
 1

A comparative survey of Java obfuscators

 available on the Internet

0
1
2
3
4
5
6
7
8
9

KM DP SG JC JP JS

415.780 Project Report

(February 22, 2001)

Author: Hongying Lai

Supervisor: Professor Clark Thomborson

Computer Science Department

The University of Auckland

 2

Tables……………………………………………………………………

Figures……………………………………………………………………

Programs……………………………………………………………………

ABSTRACT………………………………………………………..………..……

ACKNOWLEDGEMENTS.………………………………………………..……

1. INTRODUCTION………………………………………………………..……

4

4

5

6

7

8

 1.1 Project Objective………………………………………………….…

1.2 General Discussion of Obfuscation and Obfuscators………….………

1.3 Documentation Organization……………………………………….….

8

9

11

2. OERVIEW OF OBFUSCATOR TECHNIQUES…………………..…...….. 12

 2.1 Layout Obfuscations……………………………………..………….…

2.2 Control Obfuscations……………………………………………...……

2.3 Data Obfuscations…………………………………………………...…

12

13

14

3. RELATED WORK……………………………..……………………………..

4. OBFUSCATION METRICS DESIGN………………………………………

15

17

5. BENCHMARK DESIGN..……………………………………..…………….. 20

 5.1 Benchmark1…………………………………………………………… 22

 5.1.1 Benchmark1 Source………………………………………...……

5.1.2 Benchmark1 Bytecode……………………………………...……

5.1.3 Decompiled Benchmark1 ………………………………………..

5.1.4 Summary…………………………………………………...….…

22

23

26

27

 5.2 Benchmark2…………………………………………………..……….. 27

 5.2.1 Benchmark2 Source………………………………………….…..

5.2.2 Benchmark2 Bytecode………………………….………………..

5.2.3 Decompiled Benchmark2 Source….……………………..………

5.2.4 Summary………….……………………………………………...

28

28

30

31

6. EXPERIMENTAL DESIGN …………………………………..……………. 32

 6.1 Installation ……………………………………….…………………… 33

CONTENTS

 3

 6.1.1 Collection……………………………………………………………

6.1.2 Download…………………………………………………..….…...

6.1.3 Installation………………………………………………...………..

6.1.4 Trying Running…………………………………………………….

6.1.5 Summary……………………………………………………………

33

34

35

36

37

 6.2 Synthetic Workload……………………………………………...…..… 39

 6.2.1 2LKit Obfuscator v1.1………………………………………....…

6.2.2 DashO-Pro v2.0…………………………………………….…….

6.2.3 JCloak v3.5.3 ……………………………………………….…....

6.2.4 Jproof 1stBarrier MINI v1.1………………………………….….

6.2.5 Jshrink v1.18……………………………………………………..

6.2.6 Jzipper v1.08……………………………………………….…….

6.2.7 RetroGuard_v1.1…………………………………………..……..

6.2.8 SourceGuard v4.0……………………………………………...…

6.2.9 KlassMaster v2.3……………………………………………...….

6.2.10 Summary………………………………………………………

40

42

46

51

55

59

60

61

65

74

 6.3 Logic Program………………………………………………………… 75

 6.3.1 Introduction………………………………………………………

6.3.2 Selection of obfuscators………………………………………….

6.3.3 Obfuscating Logic Program……………………………………...

75

76

76

 6.3.3.1 DashO-Pro v2.0………………………………………..…

6.3.3.2 JCloak v3.5.3………………………………………..……

6.3.3.3 Jproof 1stBarrer MINI version1.1………………………..

6.3.3.4 Jshrink v1.18…………………………………………

6.3.3.5 SourceGuard Enterprise (Evaluation), Version 4.0…

6.3.3.6 Zelix KlassMaster version 2.3.2………………………

6.3.3.7 Summary……………………………………………..

77

79

80

81

82

83

84

 6.4 Decompilation by SourceAgain…………………………………… 85

 6.4.1 Decompiling Obfuscated Benchmarks………………………... 85

 6.4.1.1 DashO-Pro v2.0………………………………………...

6.4.1.2 JCloak v3.5.3……………………………………….….

6.4.1.3 Jproof 1st Barrier MINI v1.1………………………..…....

6.4.1.4 Jshrinkv1.18……………………………………..…….....

85

86

87

88

 4

6.4.1.5 SourceGuard 4.0………………………………….………

6.4.1.6 KlassMaster v2.3…………………………………..……..

 6.4.1.7 Summary…………………………………………..…….

89

89

90

 6.4.2 Decompiling Obfuscated Logic Program……………..………….

6.4.3 Summary……………………………………………..…..………

90

91

 6.5 Assess Metrics……………………………………………..…..…….… 92

 6.5.1 2Lkit Obfuscator v1.1………………………………..………...

6.5.2 Cloakware…………………………………………..………..…

6.5.3 DashO-Pro v2.0…………………………………..……….……

6.5.4 Hashjava………………………………………………………..

6.5.5 JCloak v3.5.3 from Force5……………………………………..

6.5.6 Jproof 1stBarrier MINI v1.1……………………………………

6.5.7 JOBE – the obfuscator…………………………………….……

6.5.8 Jshrinkv1.18………………………………………...………….

6.5.9 Jzipper v1.08……………………………………………...……

6.5.10 ObfuscateTM v1.1……………………………………………….

6.5.11 RetroGuard v1.1………………………………………………..

6.5.12 SourceGuard 4.0………………………………………………..

6.5.13 Zelix KlassMaster2.3…………………………………………..

92

93

93

94

94

95

96

96

97

97

97

97

98

7. COMPARATIVE RESULTS…...…………………………….…………..

8. CONCLUSION………………………………………………………………

REFERENCES…………………………………………………………………

APPENDIX……………………………………………………………….…….

100

103

105

107

 5

Figures, Tables and Programs:

Figure 1_1: Obfuscation process….……………………………………………....
Figure 2_1: Classes of Obfuscations……………………………………..……….
Figure 2_2: Control Obfuscation by opaque predicate insertion………..………..
Figure 6_1: Evaluation FlowChart …………………………………..………….
Figure 6_2: Evaluation Process for enchmarks………………………..…………
Figure 6_3: Evaluation Process for Logic Program…………………..………….
Figure 6_4: Decompilation Process for Benchmarks………………..…………..
Figure 6_5: Decompilation Process for Logic Program……………..…………..
Figure 7_1: A Comparative Result Chart…………………………….………….

Table 4_1: Obfuscation Metrics…………..…………………………………….
Table 5_1:The original names of the objects under observation in my Benchmark

for Obfuscation Metrics………………….…………………….….
Table 6_1: The result from the survey of the Obfuscators available on the
 current Internet………………………………………………………..
Table 6_2: The results of downloading the 12 obfuscators……………………
Table 6_3: The Summary of Installation Test………………………………….
Table 6_4: The result of obfuscating Benchmark1 by DashO-Pro v2.0……….
Table 6_5: The result of obfuscating Benchmarks by DashO-Pro v2.0……….
Table 6_6: The result of obfuscating Benchmark1 by JCloak………………..
Table 6_7: The result of obfuscating Benchmarks by JCloak v3.5.3………..
Table 6_8: The result of obfuscating Benchmark1 by Jproof 1stBarrierMINI v1.1
Table 6_9: The result of obfuscating Benchmarks by Jproof 1stBarrierMINI v1.1
Table 6_10: The result of obfuscating Benchmark1 by JShrink v1.18……………
Table 6_11: The result of obfuscating Benchmarks by JShrink v1.18……………
Table 6_12: The result of obfuscating Benchmark1 by SourceGuard v4.0………..
Table 6_13: The result of obfuscating Benchmarks by SourceGuard v4.0……….
Table 6_14: The result of obfuscating Benchmark1 by KlassMaster v2.3……….
Table 6_15: The result of obfuscating Benchmarks by KlassMaster v2.3…………
Table 6_16: The Summary of Synthetic Workload Test………………………….
Table 6_17: The Summary of Logic Program Test……………………………….
Table 6_18: The Summary of Decompilation Obfuscated Benchmarks………….
Table 6_19: The Summary of Decompiling Obfuscated Logic Program…………
Table 6_20: The Summary of Decompilation ……………………………………
Table 6_21: Obfuscation Metrics of DashO-Pro v2.0………………………………
Table 6_22: Obfuscation Metrics of JCloak v3.5.3………………………………
Table 6_23: Obfuscation Metrics of Jproof 1stBarrier MINI v1.1…………………
Table 6_24: Obfuscation Metrics of Jshrinkv1.18……………………………………
Table 6_25: Obfuscation Metrics of SourceGuard 4.0……………………………
Table 6_26: Obfuscation Metrics of Zelix KlassMaster2.3……………………….
Table 7_1 : Comparative results………………………………………………….

Program 5_1: Benchmark1 Source Code…………………………………………
Program 5_2: Benchmark1 Benchmark1 Bytecode_TestOBF…………………..
Program 5_3: Benchmark1 Benchmark1 Bytecode_Hello……………………….

9
12
13
32
39
76
85
91

101

17

21

33
35
37
45
46
49
50
54
55
58
59
64
65
69
73
74
84
90
91
92
93
94
85
96
99

100
100

22
23
25

 6

Program 5_4: Decompiled Benchmark1 Code_TestOBF………………………..
Program 5_5: Decompiled Benchmark1 Code_Hello……………………………
Program 5_6: Benchmark2 Source Code………………………………………...
Program 5_7: Benchmark2 Bytecode…………………………………………….
Program 5_8: Decompiled Benchmark2 Code…………………………………..
Program 6_1: Obfuscated Bytecode_TestOBF of DashO-Pro v2.0…………….
Program 6_2: Obfuscated Bytecode_Hello of DashO-Pro v2.0…………………
Program 6_3: Obfuscated Bytecode_TestOBF of Jcloak……………………….
Program 6_4: Obfuscated Bytecode_Hello of Jcloak……………………………
Program 6_5: Obfuscated Bytecode_TestOBF of Jproof 1stBarrierMINI v1.1…
Program 6_5: Obfuscated Bytecode_TestOBF of Jproof 1stBarrierMINI v1.1…
Program 6_7: Obfuscated Bytecode_TestOBF of Jshrink v1.18……………..….
Program 6_8: Obfuscated Bytecode_Hello of Jshrink v1.18……………………
Program 6_9: Obfuscated Bytecode_TestOBF of SourceGuard v4.0…………..
Program 6_10: Obfuscated Bytecode_Hello of of SourceGuard v4.0…………..
Program 6_11: Obfuscated Bytecode_TestOBF of KlassMaster v2.3…………..
Program 6_12: Obfuscated Bytecode_Hello of KlassMaster v2.3……………..
Program 6_13: Obfuscated Bytecode_TestControl of KlassMaster v2.3………

26
26
28
29
30
43
44
47
49
52
53
56
57
61
63
66
68
70

 7

The proliferation of decompilers [6] and the rapidly increasing use of Java have triggered a need

for Java protectors, obfuscators. With so many obfuscators available on the Internet today, how

can one know which is better? This project focuses on a comparative survey of Java obfuscators

available on the Internet. Here, I have surveyed 13 obfuscators from the Internet. I used them to

obfuscate both my benchmarks and “Logic program” from UCLA’s Philosophy department in

America. I also tried decompiling these obfuscated classes by a Java decompiler, SourceAgain.

Finally, I used my obfuscation metrics to analyze and compare the above results. I found that

various obfuscators provide different security level options to protect Java programs. Many

obfuscators work well, but some are not effective.

A comparative survey of Java obfuscators

 Abstract

 8

First of all, I would like to thank my supervisor, Professor Clark Thomborson. He has helped me

to understand the techniques in my project and performance analysis in evaluating software. He

also gave me good advice on data organization and data presentation.

Secondly, I would like to thank Professor David Kaplan who directs the Logic Software project

at Philosophy department of UCLA in America and Rob Johnson who is the Author of the Logic

Program. They provided me Logic Program and gave me a good opportunity to apply

obfuscators into actual work.

Finally, I would like to thank my family for their encouragement and support. Special thanks are

given to my husband who helped me set up the experimental environment.

Acknowledgements

A comparative survey of Java obfuscators

 9

It is a well known fact that Java Class files [8] are easily reverse-engineered because Java

bytecode [9] contains a lot of the same information as its original source code does. In addition,

Java programs, like Mobile codes, have a good reputation as to “ write once, run everywhere”.

