.201 43.958 768 230.074  141.263
26624 59.605 43.958 832 229.478  141.263
28672 60.201 44.033 896 230.074  141.263
30720 60.201 43.958 960 230.074  141.263
32768 60.201 43.958 1024 230.074  141.263

Table A.14 Set Size Measurement of Level-I and Level-II Cache
(Step = 4096bytes for Level-I cache and step = 128KB for Level-II cache)

Array size(bytes)  PIl/266 PHI/S00  Array size(KB) Pli/266 PlI/500

8192 10.729 5.960 256 60.201 43.511
12288 11.325 6.035 384 60.201 44,107
16384 11.325 5960 512 61.393 44.703
20480 59.605 44.033 640 230.074 = 141.263
24576 60.201 43.958 768 230.074  141.263
28672 60.201 43.958 896 230.074  143.051
32768 60.201 43.958 1024 230.074  141.263

Table A.15 Measurement of Effective Data Paralle] Paths
Machine name: PII/266
Sub-block size (bytes): 32

Path No. 1 2 3 4 5 6

1 11.25 5.662 4.843 8.047 7.525 7.153

2 11.25 5.588 4.470 8.047 6.855 6.929

4 11.25 5.662 4.545 8.047 6.855 6.780

8 11.25 5.588 4.545 8.047 7.451 7.004
16 11.25 5.662 4.694 8.270 7.227 7.3786
32 59.977 30.175 30.175 30.026 30.026 29.951
64 59.977 30.175 30.026 30.026 30.026 29.951
128 59.977 30.026 30.100 30.100 30.026 30.026
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256
512
1024
2048
4096
8192

59.977
61.393
229.776
229.776
229.776
229.701

30.100
30.175
116.378
116.378
116.378
116.378

30.026
30.175
92.685
92.611
92.685
92.685

30.026
30.175
92.536
92.685
92.611
92.685

30.100
30.175
92.313
92.313
92.313
92.238

30.026
30.026
92.164
92.313
92.238
92.313

Table A.16 Measurement of Effective Data Parallel Paths
Machine name: PIII/500
Sub-block size (bytes): 32

Path No. 1 2 3 4 5 6
1 5.998 2.98 2.421 4.284 4.023 3.800

2 5.998 2.98 2.421 4.321 3.651 3.688

4 5.998 3.017 2.421 4.284 3.614 3.614

8 5.960 2.980 2.459 4.321 4.023 3.688

16 5.998 3.017 2.608 4.433 4.023 3.986
32 43.958 21.979 20.042 19.968 19.968 19.968
64 43.958 21.979 20.005 20.005 20.005 19.968
128 43.958 21.979 20.005 19.968 19.968 19.968
256 43.996 22.016 20.005  20.005 20.005 20.005
512 44,741 22.501 21.905 20.415 20.415 20.415
1024  141.189 71.004 63.330 63.777 63.628 63.442
2048 141.151 70.967 64.112 64.299 64.112 64.112
4096 141.151 70.967 64.112 64.224 64.075 64.112
8192 141.151 70.967  63.628 63.740 63.591 63.628

Table A.17 Measurement of TLB on PII/266

Sub-block size (bytes): 32
Method: 1. Sequential indexing with incremented offset

EntryNo. 2048 4096 8192 16384
128 11.250 30.026 30.026 29.951
126 11.250 30.026 30.026 29.951
124 11.176 30.026 29.951 29.951
122 11.250 29.951 29.951 30.026
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120
118
116
114
112
110
108
106
104
102
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30

11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.2560
11.176
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.250
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29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
29.951
29.951
29.951
29.951
30.026
30.026
30.026
28.089
26.077
23.916
21.681
19.222
16.764
14.082
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176

29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
29.951
30.026
29.951
30.026
30.026
30.026
29.851
29.951
29.951
29.951
29.951
29.951
29.951
29.951
30.026
30.026
26.077
21.681
16.764
11.250
11.250