This flexibility has many potential advantages in a distributed environment. However, this

distributed form increases the risk of malicious reverse engineering [6] attack. Therefore Java

code is easy to decompile.

Code obfuscation [1], as a newborn security technique, is currently one of the best protection

tools for Java code from reverse engineering. It renders software unintelligible but still

functionally equivalent to the original code. It makes programs more difficult to understand, so

that it is more resistant to reverse engineering.

Obfuscators [1], which automatically transform a program by code obfuscation, are more and

more available on the Internet by the increasing requirement. Various obfuscators provide

different security levels to protect Java programs.

1.1 Project Objective

The purpose of the project is firstly to understand the techniques of the obfuscation. Secondly, it

is to assess the quality of an obfuscator, and to find out which part of the obfuscation techniques

has been applied into the obfuscators available on the Internet. Finally, it is looking at possible

techniques which will be used for the future obfuscators and what needs to be improved in my

future Obfuscation Metrics.

1 A comparative survey of Java obfuscators

 Introduction

 10

1.2 General Discussion of Obfuscation and Obfuscators

In above, I have simply described the concept about code obfuscation and an obfuscator. In

order to more clearly know about what the obfuscation is and what an obfuscator actually does, I

am going to use two examples to discuss them.

Example1:

In Figure 1_1, a set of class files P, through an obfuscator, becomes other set of class files P’.

The result is the code of P is not equal to the code of P’ and P.code is more different understood

than the P’.code, but both function same.

 An obfuscator

P.code <> P’.code, but P.function = P’.function

 Figure 1_1: Obfuscation process.

The following example 2 shows the processes of a simple small Java class file that is obfuscated

by an obfuscator, KlassMaster v1.1.

Example 2:

Original Source:

class Hello{
 public Hello(){
 int number=1;
 }
 public String getHello(String helloname){
 return helloname;
}

Original Bytecode:

Compiled from TestOBF.java
class Hello extends java.lang.Object {
 public Hello();
 public java.lang.String getHello(java.lang.String);

Class files

P
Obfuscated
files P’

 11

}

Method Hello()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return

Line numbers for method Hello()
 line 29: 0
 line 30: 4
 line 29: 6

Method java.lang.String getHello(java.lang.String)
 0 aload_1
 1 areturn

Line numbers for method java.lang.String
getHello(java.lang.String)
 line 33: 0

After obfuscated by KlassMaster obfuscator, the names in this class had been change. See the

following code.

Obfuscated bytecode:

Compiled from a.java
class a extends java.lang.Object {
 public static boolean a;
 public a();
 public java.lang.String a(java.lang.String);
}
Method a()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return
Method java.lang.String a(java.lang.String)
 0 aload_1
 1 areturn

From above, we can see that Hello.class has been changed to a.class by obfuscator KlassMaster

and their method getHello(java.lang.String) is altered to a(java.lang.String). The method name,

“a”, is less understandable than “getHello”.

Comparing the obfuscated bytecode with original bytecode, we can also see that the line

numbers had been removed from the Obfuscated bytecode. This gives less information to

reverse engineering.

 12

Example2 is a very simple example about code obfuscation. It just scrambles identifiers and

removes the line numbers that are generated by compilers. More detail and complicated

obfuscated codes can be found in section 6.

1.3 Documentation Organization

This report is organized into 7 sections as indicated.

Section 2 overviews the obfuscator techniques that will be a basic idea for my obfuscation

metrics design.

Section 3 introduces some related research that I have learnt from the Internet.

Section 4 explains my obfuscation metric design.

Section 5 presents details about my benchmark design.

Section 6 evaluates 13 obfuscators currently available on the Internet. In my experimental

design, my benchmarks and “Logic program” are obfuscated by each obfuscator and the

obfuscated files are decompiled by SourceAgain. Finally, the obfuscators are assessed by my

metrics and the outputs.

Section 7 displays the comparative results by my obfuscation metrics.

Section 8 discusses the techniques of the obfuscators and the possible improve in the future

research.

 13

An obfuscator is a program that applies the techniques of the obfuscating transformation to the

program code. Collberg et al. [1] classify the obfuscating transformation into three catalogues:

lexical transformations, control transformations and data transformations. Relatively, we can sort

the obfuscation techniques into three groups: Layout Obfuscations, Control Obfuscations and

Data Obfuscations. See Figure 2_1.

Figure 2_1: Classes of Obfuscations

2.1 Layout Obfuscations

Layout Obfuscations modify the layout structure of the program by two basic methods:

renaming identifiers and removing debugging information. They make the program code less

information to a reverse engineer. Most Layout Obfuscations cannot be undone because they use

one-way function such as changing identifiers by random symbols and removing comments,

unused methods and debugging information. Though Layout Obfuscations cannot prevent

reverse engineers to understand the program by observing the obfuscated code, they at least

consume the cost of reverse engineering.

Layout Obfuscations are the most well studied and widely used field. Almost all Java

obfuscators contain this technique.

Obfuscator Techniques

Layout

Obfuscations

Control

Obfuscations

Data

Obfuscations

2 A comparative survey of Java obfuscators

Overview of Obfuscator Techniques

 14

2.2 Control Obfuscations

Control Obfuscations change the control flow of the program. Collberg et al. introduced an

approach to control-altering transformations by opaque predicates [1][3]. These opaque

predicates can be inserted to the control flow structure by following three approaches. See

Figure 2_1.

 (a) (b) (c)

 f(B)=(B’) f(B) ≠ f(B’)

 Figure 2_2: Control Obfuscation by opaque predicate insertion

In Figure 2_2(a), the block [A;B] is split up by inserting an opaquely true predicate PT which

makes it appear as if B is only executed some times. In Figure 2_2(b), B is split into two

different obfuscated versions B and B’. The opaque predicate P? selects either of them at

runtime. In Figure 2_2(c), PT always selects B over BBug, a buggy version of B.

Many Control Obfuscations are similar to these in Figure 2_2.

Douglas Low [4] classifies the control flow obfuscations into three catalogues as following:

1. Control aggregation obfuscations, which change the way in which program statements

are grouped together,

2. Control ordering obfuscations, which alters the executed statement order

3. Control computation obfuscations, which hide the real control flow in a program.

These control obfuscations also mainly depend on people’s predicates.

The code obfuscated by Control Obfuscations usually cannot be directly decompiled back to the

Java language. This makes it more difficult for reverse engineers to decompile codes.

A

B

T P? PT

BBug

 15

2.3 Data Obfuscations

Data Obfuscations break the data structures used in the program and encrypt literal. Collberg et

al. [2] also introduced several approaches to obfuscating data structures such as:

• Modify inheritance relations. For example, producing more classes by extending the

inheritance hierarchy tree or false refactoring;

• Restructure arrays. For example, increasing or decreasing the number of an array’s

dimensions by folding or flattening.

• Clone methods. For example, creating several different versions of a method by

applying different sets of obfuscating transformations to the original code.

• Variable Splitting. For example, splitting a boolean variable into two or more variables;

Data Obfuscations change data structure of a program thoroughly. They makes the obfuscated

codes so complicated that it is impossible to recreate the original source code.

3

 16

From the Internet, I have found that there already have had examples of evaluating obfuscators.

For examples, in a 1997 “Java tip”, Protect your bytecodes from reverse Engineering/

Decompilation [5], Qusay H. Mahmoud evaluated an obfuscator, Crema and a decompiler,

Mocha to learn how Crema obfuscator can protect Java code from decompilers such as Mocha.

He also used a simple program as an example to explain it in detail. Firstly, he decompiled the

program by Mocha and showed that the decompiled source code was easy to read and

understand and still functioned. Then he obfuscated the original program by Crema and

decompiled the obfuscated code again. The result is that Mocha had to give up with a

java.lang.NullPointerException error. Finally, He concluded that Crema obfuscator could protect

Java codes from the Mocha decompiler.

Similarly, in a 1998 article “Java Decompilation and Reverse Engineering Part2”, Benoit

Marchal and Meurrens[6] evaluated six decompilers and three obfuscators to study

decompilation of Java classes as a means to learn how to protect applications by obfuscators.

Here are the six decompilers they used:

1. Mocha, the original Java decompiler by Hanpetr van Vliet, beta (summer 1996);

2. Jasmine a patch to Mocha by Tang Hogbo. V1.10 (Jan. 25,1998), SourceTec;

3. WingDis v2.12 by Kathy Ho, (Dec. 13,1997), v2.12, Wingsoft;

4. DeJaVu the decompiler of OEW 2.0.3 (Oct. 2, 1997), v1.0 (1996), Innovative Software;

5. SourceAgain by Paul J. Martino and Grigori Humphreys, v1.10 beta 3.a (Feb. 16, 1998),

Ahpah;

6. Jad by Pavel Kouzenetsov, v1.5.3.2 (Feb. 28,1998).

Here are the three obfuscators:

Neil Aggarwal’s Obfuscate;

Zelix KalssMaster;

HoseMocha.

A comparative survey of Java obfuscators

Related Work

 17

They used the similar way as Qusay H. Mahmoud did: decompiling the original code,

obfuscating the original code, decompiling the obfuscated code and finally comparing their

results. From the results, they claimed that:

• All the six decompilers could process the code obfuscated by Neil Aggarwal’s

Obfuscate with its medium mode, but the resulting code was less readable. The

code obfuscated by Neil Aggarwal’s Obfuscate with its high mode could crash

early decompilers such as Mocha. Unfortunately, the classes no longer pass the

Java verifier.

• The code obfuscated by Zelix KlassMaster could crash two of the decompilers, Jad

and SourceAgain. And the classes are accepted by the verifier.

• The code obfuscated by HoseMocha broke most of the decompilers except Jad and

SourceAgain.

At the end, they gave a conclusion "… obfuscators, even if they are unable to prevent

decompilation of verifiable classes, can greatly affect the usability of decompilers."

These pervious works used decompilers to measure the security of obfuscators. It is the best and

direct way to show how powerful an obfuscator is. So in my project, I also used this approach to

one of my obfuscation individual metrics which measure the 13 obfuscators I had collected from

the Internet.

 18

The Obfuscation Metrics are designed according to the theory of obfuscation transformations and

the techniques used in the obfuscators available on the Internet. They are also concerned about the

actual use of an obfuscator. For example, whether can the obfuscator successfully obfuscate

codes? And also whether can these obfuscated codes be decompiled? .

In Section 2, we learn that the obfuscation techniques are classified into three catalogues: Layout

obfuscations, Data obfuscations and Control obfuscations. I attempt to apply these theoretical

metrics to my practical measure work. Therefore my obfuscator metrics contain these three parts.

Furthermore, I added other three parts into my metrics. They are “Decompiling Logic Program”,

“Decompiling Obfuscated Benchmark” and “Obfuscating Logic Program”. See table 4_1.

Table 4_1: Obfuscation Metrics

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 1 Data Obfuscation

Data Unstructured 1

Control Obfuscation Change “if…else”, “for” or “while” loop 1

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 1

Decompiling Obfuscated Logic Program 1

Total Score 10

The first part, Layout obfuscations, includes " Scramble Names" which contain modifying

public names, protected names and private names and "Remove Line numbers" which deletes

the Line numbers generated by a compiler.

A comparative survey of Java obfuscators

 Obfuscation Metrics Design

4

 19

The second part, Data obfuscations, contains "Encrypt String" and " Data Unstructured" such as

increasing the number of an array's dimensions by folding it.

The third part is Control obfuscations, control-altering transformation through opaque

predicates, such as changing “if...else” statements, “while” loop and “for” loop constructs.

The fourth part is “Obfuscating Logic Program”. It is to measure whether an obfuscator can

successfully obfuscate the complicated programs, the “Logic Program”.

The fifth part is “Decompiling Obfuscated Benchmarks”. It is to measure whether the obfuscated

Benchmark (see Section 5) bytecodes could be decompiled by the decompiler, SourceAgain.

The last part is “Decompiling Obfuscated Logic Program”. It is to measure whether the

obfuscated “Logic Program” (see Section 6, 6.3) bytecodes could be decompiled by the

decompiler, SourceAgain.

I chose these individual metrics because I could score them objectively, and they spanned all the
classes of obfuscations and are possibly found in the obfuscators.

The total number of points of the metrics is 10. There is one point for each individual metric. I

give zero point for an individual metric if I observe no obfuscation behavior on this metric in the

obfuscated output. For example, on the “Scramble names” metrics, “getArray” in the original

Benchmark1is a private method name, after being obfuscated, in the obfuscated output, it still

reads “getArray”, so I will assign “0” to the individual metric “Scramble Private name”.

However, if it is changed to other name, such as “a”, this metric will be scored one point. In a

specific case, if just only parts of private names are changed, I will still score “1” for this metric.

This rule is also available for the other “Scramble names” metrics such as “Public” and

“protected”.

On the metric, “Remove Line numbers”, if I find there is no “Line numbers” in the obfuscated

bytecode, I will score “1”, or I will give “0” to this metric.

On the metric, “Encrypt String”, if a string name in the obfuscated codes has been encrypted, the

metric will be assigned “1”, or it will be scored “0”.

 20

On the metric, “Folding one dimension array”, if an one dimension array in the obfuscated code

has been change to two or more dimension arrays, I will score the metric “1”, or I will score it

“0”.

On the metric, “Change “if…else”, “for” or “while” loop”, if I find one of the construct,

“if…else”, “for” loop or “while” loop has been changed, I will score the metric “1”, or I will

assign it “0”

On the metric, “Obfuscating Logic Program”, if an obfuscator can successfully obfuscate the

“Logic Program” and still function equivalent to the original code, I will score “1” for the

metric, or I will assign “0” to it.

On the metric, “Decompile Obfuscated Benchmarks”, if the Benchmarks, which consist of

Benchmark1 and Benchmark2, are obfuscated by an obfuscator successfully, and if one of the

Benchmarks obfuscated by an obfuscator can not be decompiled, or one set of the decompiled

codes does not function equivalent to the original code, I will score “1” for the metric. Other any

cases, I will assign “0” to the metric.

On the metric, “Decompiling Obfuscated Logic Program”, if one of the obfuscated Logic

Program files cannot be decompiled, I will score “1” for the metric. In any other cases, I will

assign “0” to it.

 21

Environment:

 Window 98

Personal computer

Tools:

JDK1.2.2

Java decompiler, SourceAgain (TM) Personal v1.10h

The Benchmarks are designed to match my Obfuscation Metrics. There are two benchmarks,

Benchmark1 and Benchmark2. They are used to measure different metrics. Benchmark1 measures

obfuscators’ behaviors on Layout Obfuscations and Data Obfuscations. Benchmark2 tests

obfuscators’ behaviors on Control Obfuscation. In order to simplify the observation and make the

metrics to be scored easily, I listed the specific objects from my Benchmarks for my Obfuscation

Metrics. See the following Table 5_1.

In Table 5_1, I selected 7 individual metrics from my Obfuscation Metrics. For each individual

metric, I chose some specific objects from Benchmark1, which contains TestOBF.class and

Hello.class, and Benchmark2, which conations TestControl.class. For example,

• On the individual metrics, “Public Class name” and “Public Method name”, I selected public

class name “Hello” and public method name “getHello” from Benchmark1 Hello.class for

them. I chose public field name “hello” from Benchmark1 TestOBF.class for the metric

“Public Class name”.

• On the metrics, “Protected Method name” and “Protected Field name”, I chose “getGood”

and “good” from TestOBF.class for them.

• On the metrics, “Private Method name” and “Private Field name”, I chose “getArray” and

“number” from TestOBF.class for them.

• On the metrics “Remove Line numbers”, “Encrypt String”, “Unstructured data”, separately I

selected “Line numbers”, String “GOOD” and one dimension array “number[]” to match

them. These tested objects are all from TestOBF.class.

5
A comparative survey of Java obfuscators

Benchmark Design

 22

• On the metric, “If…else, For/while loop” I chose tested object from Benchmark2

TestControl.class.

Table 5_1: The original names of the objects under observation in my Benchmark

 for Obfuscation Metrics

Benchmark1 Benchmark2 Metrics

TestOBF.class Hello.class TestControl.class

Class name Hello

Method

name

 getHello

Public

Field name hello (instance of class

Hello)

Method

name

getGood Protected

Field name good

Method

name

getArray Private

Field name number

Remove

Line numbers

Line numbers

Encrypt String GOOD

Data Unstructured One dimension array:

number[]

Change “If…else”,

“For” loop or “while”

loop

 If … else

For… / While …

Note: Case-sensitive to the public names, protected names, private names and String names.
 Blank means that this item is not available.

The Table 5_1 will be used as a concrete standard in Section 6 to measure the obfuscators. The

following results are also prepared for the next section, Section 6. Here’s how I did for my

Benchmark design:

• First of all, I wrote Java code, Benchmarks.

 23

• Secondly, I compiled them with JDK1.2.2 compiler and run the resulting class files to

make sure that they function properly. Then I printed their bytecodes by running javap

with the c (disassemble), p (include private fields) and l (line number and local tables).

• Thirdly, I decompiled the compiled class files by the decompiler, SourceAgain and

compared them with their original source codes.

• Fourthly, I recompile the decompiled source code and run the new code to test whether

the decompiled files function properly.

• Finally, I compared all results from every step so that I could clearly understand what

my Benchmarks looked like in each step before they were obfuscated.

The detail is as follows.

5.1 Benchmark1

Benchmark1 source file is TestOBF.java (911 bytes) and it has two classes, TestOBF.class

(1027 bytes) and Hello.class(301 bytes). TestOBF.class is a main class. From my experience, a

main class name usually does not need to be obfuscated because it is an important connector to

outside. Therefore I designed the other class, Hello.class, for the “Public Class name” and

“Public Method name” metrics.

The detail follows:

5.1.1 Benchmark1 Source

The following Program 5_1 shows the Benchmark1 Source code I designed.

Program 5_1: Benchmark1 Source Code

/* BenchMark1: TestOBF.java contains two classes
 * class TestOBF and class Hello.
 * Purpose: test obfuscators' behaviors on
 * Layout Obfuscation.
 * and Data Obfuscations.
 * @date: 14/12/2000
 * @author: Hongying Lai
 */
public class TestOBF{
 public Hello hello=new Hello();
 protected String good="";
 private int[] number = new int[10];

 public static void main(String args[]){
 new TestOBF();
 }
 public TestOBF(){

 24

 System.out.println(hello.getHello("HELLO"));
 System.out.println(getGood());
 System.out.println("number="+getArray());
 }
 protected String getGood(){

 good="GOOD";
 return good;
 }
 private int getArray(){
 number[0]=1;
 return number[0];
 }

}

class Hello{

 public Hello(){
 int number=1;
 }
 public String getHello(String helloname){

 return helloname;
 }

}

Compile TestOBF.java with JDK1.2.2:

pprroommpptt>>jjaavvaacc TTeessttOOBBFF..jjaavvaa

Get two classes: TestOBF.class and Hello.class.

These two classes are going to be obfuscated by the obfuscators in Section 6.

Run them to make sure that they function properly:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

HELLO

GOOD

number=1

Therefore, Benchmark1 function properly before obfuscated.

5.1.2 Benchmark1 Bytecode

Run javap to get bytecode from TestOBF:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in Program 5_2 below:

 25

Program 5_2: Benchmark1 Benchmark1 Bytecode_TestOBF

Compiled from TestOBF.java
public class TestOBF extends java.lang.Object {
 public Hello hello;
 protected java.lang.String good;
 private int number[];
 public TestOBF();
 private int getArray();
 protected java.lang.String getGood();
 public static void main(java.lang.String[]);
}

Method TestOBF()
 0 aload_0
 1 invokespecial #13 <Method java.lang.Object()>
 4 aload_0
 5 new #5 <Class Hello>
 8 dup
 9 invokespecial #11 <Method Hello()>
 12 putfield #20 <Field Hello hello>
 15 aload_0
 16 ldc #1 <String "">
 18 putfield #19 <Field java.lang.String good>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #21 <Field int number[]>
 29 getstatic #22 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #20 <Field Hello hello>
 36 ldc #3 <String "HELLO">
 38 invokevirtual #18 <Method java.lang.String
getHello(java.lang.String)>
 41 invokevirtual #23 <Method void println(java.lang.String)>
 44 getstatic #22 <Field java.io.PrintStream out>
 47 aload_0
 48 invokevirtual #17 <Method java.lang.String getGood()>
 51 invokevirtual #23 <Method void println(java.lang.String)>
 54 getstatic #22 <Field java.io.PrintStream out>
 57 new #9 <Class java.lang.StringBuffer>
 60 dup
 61 ldc #4 <String "number=">
 63 invokespecial #14 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #16 <Method int getArray()>
 70 invokevirtual #15 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #24 <Method java.lang.String toString()>
 76 invokevirtual #23 <Method void println(java.lang.String)>
 79 return

Line numbers for method TestOBF()
 line 14: 0
 line 8: 4
 line 9: 15
 line 10: 21
 line 15: 29
 line 16: 44
 line 17: 54

 26

 line 14: 79

Method int getArray()
 0 aload_0
 1 getfield #21 <Field int number[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #21 <Field int number[]>
 11 iconst_0
 12 iaload
 13 ireturn

Line numbers for method int getArray()
 line 24: 0
 line 25: 7

Method java.lang.String getGood()
 0 aload_0
 1 ldc #2 <String "GOOD">
 3 putfield #19 <Field java.lang.String good>
 6 aload_0
 7 getfield #19 <Field java.lang.String good>
 10 areturn

Line numbers for method java.lang.String getGood()
 line 20: 0
 line 21: 6

Method void main(java.lang.String[])
 0 new #6 <Class TestOBF>
 3 invokespecial #12 <Method TestOBF()>
 6 return

Line numbers for method void main(java.lang.String[])
 line 12: 0
 line 11: 6

Run javap to get bytecode from Hello.class:

pprroommpptt >>jjaavvaapp --cc --pp --ll HHeelllloo

See the bytecode listing in Program 5_3 below:

Program 5_3: Benchmark1 Benchmark1 Bytecode_Hello

Compiled from TestOBF.java
class Hello extends java.lang.Object {
 public Hello();
 public java.lang.String getHello(java.lang.String);
}
Method Hello()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return
Line numbers for method Hello()

 27

 line 29: 0
 line 30: 4
 line 29: 6
Method java.lang.String getHello(java.lang.String)
 0 aload_1
 1 areturn
Line numbers for method java.lang.String
getHello(java.lang.String)
 line 33: 0

From above bytecode, we can see that the class names, method names and field names are the

same as those in its source. The bytecode contains Line Numbers generated by a compiler.

5.1.3 Decompiled Benchmark1

Decompile the above classes, TestOBF.class and Hello.class:

In the command line, type:

prompt >srcagain *.class

Get the output: _TestOBF.java , _Hello.java

See the decompiled codes listing in Program 5_4 and Program 5_5 below:

Program 5_4: Decompiled Benchmark1 Code_TestOBF

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
import java.io.PrintStream;
public class TestOBF {
 public TestOBF()
 {
 System.out.println(hello.getHello("HELLO"));
 System.out.println(getGood());
 System.out.println("number=" + getArray());
 }
 public Hello hello = new Hello();
 protected String good = "";
 private int[] number = new int[10];
 private int getArray()
 {
 number[0] = 1;
 return number[0];
 }
 protected String getGood()
 {
 good = "GOOD";
 return good;
 }
 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }

 28

}

Program 5_5: Decompiled Benchmark1 Code_Hello

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
class Hello {

 public Hello()
 {

 Int int1 = 1;
 }
 public String getHello(String String1)
 {
 return String1;
 }
}

Comparing the Decompiled Benchmark1 codes (Program 5_4 and Program 5_5) with their

original ones (Program 5_1), we can see that these codes are almost the same.

Recompile them to test the function of the Decompiled Benchmark1:

• Rename _TestOBF.java and _Hello.java as TestOBF.java and Hello.java

• Compile them and run the compiled code

Get result:

HELLO

GOOD

number=1

Therefore the decompiled Benchmark codes run the same function as their original ones.

5.1.4 Summary:

• Before being obfuscated, Benchmark1 function and can be decompiled successfully.

• Comparing Benchmark1 Source with BenchMark1 Bytecode, both have the same

identifier names. There are Line numbers in Benchmark1 Bytecode.

• Comparing Benchmark1 Source with Decompiled Benchmark1 Source, they are very

similar. The comments in decompiled Benchmark1 Source are missed.

• The decompiled Benchmark1 codes run the same function as their original ones.

5.2 Benchmark2

 29

Benchmark2 was designed for measuring the only obfuscators who advertised that they could

obfuscate codes by changing “if…else”, “for” loop or “while” loop construct. Because of time

limitation, I do not attempt to measure all the obfuscators by it. I will leave it to my future work.