30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
30.026
30.026
30.026
30.026
30.026
29.951
29.951
29.951
29.951
29.951
30.026
29.951
30.026



28 11.250 11.250 11.250  30.026
26 11.250 11.250 11.250 30.026
24 11.250 11.250 11.250  29.951
22 11.250 11.250 11.250  29.951
20 11.250 11.250 11.250  29.951
18 11.250 11.250 11.250  21.607
16 11.250 11.250 11.176 11.250
14 11.250 11.250 11.250 11.250
12 11.250 11.250 11.250 11.325
10 11.250 11.250 11.250 11.250
8 11.250 11.250 11.250 11.250
6 11.250 11.250 11.250 11.250
4 11.250 11.250 11.250 11.250
2 11.176 11.250 11.250 11.250
Table A.18 Measurement of TLB on PII/266
Sub-block size (bytes): 32
Method: 2. Sequential indexing with random offset
EntryNo. 2048 4096 8192 16384
128 11.250 29.877 32.037 31.292
126 11.325 29.802 32.112 31.292
124 11.250 29.802 32.187 31.292
122 11.250 29.802 32.187  31.367
120 11.250 29.802 32.187  31.590
118 11.250 29.802 31.963 31.590
116 11.250 29.802 31.963 31.739
114 11.250 29.802 31.863 31.814
112 11.176 29.802 32.037  31.814
110 11.250 29.802 32.112 31.814
108 11.250 29.877 32.187  31.143
106 11.250 29.802 32.187 31.143
104 11.250 29.802 32.187 31.143
102 11.250 29.802 32.261 31.218
100 11.250 29.802 32.336 31.218
98 11.250 29.802 32.410  31.218
96 11.178 20.728 31.665 31.218
94 11.250 29.802 31.665 30.473
92 11.250 29.802 31.665 30.473
90 11.176 29.802 30.845 30.473
88 11.250 29.802 30.845 30.473
86 11.250 29.802 31.665 30.473
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84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12

N O o

11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
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29.802
29.802
29.802
26.897
24.810
22.650
20.415
19.297
16.764
14.082
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250

31.665
30.845
30.845
28.685
26.673
25.779
25.928
24.959
24.140
24.363
24.140
19.073
17.807
16.466
14.901
15.050
15.199
15.348
13.560
13.635
13.784
13.486
13.635
13.709
13.858
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.176
11.250

30.473
30.473
30.473
24.959
23.842
23.618
23.469
22.501
21.234
20.042
17.360
17.583
17.807
16.466
16.317
14.752
14.901
14.976
13.188
13.262
13.337
13.486
13.635
13.709
11.250
11.250
11.250
11.250
11.250
11.250
11.176
11.250
11.250
11.250
11.250
11.325
11.250
11.250
11.250
11.250
11.250
11.250



Table A.19 Measurement of TLB on PIII/500
Sub-block size (bytes): 32
Method: 1. Sequential indexing with incremented offset