Benchmark2 source file is TestControl.java (608 bytes) and its class file is TestControl.class

(719 bytes). The detail follows:

5.2.1 Benchmark2 Source

The following Program 5_6 shows the Benchmark2 Source code I designed.

Program 5_6: Benchmark2 Source Code

/* BenchMark2: TestControl.java
 * Purpose: test obfuscators’ behaviors on Control
Obfuscations.
 * @date: 14/12/2000
 * @author: Hongying Lai
 */
public class TestControl{
 public static void main(String args[]){
 int loopNum=0;
 // test for loop construct
 for (int i=0; i<2; i++)
 loopNum++;
 // test if.. else statement
 if (loopNum>1)
 System.out.print(" loopNum>1");
 else
 System.out.println(" loopNum<=1");
 // test whilt loop construct
 while (loopNum>1)
 loopNum=loopNum-1;
 System.out.println(" loopNum="+loopNum);

 }
}

Compile TestControl.java with JDK1.2.2:

pprroommpptt >>jjaavvaacc TTeessttCCoonnttrrooll..jjaavvaa

Get a class: TestControl.class

This class is going to be obfuscated by the obfuscators.

Run it and get the result:

loopNum>1 loopNum=1

 30

Therefore, Benchmark2 functions before obfuscated.

5.2.2 Benchmark2 Bytecode

Run javap with the c and p options to get bytecode.

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttCCoonnttrrooll

See the bytecode listing in Program 5_7 below:

Program 5_7: Benchmark2 Bytecode

Compiled from TestControl.java
public class TestControl extends java.lang.Object {
 public TestControl();
 public static void main(java.lang.String[]);
}

Method TestControl()
 0 aload_0
 1 invokespecial #9 <Method java.lang.Object()>
 4 return

Line numbers for method TestControl()
 line 7: 0

Method void main(java.lang.String[])
 0 iconst_0
 1 istore_1
 2 iconst_0
 3 istore_2
 4 goto 13
 7 iinc 1 1
 10 iinc 2 1
 13 iload_2
 14 iconst_2
 15 if_icmplt 7
 18 iload_1
 19 iconst_1
 20 if_icmple 34
 23 getstatic #12 <Field java.io.PrintStream out>
 26 ldc #3 <String " loopNum>1">
 28 invokevirtual #13 <Method void print(java.lang.String)>
 31 goto 49
 34 getstatic #12 <Field java.io.PrintStream out>
 37 ldc #1 <String " loopNum<=1">
 39 invokevirtual #14 <Method void println(java.lang.String)>
 42 goto 49
 45 iload_1
 46 iconst_1
 47 isub
 48 istore_1
 49 iload_1
 50 iconst_1
 51 if_icmpgt 45
 54 getstatic #12 <Field java.io.PrintStream out>
 57 new #7 <Class java.lang.StringBuffer>
 60 dup

 31

 61 ldc #2 <String " loopNum=">
 63 invokespecial #10 <Method
java.lang.StringBuffer(java.lang.String)>
 66 iload_1
 67 invokevirtual #11 <Method java.lang.StringBuffer
append(int)>
 70 invokevirtual #15 <Method java.lang.String toString()>
 73 invokevirtual #14 <Method void println(java.lang.String)>
 76 return

Line numbers for method void main(java.lang.String[])
 line 9: 0
 line 11: 2
 line 12: 7
 line 11: 10
 line 14: 18
 line 15: 23
 line 14: 31
 line 17: 34
 line 19: 42
 line 20: 45
 line 19: 49
 line 21: 54
 line 8: 76

From this program, we can see that there are Line Numbers in the Benchmark2 Bytecode.

5.2.3 Decompiled Benchmark2 Source

Type:

pprroommpptt>>ssrrccaaggaaiinn TTeessttCCoonnttrrooll..ccllaassss

Get output: _TestControl.java

See the decompiled code listing in Program 5_8 below:

Program 5_8: Decompiled Benchmark2 Code

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
import java.io.PrintStream;
public class TestControl {
 public static void main(String[] String_1darray1)
 {
 int int2 = 0;
 int int3;
 for(int3 = 0; int3 < 2; ++int3)
 ++int2;
 if(int2 > 1)
 System.out.print(" loopNum>1");
 else
 System.out.println(" loopNum<=1");
 while(int2 > 1)
 --int2;
 System.out.println(" loopNum=" + int2);

 32

 }
}

Comparing decompiled Benchmark2 source codes with their original ones, we can see that these

decompiled Benchmark2 source codes and their original source are almost the same in control

flow structure. Both have the same “for” loop, “if … else” and “while” loop structures and order.

Recompile them to test the function of the Decompiled Benchmark2:

• Rename _TestOBF.java and _Hello.java as TestOBF.java and Hello.java

• Compile them , run the compiled code and get the result:

loopNum>1 loopNum=1

Therefore the decompiled Benchmark2 codes run the same function as their original one.

5.2.4 Summary

• Before Obfuscated, Benchmark2 functions and can be decompiled successfully.

• There are Line numbers in Benchmark2 Bytecode.

• Comparing Benchmark2 Source with Decompiled Benchmark2 (Program 5_8), both

have the same order, “for” loop, “if …else” then “while” loop.

• The Decompiled Benchmark2 codes run the same result as their original one.

 33

My Experimental Design is to test the quality of the obfuscators and assess my Obfuscation

Metrics. As far as I can, I have collected 13 obfuscators from the Internet. For each obfuscator, I

did the following five steps: Installation, Synthetic workload, Logic Program, Decompilation by

SourceAgain and Assess Metrics. Following Figure 8_1 is the evaluation flowchart for these five

steps:

Installation

“Logic Program”

Synthetic Workload

Decompilation by
SourceAgain

Assess Metrics

Success? Debug?

 End

Pick an Obfuscator

Y

Y

NN

N

N N

Y

Y

Y

Y

Success?

Success?
Next

Options?

Next
Options?

6
A comparative survey of Java obfuscators

Experimental Design

Figure 6_1: Evaluation FlowChart

 34

6.1 Installation

The Installation test is to do the preparation work for the experiment. It is a four-step process,

Collection, Download, Installation and Trying Running.

6.1.1 Collection

In this step, I collected the basic data about the obfuscators from the Internet and summed them

up in following table:

Table 6_1: The result from the survey of the Obfuscators available on the current Internet.

Obfuscators Trial License Advertised features

2Lkit Obfuscator v1.1 Evaluation $129 1. Change class, method, field and package names.
2. Removes unused class attributes.

Cloakware Transforms an executable program’s internal
data flow, control flow and data structure.

DashO-Pro v2.0

EVALUATIO
N

$895 1. Change class, method and field names.
2. Removes unused class, method and field.

Hashjava Free Free 1. Change class, method and field names.
2. Inset confusing debugging information.

JCloak v3.5.3
From Force5

Evaluation

$595.00 1. Change class, method and field names.
2. Removes line numbers and local symbols.

Jproof
1stBarrier MINI v1.1

Evaluation
on-line free

$125 ~
$175

 Change class names, private method names and
private field names.

JOBE
– The obfuscator

Free for non
Commercial
use

a personal:
$20.00,
a site : $40.

1. Change class, method and field names.
2. Removes debugging information from your java

class files.
Jshrinkv1.18 Evaluation 1. Change class, method and field names.

2. Remove unused code, data, and symbolic names
from compiled Java class files.

Jzipper v1.08 Evaluation $35 1. Change class, method and field names.
2. Inset bogus confusing debugging information

ObfuscateTM v1.1 Evaluation 1. Change class, method and field names.
2. Removes debugging information from the java

class files.
RetroGuard v1.1 Free Free Change public, protected or private names.
SourceGuard 4.0

Evaluation

Enterprise:
$1995.00
Professional
: $995.00

 1. Change class, method and field names.
 2. Pruning code

Zelix KlassMaster2.3 Evaluation

Standard:
US$299
Small:
S$149

1. Change class, method and field names.
2. Remove Line numbers.
3. Obfuscate Control Flow (Limited to one or two

methods per class in evaluation version)
4. Encrypt String

The table list order is according to the first letter of the obfuscator names.
The “blank” cell means that there is no this kind information about the obfuscator.

 35

From the Table 6_1, we can learn that 13 Obfuscators were found on the Internet (Some of

others might be no longer available such as Crema, some might be not found). Two of the

obfuscators are total free and one is free just for non-commercial use. Nine freely provide

their evaluations. Cloakware is the only one I could not find the material about its evaluation

and product cost. To sum up, there are twelve out of 13 obfuscators can provide their

evaluations or their copyright versions freely.

Except for Zelix KlassMaster, other Obfuscators’ evaluation versions have the same function

as their license versions. The major differences between the Zelix KlassMaster2.3 evaluation

version and its commercial version are as follows:

• The evaluation version will flow obfuscate only one or two methods in each class.

• The evaluation version will parse ZKM Script files but will not execute them.

• The evaluation version will not look for or use the defaultExclude.txt file.

From their advertisements, most obfuscators can lexically obfuscate the programs such as

scrambling the names and removing debugging information. Some also can transform a Java

class file by control obfuscation such as obfuscating flow or by data obfuscation such as

encrypting String.

6.1.2 Download

From above step, we learnt that there are 12 obfuscators that freely provide their evaluations

or copyright versions. However, in this step, when I tried to download these 12 obfuscators,

two obfuscators, Hashjava and JOBE-the obfuscator, could not be downloaded. Their links

might be out of maintenance. Other ten obfuscators could be downloaded successfully. See

table 6_2.

Table 6_2 contains the information about these twelve obfuscators’ Version, Downloaded

File, Size (in KB), Download Date and URL.

• “Version” shows which product version I downloaded.

• “Download File” presents the names of the files I had downloaded. From the table,

we can see that the types of the downloaded files are various. Some of them are

“exe”, some of them are “zip” and others are “jar”.

• “Size” means the download files’ sizes. From this table, we could conclude that the

download file of the DashO-Pro v2.0 contains the largest size among these

 36

downloaded files. It is 5,226KB. The smallest one is the downloaded file of

ObfuscateTM, 72KB.

• “Download Date” means the dates when I downloaded these obfuscators.

• “URL” shows the concrete addresses where I downloaded these obfuscators.

Table 6_2: The results of downloading the 12 obfuscators.

Obfuscators Version Downloaded File Size

(KB)
Downloa
d Date

URL

2Lkit
Obfuscator

v1.1 2LkitObf11.exe 666 29/11/200
0

www.2Lkit.com/products/2LkitObf

DashO-Pro

V2.0 DASHOPRO_WIN.E
XE

5226 12/12/200
0

www.preemptive.com

Hashjava

 28/11/2000 www.meurrens.org/ip-
links/Java/codeEngineering/blackDpe
n/hashjava.html

JCloak
From Force5

V3.5.3 Install.exe 4815 29/11/200
0

www.force5.com/pub/Jcloak/install.
exe

Jproof
1stBarrier MINI

V1.1 1stBarrier MINI.zip 202 29/11/200
0

www.jproof.com

JOBE–Java
obfuscator

 29/11/200
0

www.priment.com

Jshrink

V1.18 Jshrinkinst.exe 100 28/11/200
0

www.e-t.com/jshrinkdoc.html

Jzipper

V1.08 Jzip_install_demo.zip
315

28/11/
2000

WWW.VEGATECH.NET/JZIPPER

NeiAggarwa
ObfuscateTM

V1.1 Obfuscate.zip 72 29/11/200
0

www.jammconsulting.com/servlets/
com.jammconsulting.servlet.JAMM
Servlet/obfuscateDownloadPage

RetroGuard

V1.1 RetroGuard_v1.1.zip 299 28/11/200
0

www.retrologic.com

SourceGuard

V4.0 SG4EvalInstall.jar 3825 28/11/200
0

www.4thpass.com/sourceGuard

Zelix
KlassMaster

V2.3 ZKMEval.zip 757 28/11/200
0

www.zelix.com/klassmaster/

The “blank” cell means that I could not find this information because of unsuccessful download.

6.1.3 Installation

Environment:

 JDK1.2.2

Window 98

Personal computer

Installed objects:

Ten obfuscators’ files that could be successfully download in above step:

2LkitObf11.exe (2LKit obfuscator v1.1), DashoPro_win.exe (DashO-ProTM v2.0),

Install.exe (JCloak v3.5.3), 1stBarrier MINI.zip (JProof 1stBarrier MINI v1.1),

 37

Jshrinkinst.exe (Jshrink v1.18,Jzipper v1.08),

Jzip_install_demo.zip (Nei Aggarwal’s ObfuscateTM v1.1),

RectroGuard_v1.1.zip (RetroGuard v1.1) ,SG4EvalInstall.jar (SourceGuard v4.0),and

ZKMEval.zip (Zelix KlassMaster v2.3).

Install: I installed these tested obfuscators by the steps that they provide in their installation

document. See these documents that are stored in their download files.

Result:

All ten obfuscators’ files could be installed successfully.

6.1.4 Trying Running

Environment:

 JDK1.2.2

Window 98

Personal computer

Tested objects:

Ten obfuscators that could be installed successfully:

2LKit obfuscator v1.1, DashO-ProTM v2.0, JCoak v3.5.3,Jproof 1stBarrier MINI v1.1,

Jshrink v1.18, Jzipper v1.08, Nei Aggarwal’s ObfuscateTM v1.1, RetroGuard v1.1,

SourceGuard v4.0 and Zelix KlassMaster v2.3.

Trying:

In this step, I just simply started these tested obfuscators. If they could start properly, I

would report them “Success”. Otherwise, I would report them “Failure”. When I tried

them following their instruction, nine of them could work successfully. The

unsuccessful one is ObfuscateTM v1.1. I tried it several times. However, it always gave

me an error message (See below):

PPrroommpptt>>jjaavvaa OObbffuussccaattee..jjaarr OObbffuussccaattee hh TTeessttOOBBFF

Exception in thread "main" java.lang.NoClassDefFoundError: Obfuscate/jar

PPrroommpptt>>jjaavvaa OObbffuussccaattee OObbffuussccaattee hh TTeessttOOBBFF

Exception in thread "main" java.lang.ClassFormatError: Obfuscate (Local variable

 name has bad constant pool index) ……

 38

Result:

All ten obfuscators were tested in this step. Nine of them could run successfully.

 One failed.

6.1.5 Summary

Total thirteen Obfuscators had been collected from the Internet. Twelve provide download sites.

Ten could be downloaded and installed successfully. Nine passed the Trying Running test. In a

word, there were 9 obfuscators could successfully pass the Installation test. See Table 6_3.

Table 6_3: The Summary of Installation Test

Obfuscators Collection Download Installation Trying
Runnin

2Lkit Obfuscator v1.1

Success Success Success Success

Cloakware Failure

DashO-Pro v2.0

Success Success Success Success

Hashjava

Success Failure

JCloak v3.5.3
From Force5

Success Success Success Success

Jproof
1stBarrier MINI v1.1

Success Success Success Success

JOBE
– the obfuscator

Success Failure

Jshrinkv1.18

Success Success Success Success

Jzipper v1.08

Success Success Success Success

ObfuscateTM v1.1

Success Success Success Failure

RetroGuard v1.1

Success Success Success Success

SourceGuard 4.0

Success Success Success Success

Zelix KlassMaster2.3

Success Success Success Success

The “blank” cell means that this step is not attempted because a prior step had failed.

In the first step, Collection, Cloakware failed because it did not provide any download sites

on the Internet. Therefore I assigned it “Failure” in this step. The others were set “Success”.

 39

In the second step, Download, I gave “Failure” to two obfuscators, Hashjava and JOBE-the

obfuscator because I could found download them from the their download sites. The other

ten obfuscators, which I could successfully downloaded, were assigned “Success”.

In the third step, Installation, all ten obfuscators, which were “Success” in the second step,

were successfully installed. Therefore I gave them “Success”.

In the last step, Trying Running, ObfuscateTM v1.1 run improperly. Therefore I reported it

“Failure”. Others could run successfully.

 40

6.2 Synthetic Workload

This experiment measures the obfuscators’ behaviors on what is known as a “Synthetic

Workload” of small Java programs, Benchmark1 and Benchmark2. Benchmark1 is to test the

Layout Obfuscation metrics, such as modifying the name, removing debugging information such

as Line numbers and data obfuscation metrics such as breaking array, encrypting a string.

Benchmark2 is to test the control obfuscation metrics such as changing “if..else” statement,

“for” loop or “while” loop construct.

Ten obfuscators, which successfully passed Installation test, were going to be tested in this

experiment. There are 2LKit obfuscator v1.1, DashO-Pro v2.0, JCloak v3.5.3,JProof 1stBarrier

MINI, Jshrink v1.18, Jzipper v1.08, Nei Aggarwal’s ObfuscateTM v1.1 RetroGuard v1.1,

SourceGuard v4.0 and Zelix KlassMaster v2.3.

Here is the process of this test:

For each obfuscator o {

 For each benchmark i {

 If I=2 and if obfuscator o not advertises obfuscating control flow{

 Report “N/A”(o,i)

 Try next obfuscator o

 Repeat(o, i)

 }

 Attempt to obfuscate benchmark i and with obfuscator o,

at highest available security options a

verify that the obfuscated program still function

if attempt fails, try again with a lower security options a ,

repeats (o,a,i)

 If attempts fail, report “Failure” or report “Success” (o,a,i)

 }

}

Figure 6_2: Evaluation Process for Benchmarks

 41

6.2.1 2LKit Obfuscator v1.1

Test Time: 06/12/2000, 14/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Following shows the steps when I obfuscated Benchmark1:

After double clicked “obfuscatorJDK.jar” to start 2LKit Obfuscator, it showed a message:

click “OK”, I choose the path, D:\lhy\project\test source, where my Benchmark1 classes

(TestOBF.class and Hello,class) are located.

next, came this dialogue:

Then, I selected:

 42

After clicking “finish”, finally I got an error message:

I tried to debug it by adding a class path: d:\lhy\project\test Source. I still got the same

error message. I tried all approaches that I thought possible. I still the same result. Due

to the time limitation for my project, I had to give up.

Result report: Failure

Therefore, 2LKit Obfuscator v1.1 got zero mark for obfuscating my Benchmark1. In other word,

it got zero mark on Layout Obfuscation and Data Obfuscation metrics.

Obfuscating Benchmark2:

2LKit Obfuscator v1.1 does not advertise that it can obfuscate programs with control flow (see

Table 6_1) such as changing “if…else”, “for” loop or “while” loop. So I did not test it and

scored “0” for the metric, “Control Obfuscation”.

Result report: N/A, not applicable.

 43

Summary:

• 2LKit Obfuscator v1.1 has a friendly, beautiful user interface. However, its “help”

information is not detail enough. It is not help me to debug. So I could not successfully

obfuscate my Benchmark1 by 2LKit Obfuscator v1.1.

• It was reported “N/A” for Obfuscating Benchmark2.

• It got zero mark on Layout Obfuscation, Data Obfuscation and Control Obfuscation

metrics.

6.2.2 DashO-Pro v2.0

Test Time: 14/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Main steps:

1. Double click “DashOgui.bat” to start DashO-Pro.

2. Input classpath:

C:\jdk1.2.2\Jre\rt.jar

C:\DashOPro\DashPro.jar

C:\DashOPro\Jh.jar

D:\lhy\project\test source

Note: “D:\lhy\project\test source” stores my Benchmarks’ class files.

3. Project type: Application. The main application class is TestOBF

4. Obfuscation options:

 “Remove All” and “Rename Classes_Profix”

This option set is the highest security level in all the option sets that DashO-Pro v2.0 provides

5. Optimization: “None”

Output:

TestOBF.class(873 bytes), b.class (238 bytes)

Function Test:

Type:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

 44

Get result:

HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from TestOBF.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_1 below:

Program 6_1: Obfuscated Bytecode_TestOBF of DashO-Pro v2.0

Compiled from [DashoPro-V2-050200]
public class TestOBF extends java.lang.Object {
 public b a;
 public java.lang.String b;
 public int c[];
 public TestOBF();
 private int b();
 public java.lang.String a();
 public static void main(java.lang.String[]);
}

Method TestOBF()
 0 aload_0
 1 invokespecial #55 <Method java.lang.Object()>
 4 aload_0
 5 new #38 <Class b>
 8 dup
 9 invokespecial #56 <Method b()>
 12 putfield #64 <Field b a>
 15 aload_0
 16 ldc #1 <String "">
 18 putfield #65 <Field java.lang.String b>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #66 <Field int c[]>
 29 getstatic #67 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #64 <Field b a>
 36 ldc #2 <String "HELLO">
 38 invokevirtual #57 <Method java.lang.String
a(java.lang.String)>
 41 invokevirtual #58 <Method void println(java.lang.String)>
 44 getstatic #67 <Field java.io.PrintStream out>
 47 aload_0
 48 invokevirtual #59 <Method java.lang.String a()>
 51 invokevirtual #58 <Method void println(java.lang.String)>
 54 getstatic #67 <Field java.io.PrintStream out>
 57 new #41 <Class java.lang.StringBuffer>

 45

 60 dup
 61 ldc #3 <String "number=">
 63 invokespecial #60 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #61 <Method int b()>
 70 invokevirtual #62 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #63 <Method java.lang.String toString()>
 76 invokevirtual #58 <Method void println(java.lang.String)>
 79 return

Method int b()
 0 aload_0
 1 getfield #66 <Field int c[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #66 <Field int c[]>
 11 iconst_0
 12 iaload
 13 ireturn

Method java.lang.String a()
 0 aload_0
 1 ldc #4 <String "GOOD">
 3 putfield #65 <Field java.lang.String b>
 6 aload_0
 7 getfield #65 <Field java.lang.String b>
 10 areturn

Method void main(java.lang.String[])
 0 new #40 <Class TestOBF>
 3 invokespecial #68 <Method TestOBF()>
 6 return

Run javap to get obfuscated bytecode from b.class:
pprroommpptt>>jjaavvaapp --cc --pp --ll bb

See the bytecode listing in the Program 6_2 below:

Program 6_2: Obfuscated Bytecode_Hello of DashO-Pro v2.0

Compiled from [DashoPro-V2-050200]
public class b extends java.lang.Object {
 public b();
 public java.lang.String a(java.lang.String);
}

Method b()
 0 aload_0
 1 invokespecial #14 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return

Method java.lang.String a(java.lang.String)

 46

 0 aload_1
 1 areturn

Result report: Success.

Comparing above obfuscated bytecodes (Progeam 6_1 and Program 6_2) with their

unobfuscated bytecodes (Program 5_2 and program 5_3), I scored the following obfuscation

objective metrics. See Table6_4.

Table 6_4: The result of obfuscating Benchmark1 by DashO-Pro v2.0

Metrics Original

Names

Obfuscation

 Names

Scores

Class name Hello b

Method name getHello a

Public

Field name hello a

1

Method name getGood a Protected

Field name good b

1

Method name getArray b Private

field name number c

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD GOOD 0

Unstructured data:

One dimension array

number[] c[] 0

Score for Layout and Data Obfuscations 4

Note: Case-sensitive

From Table 6_4, we can see that DashO-Pro v2.0 gets full mark, 4 scores, on the Layout

obfuscation metrics. However, it got zero mark on all Data Obfuscation metrics. Therefore

DashO-Pro v2.0 gets total 4 scores for obfuscating my Benchmark1.

Obfuscating Benchmark2:

DashO-Pro v2.0 does not advertise that it can obfuscate programs with control flow (see Table

6_1). So I did not test it and scored “0” for the metric, “Control Obfuscation”.

Result report: N/A.

Summary:

 47

• DashO-Pro v2.0 can lexically obfuscate my Benchmark1. Like its advertisement (see

table 6_1), DashO-Pro v2.0 can change public names, protected names and private

names. It also can remove debugging information such as Line numbers.

• My Benchmark1, after obfuscated by DashO-Pro v2.0, still function properly.

• I reported “N/A” for Obfuscating Benchmark2.

• Combining the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for DashO-Pro v2.0. See Table 6_5.

Table 6_5: The result of obfuscating Benchmarks by DashO-Pro v2.0

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Score for Layout, Data and Control Obfuscations 4

From this table, we can see that DashO-Pro v2.0 gets total 4 marks for obfuscating my

Benchmarks. All this 4 marks are from Layout Obfuscation Metrics. It gets zero mark for other

metrics, Data Obfuscation and Control Obfuscation.