EntryNo. 2048 4096 8192 16384

128 5.998 15.832 16.019 15.944
126 5.998 16.019 16.019 15.944
124 5.998 15.981 15.944 16.019
122 5.998 15.981 16.019 16.019
120 5.998 15.981 16.019 16.019
118 5.998 15.981 15.944 15.944
116 5.998 16.019 16.019 16.019
114 5.998 15.981 16.019 16.019
112 5.998 15.981 15.944 15.944
110 5.998 15.981 16.019 16.019
108 5.998 15.981 16.019 16.019
106 5.960 15.981 15.944 16.019
104 5.998 15.981 16.019 15.944
102 5.998 15.981 16.019 16.019
100 5.998 15.981 15.944 16.019
98 5.998 16.019 16.019 15.944
96 5.998 16.019 16.019 16.019
94 5.998 15.981 15.944 16.019.
92 5.998 15.981 16.019 15.944
90 5.998 15.981 16.019 15.944
88 5.098 15.981 15.944 16.019
86 5.998 15.981 16.019 16.019
84 5.998 15.981 16.019 15.944
82 5.960 15.981 15.944 15.944
80 5.998 15.981 16.019 16.019
78 5.998 14.976 16.019 16.019
76 5.998 13.895 15.944 15.944
74 5.998 12.740 16.019 15.944
72 5.998 11.548 15.944 16.019
70 5.998 10.245 15.944 16.019
68 5.998 9.015 16.019 15.944
66 5.998 7.749 15.944 16.019
64 5.998 6.109 15.944 16.019
62 5.998 5.998 16.019 15.944
60 5.998 5.960 15.944 15.944
58 5.998 5.998 16.019 16.019
56 5.998 6.035 16.019 16.019
54 5.998 5.960 15.944 15.944
52 5.998 5.998 16.019 16.019
50 5.960 5.998 16.019 16.019
48 5.960 5.998 15.944 15.944
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46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12

—
N OO

5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.960
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998

5.998
5.998
5.960
5.998
5.998
5.998
5.998
5.998
5.960
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.998
5.998
5.998
5.998

16.019
16.019
15.944
15.944
13.933
11.548
8.941
5.960
6.035
5.960
6.035
5.960
6.035
5.960
6.035
5.960
5.960
6.035
5.960
6.035
5.960
6.035
5.960

15.944
16.019
16.019
15.944
16.019
16.019
15.944
16.019
16.019
15.944
15.944
16.019
16.019
15.944
11.548
5.960
6.035
5.960
6.035
6.035
5.960
6.035
5.960

Table A.20 Measurement of TLB on PIII/500
Sub-block size (bytes): 32
Method: 2. Sequential indexing with random offset

EntryNo. 2048 4096 8192 16384
128 15.907 5.960 16.018 16.434
126 16.907 5.960 16.019 16.434
124 15.870 5.998 15.944 16.136
122 15.907 5.998 16.019 16.211
120 15.907 5.998 16.019 16.211
118 15.870 5.998 15.944 16.211
116 15.907 5.998 15.646 15.838
114 15.907 5.998 15.646 15.540
112 15.870 5.998 15.274 15.615
110 15.870 5.998 15.274 15.515
108 15.907 5.998 15.348 15.764
106 15.870 5.998 15.348 15.050
104 16.019 5.998 15.348 14.976
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102
100
o8
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12

15.907
15.907
15.870
15.870
15.870
15.870
15.870
15.870
15.870
15.870
15.870
15.870
14.342
13.858
12.740
11.548
10.282
8.941
7.525
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.998
5.998
5.998
5.998
5.998
5.860
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.998
5.998
5.998

5.998
5.998
5.998
5.960
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.960
5.960
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
5.998
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15.274
15.274
15.274
15.274
14.827
14.380
13.838
13.784
13.486
13.486
12.890
12.442
12.442
12.293
12.368
12.368
11.697
11.697
10.952
10.207
9.537
9.537
8.717
8.866
8.941
8.047
8.196
8.121
8.196
7.078
7.227
5.960
6.035
5.960
5.960
6.035
5.960
6.035
5.960
6.035
5.960
5.860
5.960
5.960
6.035
5.960

14.976
14.976
14.901
14.901
14.976
14.454
14.454
14.380
14.082
14.082
13.560
13.113
12.517
12.591
11.921
11.250
11.250
11.325
10.505
9.686
9.090
9.015
8.196
7.376
7.525
7.525
7.600
7.451
7.525
7.376
7.451
7.227
7.302
7.451
7.451
5.960
5.960
6.035
5.960
6.035
5.960
5.960
6.035
5.960
6.035
5.960



N O oo

5.998
5.998
5.960
5.998
5.998

5.998
5.998
5.998
5.998
5.998
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6.035
5.960
6.035
5.960
6.035

5.960
6.035
5.960
6.035
5.960
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