6.2.3 JCloak v3.5.3

Test Time: 15/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Main steps:

1. Double click “JCloakGUI.exe” to start JCloak.

2. Input a single classpath entry for program classes:
D:\lhy\project\test source

3. Input classpath:

C:\Program Files\JavaSoft\JRE\1.2\lib\i18n.jar

 48

 C:\Program Files\JavaSoft\JRE\1.2\lib\plugprov.jar

 C:\Program Files\JavaSoft\JRE\1.2\lib\rt.jar

D:\lhy\project\test source

main() class:'TestOBF'

4. Choose Obfuscation Options:

 obfuscate symbols

 obfuscate classnames

 strip linenumbers

 strip local symbols

Output:

 TestOBF.class (946 bytes), C0.class(213 bytes)

Function Test:

Type:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:
HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from TestOBF.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_3 below:

Program 6_3 Obfuscated Bytecode_TestOBF of JCloak

Compiled from TestOBF
public class TestOBF extends java.lang.Object {
 public C0 c;
 protected java.lang.String d;
 private int e[];
 public TestOBF();
 private int a();
 protected java.lang.String b();
 public static void main(java.lang.String[]);
}

Method TestOBF()
 0 aload_0
 1 invokespecial #38 <Method java.lang.Object()>

 49

 4 aload_0
 5 new #39 <Class C0>
 8 dup
 9 invokespecial #25 <Method C0()>
 12 putfield #67 <Field C0 c>
 15 aload_0
 16 ldc #4 <String "">
 18 putfield #21 <Field java.lang.String d>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #56 <Field int e[]>
 29 getstatic #65 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #67 <Field C0 c>
 36 ldc #2 <String "HELLO">
 38 invokevirtual #49 <Method java.lang.String
a(java.lang.String)>
 41 invokevirtual #9 <Method void println(java.lang.String)>
 44 getstatic #65 <Field java.io.PrintStream out>
 47 aload_0
 48 invokevirtual #50 <Method java.lang.String b()>
 51 invokevirtual #9 <Method void println(java.lang.String)>
 54 getstatic #65 <Field java.io.PrintStream out>
 57 new #26 <Class java.lang.StringBuffer>
 60 dup
 61 ldc #1 <String "number=">
 63 invokespecial #7 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #24 <Method int a()>
 70 invokevirtual #44 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #42 <Method java.lang.String toString()>
 76 invokevirtual #9 <Method void println(java.lang.String)>
 79 return
Method int a()
 0 aload_0
 1 getfield #56 <Field int e[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #56 <Field int e[]>
 11 iconst_0
 12 iaload
 13 ireturn
Method java.lang.String b()
 0 aload_0
 1 ldc #3 <String "GOOD">
 3 putfield #21 <Field java.lang.String d>
 6 aload_0
 7 getfield #21 <Field java.lang.String d>
 10 areturn

Method void main(java.lang.String[])
 0 new #59 <Class TestOBF>
 3 invokespecial #52 <Method TestOBF()>
 6 return

 50

Run javap to get obfuscated bytecode from b.class:
pprroommpptt>>jjaavvaapp --cc --pp --ll bb

See the bytecode listing in the Program 6_4 below:

Program 6_4: Obfuscated Bytecode_Hello of JCloak

Compiled from C0
class C0 extends java.lang.Object {
 public C0();
 public java.lang.String a(java.lang.String);
}
Method C0()
 0 aload_0
 1 invokespecial #7 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return
Method java.lang.String a(java.lang.String)
 0 aload_1
 1 areturn

Result report: Success.

Comparing above obfuscated bytecodes (Progeam 6_3, Program 6_4) with their unobfuscated

bytecodes (Program 5_2, Program 5_3), I scored the following obfuscation objective metrics.

See Table6_6.

Table 6_6 The result of obfuscating Benchmark1 by JCloak

Metrics Original

Names

Obfuscation

 Names

Score

Class name Hello C0

Method name getHello a

Public

Field name hello c

1

Method name getGood b Protected

Field name good d

1

Method name getArray a Private

field name number e

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD GOOD 0

Unstructured data:

One dimension array

number[] e[] 0

Score for Layout and Data Obfuscations 4

Note: Case-sensitive

 51

From Table 6_6, we can see that JCloak v3.5.3gets full mark, 4 scores, on the Layout

obfuscation metrics. However, it got zero mark on all Data Obfuscation metrics. Therefore

JCloak v3.5.3 gets total 4 points for obfuscating my Benchmark1.

Obfuscating Benchmark2:

JCloak v3.5.3 does not advertise that it can obfuscate programs with control flow (see Table

6_1). So I did not test it and scored “0” for the metric, “Control Obfuscation”.

Result report: N/A.

Summary:

• JCloak v3.5.3 can lexically obfuscate my Benchmark1. Like its advertisement (see

table 6_1), JCloak v3.5.3 can change public names, protected names and private

names. It also can remove debugging information such as Line numbers.

• My Benchmark1, after obfuscated by JCloak v3.5.3, still function properly.

• I reported “N/A” for Obfuscating Benchmark2.

• Combining the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for JCloak v3.5.3. See Table 6_7.

Table 6_7: The result of obfuscating Benchmarks by JCloak v3.5.3

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Score for Layout, Data and Control Obfuscations 4

From this table, we can see that JCloak v3.5.3 gets total 4 marks for obfuscating my

Benchmarks. All these 4 marks are from Layout Obfuscation Metrics. It got zero mark for other

metrics, Data Obfuscation and Control Obfuscation.

 52

6.2.4 Jproof 1stBarrier MINI v1.1

Test Time: 15/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Jproof 1stBarrierMINI v1.1 supports only .JAR file. So before obfuscating, I archived

Benchmark1 class files, TestOBF.class and Hello.class, into an archive, testclass.jar:

pprroommpptt >>jjaarr ccvvff tteessttccllaasssseess..jjaarr TTeessttOOBBFF..ccllaassss HHeelllloo..ccllaassss

Main steps:

1. Double click “1stBarrierMINI.jar” to start Jproof 1stBarrierMINI v1.1.

2. Input source name: testclass.jar.
3. Enter “main” class: TestOBF.class.

4. Choose Obfuscation Options: Default, it is the highest security level

Output: testclass.jar.

Type:
pprroommpptt >>jjaarr xxvvff tteessttccllaasssseess..jjaarr TTeessttOOBBFF..ccllaassss HHeelllloo..ccllaassss

Get two classes: TestOBF.class and dl.class

Function Test:

Type:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:
HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from TestOBF.class:
pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_5 below:

 53

Program 6_5 Obfuscated Bytecode_TestOBF of Jproof 1stBarrierMINI v1.1

No sourcepublic class TestOBF extends java.lang.Object {
 public dl hello;
 protected java.lang.String good;
 private int Lt[];
 public TestOBF();
 private int lt();
 protected java.lang.String getGood();
 public static void main(java.lang.String[]);
}

Method TestOBF()
 0 aload_0
 1 invokespecial #13 <Method java.lang.Object()>
 4 aload_0
 5 new #5 <Class dl>
 8 dup
 9 invokespecial #11 <Method dl()>
 12 putfield #20 <Field dl hello>
 15 aload_0
 16 ldc #1 <String "">
 18 putfield #19 <Field java.lang.String good>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #21 <Field int Lt[]>
 29 getstatic #22 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #20 <Field dl hello>
 36 ldc #3 <String "HELLO">
 38 invokevirtual #18 <Method java.lang.String
getHello(java.lang.String)>
 41 invokevirtual #23 <Method void println(java.lang.String)>
 44 getstatic #22 <Field java.io.PrintStream out>
 47 aload_0
 48 invokevirtual #17 <Method java.lang.String getGood()>
 51 invokevirtual #23 <Method void println(java.lang.String)>
 54 getstatic #22 <Field java.io.PrintStream out>
 57 new #9 <Class java.lang.StringBuffer>
 60 dup
 61 ldc #4 <String "number=">
 63 invokespecial #14 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #16 <Method int lt()>
 70 invokevirtual #15 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #24 <Method java.lang.String toString()>
 76 invokevirtual #23 <Method void println(java.lang.String)>
 79 return
Method int lt()
 0 aload_0
 1 getfield #21 <Field int Lt[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0

 54

 8 getfield #21 <Field int Lt[]>
 11 iconst_0
 12 iaload
 13 ireturn
Method java.lang.String getGood()
 0 aload_0
 1 ldc #2 <String "GOOD">
 3 putfield #19 <Field java.lang.String good>
 6 aload_0
 7 getfield #19 <Field java.lang.String good>
 10 areturn

Method void main(java.lang.String[])
 0 new #6 <Class TestOBF>
 3 invokespecial #12 <Method TestOBF()>
 6 return

Run javap to get obfuscated bytecode from b.class:
pprroommpptt>>jjaavvaapp --cc --pp --ll bb

See the bytecode listing in the Program 6_6 below:

Program 6_6: Obfuscated Bytecode_Hello of Jproof 1stBarrierMINI v1.1
No sourceclass dl extends java.lang.Object {
 public dl();
 public java.lang.String getHello(java.lang.String);
}
Method dl()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return
Method java.lang.String getHello(java.lang.String)
 0 aload_1
 1 areturn

Result report: Success.

Comparing above obfuscated bytecodes (Progeam 6_5, Program 6_6) with their unobfuscated

bytecodes (Program 5_2, Program 5_3), I scored the following obfuscation objective metrics.

See Table6_8.

From Table 6_8, we can see that Jproof 1stBarrierMINI v1.1 gets 3 scores. They were from

obfuscating public class names, private names and removing Line numbers. Jproof

1stBarrierMINI v1.1 got zero mark on all Data Obfuscation metrics and renaming protected

metric. Though Jproof 1stBarrierMINI v1.1 did not obfuscate public method names and public

field names but public class names, I had to score 1 mark on the “Public” names metric by my

marking standard rule.

 55

Table 6_8: The result of obfuscating Benchmark1 by Jproof 1stBarrierMINI v1.1

Metrics Original

Names

Obfuscation

 Names

Score

Class name Hello dl

Method name getHello getHello

Public

Field name hello hello

1

Method name getGood getGood Protected

Field name good good

0

Method name getArray lt Private

field name number Lt

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD GOOD 0

Unstructured data:

One dimension array

number[] Lt[] 0

Score for Layout and Data Obfuscations 3

Note: Case-sensitive

Obfuscating Benchmark2:

Jproof 1stBarrierMINI v1.1 did not advertise that it could obfuscate programs with control flow
(see Table 6_1). So I did not test it and scored “0” for the metric, “Control Obfuscation”.

Result report: N/A.

Summary:

• Jproof 1stBarrierMINI v1.1 could obfuscatedmy Benchmark1. Like its advertisement

(see table 6_1), Jproof 1stBarrierMINI v1.1 changed public class names, private method

names and private methods. It also can removed debugging information such as Line

numbers.

• My Benchmark1, after being obfuscated by Jproof 1stBarrierMINI v1.1, still function

properly.

• I reported “N/A” for Obfuscating Benchmark2.

• Combining the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for Jproof 1stBarrierMINI v1.1. See Table 6_9.

 56

Table 6_9: The result of obfuscating Benchmarks by Jproof 1stBarrierMINI v1.1

ITEMS CONTENTS SCORES

Public 1

Protected 0

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Score for Layout, Data and Control Obfuscations 3

From this table, we can see that: Jproof 1stBarrierMINI v1.1gets total 3 marks for obfuscating

my Benchmarks. All this 3 marks are from Layout Obfuscation Metrics but it lost 1 mark here. It

gets zero mark for Data obfuscation and Control Obfuscation.

6.2.5 Jshrink v1.18

Test Time: 15/12/2000

Platform: Window 98 command line (MS-DOS window)

Obfuscating Benchmark1:

Main steps:

1. Put the tested files, TestOBF.class and Hello.class into a folder

2. On the command line, type:

pprroommpptt >>jjsshhrriinnkk **..ccllaassss

Output:

TestOBF.class (890 bytes) and Hello.class (223 bytes)

Function Test:

Type:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

 57

Get result:
HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from TestOBF.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_7 below:

Program 6_7: Obfuscated Bytecode_TestOBF of Jshrink v1.18

Compiled from TestOBF
public class TestOBF extends java.lang.Object {
 public Hello hello;
 protected java.lang.String good;
 private int 0[];
 public TestOBF();
 private int 0();
 protected java.lang.String getGood();
 public static void main(java.lang.String[]);
}
Method TestOBF()
 0 aload_0
 1 invokespecial #13 <Method java.lang.Object()>
 4 aload_0
 5 new #5 <Class Hello>
 8 dup
 9 invokespecial #11 <Method Hello()>
 12 putfield #20 <Field Hello hello>
 15 aload_0
 16 ldc #1 <String "">
 18 putfield #19 <Field java.lang.String good>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #21 <Field int 0[]>
 29 getstatic #22 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #20 <Field Hello hello>
 36 ldc #3 <String "HELLO">
 38 invokevirtual #18 <Method java.lang.String
getHello(java.lang.String)>
 41 invokevirtual #23 <Method void println(java.lang.String)>
 44 getstatic #22 <Field java.io.PrintStream out>
 47 aload_0
 48 invokevirtual #17 <Method java.lang.String getGood()>
 51 invokevirtual #23 <Method void println(java.lang.String)>
 54 getstatic #22 <Field java.io.PrintStream out>
 57 new #9 <Class java.lang.StringBuffer>
 60 dup
 61 ldc #4 <String "number=">

 58

 63 invokespecial #14 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #16 <Method int 0()>
 70 invokevirtual #15 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #24 <Method java.lang.String toString()>
 76 invokevirtual #23 <Method void println(java.lang.String)>
 79 return
Method int 0()
 0 aload_0
 1 getfield #21 <Field int 0[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #21 <Field int 0[]>
 11 iconst_0
 12 iaload
 13 ireturn
Method java.lang.String getGood()
 0 aload_0
 1 ldc #2 <String "GOOD">
 3 putfield #19 <Field java.lang.String good>
 6 aload_0
 7 getfield #19 <Field java.lang.String good>
 10 areturn
Method void main(java.lang.String[])
 0 new #6 <Class TestOBF>
 3 invokespecial #12 <Method TestOBF()>
 6 return

Run javap to get obfuscated bytecode from Hello.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll HHeelllloo

See the bytecode listing in the Program 6_8 below:

Program 6_8 Obfuscated Bytecode_Hello of Jshrink v1.18

Compiled from Hello
class Hello extends java.lang.Object {
 public Hello();
 public java.lang.String getHello(java.lang.String);
}
Method Hello()
 0 aload_0
 1 invokespecial #3 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return
Method java.lang.String getHello(java.lang.String)
 0 aload_1
 1 areturn

Result report: Success.

 59

Comparing above obfuscated bytecodes (Progeam 6_7, Program 6_8) with their unobfuscated

bytecodes (Program 5_2, Program 5_3), I scored the following obfuscation objective metrics. See

Table 6_10.

From Table 6_10, we can see that JShrink v1.18 gets 2 scores. They are from obfuscating private

names and removing Line numbers. On other metrics, JShrink v1.18 gets zero mark.

Table 6_10 The result of obfuscating Benchmark1 by JShrink v1.18

Metrics Original

Names

Obfuscation

 Names

Score

Class name Hello Hello

Method name getHello getHello

Public

Field name hello hello

0

Method name getGood getGood Protected

Field name good good

0

Method name getArray 0 Private

field name number 0

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD GOOD 0

Unstructured data:

One dimension array

number[] 0[] 0

Score for Layout and Data Obfuscations 2

Note: Case-sensitive

Obfuscating Benchmark2:

JShrink v1.18 did not advertise that it could obfuscate programs with control flow (see Table

6_1). So I did not test it and scored “0” for the metric, “Control Obfuscation”.

Result report: N/A

Summary:

• JShrink v1.18 can obfuscate my Benchmark1. Like its advertisement (see table 6_1),

JShrink v1.18change private method names and private methods. It also can remove

debugging information such as Line numbers.

• My Benchmark1, after obfuscated by JShrink v1.18, still function properly.

 60

• I reported “N/A” for Obfuscating Benchmark2.

• Combining the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for JShrink v1.18. See Table 6_11.

Table 6_11: The result of obfuscating Benchmarks by JShrink v1.18

ITEMS CONTENTS SCORES

Public 0

Protected 0

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Score for Layout, Data and Control Obfuscations 2

From this table, we can see that JShrink v1.18 gets total 2 marks for obfuscating my

Benchmarks. These 2 marks are from obfuscating private names and removing Line numbers.

6.2.6 Jzipper v1.08

Test Time: 16/12/2000

Platform: Window 98

Obfuscating Benchmarks:

When I double clicked “Jzipper.bat” to start Jzipper v1.08.

It showed the following message:

JZipper software has expired, please return to its website to

retrieve the latest version.

I had downloaded it again and tried running it for three times. However, I still got the same

result. I tried using it obfuscate my codes. It could obfuscate my Benchmark1. But when I run

the obfuscated code, it turned out:

Exception in thread "main" java.lang.VerifyError: (class: JZ7,

method: <init> signature: ()V) Bad type in putfield/putstatic.

Result report: Failure

 61

Summary:

• Jzipper v1.08 could obfuscate my Benchmark1 (I did not obfuscate

Benchmark2).

• Its obfuscated codes could not function improperly.

• I reported it failure and gave zero mark for its Layout, Data and Control

Obfuscation metrics.

6.2.7 RetroGuard_v1.1

Test Time: 16/12/2000

Platform: Window 98 command line

Obfuscating Benchmarks:

RetroGuard_v1.1.zip supports only .JAR file. So before obfuscating, I archived Benchmark1

class files, TestOBF.class and Hello.class, into an archive, test.jar:

pprroommpptt >>jjaavvaa ccvvff tteesstt..jjaarr TTeessttOOBBFF..ccllaassss HHeelllloo..ccllaassss

Main steps:

1. Type pprroommpptt >>jjaavvaa RReettrrooGGuuaarrdd TTeesstt..jjaarr to get output out.jar

2. De-archive out.jar to get obfuscated files: a.class and b.class

Function Test:

 Running obfuscated classes, I got a message:
Exception in thread "main" java.lang.NoSuchMethodError: main

Result report: Failure

Summary:

• RetroGuard_v1.1.zip supports only .JAR file.

• It runs on command line with no options.

• It could obfuscate my Benchmark1 (I did not obfuscate Benchmark2).

• Its obfuscated codes could not function improperly.

• I reported it failure and gave zero mark for its Layout, Data and Control Obfuscation

metrics.

.

 62

6.2.8 SourceGuard v4.0

Test Time: 17/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Main steps:

Choose Obfuscation Options:

 Protect all

 Modify Bytecode Range

 Hide loops

 Remove SourceFile Attribute

 Remove Line number Table Attribute

 Remove Local variable Table Attribute

 Remove Innerclass Attribute

 Remove underlined Attribute

 Remove Constant Pool Constant matching class names

Output:

 TestOBF.class (829 bytes), a.class(187 bytes)

Function Test:

Type:

pprroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:
HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from TestOBF.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_9 below:

 63

Program 6_9 Obfuscated Bytecode_TestOBF of SourceGuard v4.0

No sourcepublic class TestOBF extends java.lang.Object {
 private int a[];
 protected java.lang.String c;
 public a b;
 public static void main(java.lang.String[]);
 protected java.lang.String b();
 private int a();
 public TestOBF();
}

Method void main(java.lang.String[])
 0 new #10 <Class TestOBF>
 3 invokespecial #18 <Method TestOBF()>
 6 return

Method java.lang.String b()
 0 aload_0
 1 ldc #1 <String "GOOD">
 3 putfield #26 <Field java.lang.String c>
 6 aload_0
 7 getfield #26 <Field java.lang.String c>
 10 areturn

Method int a()
 0 aload_0
 1 getfield #13 <Field int a[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #13 <Field int a[]>
 11 iconst_0
 12 iaload
 13 ireturn

Method TestOBF()
 0 aload_0
 1 invokespecial #24 <Method java.lang.Object()>
 4 aload_0
 5 new #8 <Class a>
 8 dup
 9 invokespecial #20 <Method a()>
 12 putfield #15 <Field a b>
 15 aload_0
 16 ldc #3 <String "">
 18 putfield #26 <Field java.lang.String c>
 21 aload_0
 22 bipush 10
 24 newarray int
 26 putfield #13 <Field int a[]>
 29 getstatic #14 <Field java.io.PrintStream out>
 32 aload_0
 33 getfield #15 <Field a b>
 36 ldc #4 <String "HELLO">
 38 invokevirtual #35 <Method java.lang.String
a(java.lang.String)>
 41 invokevirtual #25 <Method void println(java.lang.String)>
 44 getstatic #14 <Field java.io.PrintStream out>

 64

 47 aload_0
 48 invokevirtual #30 <Method java.lang.String b()>
 51 invokevirtual #25 <Method void println(java.lang.String)>
 54 getstatic #14 <Field java.io.PrintStream out>
 57 new #5 <Class java.lang.StringBuffer>
 60 dup
 61 ldc #2 <String "number=">
 63 invokespecial #33 <Method
java.lang.StringBuffer(java.lang.String)>
 66 aload_0
 67 invokespecial #29 <Method int a()>
 70 invokevirtual #27 <Method java.lang.StringBuffer
append(int)>
 73 invokevirtual #34 <Method java.lang.String toString()>
 76 invokevirtual #25 <Method void println(java.lang.String)>
 79 return

Run javap to get obfuscated bytecode from a.class:
pprroommpptt>>jjaavvaapp --cc --pp --ll aa

See the bytecode listing in the Program 6_10 below:

Program 6_10 Obfuscated Bytecode_Hello of of SourceGuard v4.0

No sourceclass a extends java.lang.Object {
 public java.lang.String a(java.lang.String);
 public a();
}

Method java.lang.String a(java.lang.String)
 0 aload_1
 1 areturn

Method a()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>
 4 iconst_1
 5 istore_1
 6 return

Result report: Success.

Comparing above obfuscated bytecodes (Progeam 6_9, Program 6_10) with their unobfuscated

bytecodes (Program 5_2, Program 5_3), I scored the following obfuscation objective metrics.

See Table6_12.

From Table 6_12, we can see that SourceGuard v4.0 gets full mark, 4 scores, on the Layout

obfuscation metrics. However, it got zero mark on all Data Obfuscation metrics. Therefore

SourceGuard v4.0 gets total 4 points for obfuscating my Benchmark1.

 65

Table 6_12 The result of obfuscating Benchmark1 by SourceGuard v4.0

Metrics Original

Names

Obfuscation

 Names

Score

Class name Hello a

Method name getHello a

Public

Field name hello b

1

Method name getGood b Protected

Field name good c

1

Method name getArray a Private

field name number a

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD GOOD 0

Unstructured data:

One dimension array

number[] a[] 0

Score for Layout and Data Obfuscations 4

Note: Case-sensitive

Obfuscating Benchmark2:

SourceGuard v4.0 does not advertise that it can obfuscate programs with control flow (see
Table 6_1). So I did not test it and scored “0” for the metric, “Control Obfuscation”.

Result report: N/A.

Summary:

• SourceGuard v4.0 could lexically obfuscate my Benchmark1. Like its advertisement

(see table 6_1), SourceGuard v4.0 was able to change public names, protected names

and private names. It also could remove debugging information such as Line numbers.

• My Benchmark1, after being obfuscated by SourceGuard v4.0, still functioned

properly.

• I reported “N/A” for Obfuscating Benchmark2.

• Summing the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for SourceGuard v4.0. See Table 6_13.

 66

Table 6_13: The result of obfuscating Benchmarks by SourceGuard v4.0

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Score for Layout, Data and Control Obfuscations 4

From this table, we can see that SourceGuard v4.0 got total 4 marks for obfuscating my

Benchmarks. All these 4 marks are from Layout Obfuscation Metrics. It got zero mark for other

metrics, Data Obfuscation and Control Obfuscation.

6.2.9 KlassMaster v2.3

Test Time: 17/12/2000

Platform: Window 98

Obfuscating Benchmark1:

Main steps:

1. Double click “ZKM.jar” to start ZKM

2. Choose Obfuscation Options:

• rename and remove all

• obfuscate Control Flow: aggressive

• Encrypt String Literal: flow obfuscate.

Output:

 b.class (1,170 bytes), a.class(256 bytes)

Function Test:

Type:

pprroommpptt >>jjaavvaa bb

 67

Get result:
HELLO
GOOD
number=1

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

Obfuscated Benchmark1 bytecodes:

Run javap to get obfuscated bytecode from b.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll TTeessttOOBBFF

See the bytecode listing in the Program 6_11 below:

Program 6_11: Obfuscated Bytecode_TestOBF of KlassMaster v2.3

Compiled from b.java
public class b extends java.lang.Object {
 public a a;
 protected java.lang.String b;
 private int c[];
 static int d;
 public b();
 private int a();
 protected java.lang.String b();
 public static void main(java.lang.String[]);
 private static java.lang.String a(java.lang.String);
}

Method b()
 0 getstatic #61 <Field int d>
 3 istore_1
 4 aload_0
 5 invokespecial #13 <Method java.lang.Object()>
 8 aload_0
 9 new #5 <Class a>
 12 dup
 13 invokespecial #11 <Method a()>
 16 putfield #20 <Field a a>
 19 aload_0
 20 ldc #1 <String "">
 22 putfield #19 <Field java.lang.String b>
 25 aload_0
 26 bipush 10
 28 newarray int
 30 putfield #21 <Field int c[]>
 33 getstatic #22 <Field java.io.PrintStream out>
 36 aload_0
 37 getfield #20 <Field a a>
 40 ldc #3 <String "] ˜˙X">
 42 invokestatic #92 <Method java.lang.String
a(java.lang.String)>
 45 invokevirtual #18 <Method java.lang.String
a(java.lang.String)>
 48 invokevirtual #23 <Method void println(java.lang.String)>
 51 getstatic #22 <Field java.io.PrintStream out>
 54 aload_0
 55 invokevirtual #17 <Method java.lang.String b()>

 68

 58 invokevirtual #23 <Method void println(java.lang.String)>
 61 getstatic #22 <Field java.io.PrintStream out>
 64 new #9 <Class java.lang.StringBuffer>
 67 dup
 68 ldc #4 <String "{9"(rgq">
 70 invokestatic #92 <Method java.lang.String
a(java.lang.String)>
 73 invokespecial #14 <Method
java.lang.StringBuffer(java.lang.String)>
 76 aload_0
 77 invokespecial #16 <Method int a()>
 80 invokevirtual #15 <Method java.lang.StringBuffer
append(int)>
 83 invokevirtual #24 <Method java.lang.String toString()>
 86 invokevirtual #23 <Method void println(java.lang.String)>
 89 iload_1
 90 ifeq 107
 93 getstatic #74 <Field boolean a>
 96 ifeq 103
 99 iconst_0
 100 goto 104
 103 iconst_1
 104 putstatic #74 <Field boolean a>
 107 return

Method int a()
 0 aload_0
 1 getfield #21 <Field int c[]>
 4 iconst_0
 5 iconst_1
 6 iastore
 7 aload_0
 8 getfield #21 <Field int c[]>
 11 iconst_0
 12 iaload
 13 ireturn

Method java.lang.String b()
 0 aload_0
 1 ldc #2 <String "R˜`">
 3 invokestatic #92 <Method java.lang.String
a(java.lang.String)>
 6 putfield #19 <Field java.lang.String b>
 9 aload_0
 10 getfield #19 <Field java.lang.String b>
 13 areturn

Method void main(java.lang.String[])
 0 new #6 <Class b>
 3 invokespecial #12 <Method b()>
 6 return

Method java.lang.String a(java.lang.String)
 0 aload_0
 1 invokevirtual #87 <Method char toCharArray()[]>
 4 astore_1
 5 aload_1
 6 arraylength
 7 istore_2
 8 iconst_0
 9 istore_3

 69

 10 iload_2
 11 iconst_1
 12 if_icmpgt 89
 15 aload_1
 16 iload_3
 17 dup2
 18 caload
 19 iload_3
 20 iconst_5
 21 irem
 22 tableswitch 0 to 3: default=72
 0: 52
 1: 57
 2: 62
 3: 67
 52 ldc #76 <Integer 21>
 54 goto 74
 57 ldc #77 <Integer 76>
 59 goto 74
 62 ldc #78 <Integer 79>
 64 goto 74
 67 ldc #79 <Integer 74>
 69 goto 74
 72 ldc #80 <Integer 23>
 74 ixor
 75 i2c
 76 castore
 77 iinc 3 1
 80 iload_2
 81 ifne 89
 84 aload_1
 85 iload_2
 86 goto 17
 89 iload_3
 90 iload_2
 91 if_icmplt 15
 94 new #81 <Class java.lang.String>
 97 dup
 98 aload_1
 99 invokespecial #91 <Method java.lang.String(char[])>
 102 areturn

Run javap to get obfuscated bytecode from a.class:

pprroommpptt>>jjaavvaapp --cc --pp --ll aa

See the bytecode listing in the Program 6_12 below:

Program 6_12 Obfuscated Bytecode_Hello of KlassMaster v2.3

Compiled from a.java
class a extends java.lang.Object {
 public static boolean a;
 public a();
 public java.lang.String a(java.lang.String);
}
Method a()
 0 aload_0
 1 invokespecial #4 <Method java.lang.Object()>

 70

 4 iconst_1
 5 istore_1
 6 return
Method java.lang.String a(java.lang.String)
 0 aload_1
 1 areturn

Result report: Success.

Comparing the obfuscated bytecodes (Progeam 6_11, Program 6_12) with their unobfuscated

bytecodes (Program 5_2, Program 5_3), I scored the following obfuscation objective metrics.

See Table6_14.

Table 6_14: The result of obfuscating Benchmark1 by KlassMaster v2.3

Metrics Original

Names

Obfuscation

 Names

Score

Class name Hello a

Method name getHello a

Public

Field name hello a

1

Method name getGood b Protected

Field name good b

1

Method name getArray a Private

field name number c

1

Remove Line numbers Line numbers Blanked out 1

Encrypt String GOOD R˜ ` 1

Unstructured data:

One dimension array

number[] c[] 0

Score for Layout and Data Obfuscations 5

Note: Case-sensitive

From Table 6_14, we can see that KlassMaster v2.3 gets full mark, 4 scores, on the Layout

obfuscation metrics and 1 mark on the Encrypt String. It gets zero mark on Unstructure Data

metric. Therefore KlassMaster v2.3 gets total 5 points for obfuscating my Benchmark1.

6.2.9.2 Obfuscating Benchmark2:

I used the same options as I did in obfuscating Benchmark1 to obfuscate Benchmark2. The

obfuscating result is 0.class.

Run it and get the result:

loopNum>1 loopNum=1

 71

Therefore the obfuscated class files run the same result as their unobfuscated ones do.

See the bytecode listing in the Program 6_13 below:

Program 6_13 Obfuscated Bytecode_TestControl of KlassMaster v2.3

Compiled from 0.java
public class 0 extends java.lang.Object {
 public static boolean 0;
 public static boolean 1;
 public 0();
 public static void main(java.lang.String[]);
 private static java.lang.String 0(java.lang.String);
 private static java.lang.String 1(java.lang.String);}
Method 0()
 0 aload_0
 1 invokespecial #9 <Method java.lang.Object()>
 4 return
Method void main(java.lang.String[])
 0 getstatic #72 <Field boolean 1>
 3 istore 4
 5 getstatic #49 <Field boolean 0>
 8 istore_3
 9 iconst_0
 10 istore_1
 11 iconst_0
 12 istore_2
 13 iload_3
 14 iload 4
 16 ifne 29
 19 ifeq 28
 22 iinc 1 1
 25 iinc 2 1
 28 iload_2
 29 iconst_5
 30 if_icmplt 22
 33 iload 4
 35 ifne 25
 38 iload_3
 39 iload 4
 41 ifne 53
 44 ifne 25
 47 iload_1
 48 iload 4
 50 ifne 95
 53 iconst_3
 54 if_icmple 80
 57 getstatic #12 <Field java.io.PrintStream out>
 60 ldc #3 <String "V•˚C(8ˆ•k">
 62 invokestatic #79 <Method java.lang.String(java.lang.String)>
 65 invokestatic #69 <Method java.lang.String
0(java.lang.String)>
 68 invokevirtual #13 <Method void print(java.lang.String)>
 71 iload_3
 72 iload 4
 74 ifne 108
 77 ifeq 107
 80 getstatic #12 <Field java.io.PrintStream out>
 83 ldc #1 <String "V•˚C(8ˆ•eE">

 72

 85 invokestatic #79 <Method java.lang.String
1(java.lang.String)>
 88 invokestatic #69 <Method java.lang.String
0(java.lang.String)>
 91 invokevirtual #14 <Method void println(java.lang.String)>
 94 iload_3
 95 iload 4
 97 ifne 108
 100 ifeq 107
 103 iload_1
 104 iconst_1
 105 isub
 106 istore_1
 107 iload_1
 108 iconst_3
 109 if_icmpgt 103
 112 getstatic #12 <Field java.io.PrintStream out>
 115 new #7 <Class java.lang.StringBuffer>
 118 dup
 119 ldc #2 <String "V•˚C8ˆ•">
 121 invokestatic #79 <Method java.lang.String
1(java.lang.String)>
 124 invokestatic #69 <Method java.lang.String
0(java.lang.String)>
 127 invokespecial#10<Method java.lang.StringBuffer
java.lang.String>
 130 iload_1
 131 invokevirtual #11 <Method java.lang.StringBuffer
append(int)>
 134 invokevirtual #15 <Method java.lang.String toString()>
 137 invokevirtual #14 <Method void println(java.lang.String)>
 140 return
Method java.lang.String 0(java.lang.String)
 0 getstatic #72 <Field boolean 1>
 3 istore 4
 5 aload_0
 6 invokevirtual #63 <Method char toCharArray()[]>
 9 astore_1
 10 aload_1
 11 arraylength
 12 istore_2
 13 iconst_0
 14 istore_3
 15 iload_2
 16 iconst_1
 17 iload 4
 19 ifne 108
 22 if_icmpgt 106
 25 aload_1
 26 iload_3
 27 dup2
 28 caload
 29 iload_3
 30 iconst_5
 31 irem
 32 tableswitch 0 to 3: default=84
 0: 64
 1: 69
 2: 74
 3: 79
 64 ldc #52 <Integer 47>

 73

 66 goto 86
 69 ldc #53 <Integer 121>
 71 goto 86
 74 ldc #54 <Integer 63>
 76 goto 86
 79 ldc #55 <Integer 93>
 81 goto 86
 84 ldc #56 <Integer 32>
 86 ixor
 87 i2c
 88 castore
 89 iinc 3 1
 92 iload_2
 93 ifne 106
 96 aload_1
 97 iload_2
 98 iload 4
 100 ifne 27
 103 goto 27
 106 iload_3
 107 iload_2
 108 if_icmplt 25
 111 new #57 <Class java.lang.String>
 114 dup
 115 aload_1
 116 invokespecial #67 <Method java.lang.String(char[])>
 119 areturn
Method java.lang.String 1(java.lang.String)
 0 aload_0
 1 invokevirtual #63 <Method char toCharArray()[]>
 4 astore_1
 5 aload_1
 6 arraylength
 7 istore_2
 8 iconst_0
 9 istore_3
 10 iload_2
 11 iconst_1
 12 if_icmpgt 89
 15 aload_1
 16 iload_3
 17 dup2
 18 caload
 19 iload_3
 20 iconst_5
 21 irem
 22 tableswitch 0 to 3: default=72
 0: 52
 1: 57
 2: 62
 3: 67
 52 ldc #73 <Integer 89>
 54 goto 74
 57 ldc #74 <Integer 14>
 59 goto 74
 62 ldc #75 <Integer 88>
 64 goto 74
 67 ldc #76 <Integer 113>
 69 goto 74
 72 ldc #77 <Integer 120>
 74 ixor

 74

 75 i2c
 76 castore
 77 iinc 3 1
 80 iload_2
 81 ifne 89
 84 aload_1
 85 iload_2
 86 goto 17
 89 iload_3
 90 iload_2
 91 if_icmplt 15
 94 new #57 <Class java.lang.String>
 97 dup
 98 aload_1
 99 invokespecial #67 <Method java.lang.String(char[])>
 102 areturn

Result report: Success

Comparing the obfuscated bytecodes (Program 6_13) with its unobfuscated bytecodes (Program

5_4), we can see that Program 6_13 is more complicated than Program 5_4. Program 6_13 had

changed the “if …else” statement, “for” loop and “while” loop constructs.

Therefore I scored “1” mark for this metric.

Summary:

• KlassMaster v2.3 could successfully obfuscate my Benchmarks. Like its advertisement

(see table 6_1), it not only could scramble names, remove debugging information such

as Line numbers and encrypt String, but also can obfuscate codes with control flow.

• My Benchmarks, after being obfuscated by KlassMaster v2.3 still functioned properly.

• Summing the results from Benchmark1 and Benchmark2, I could score most

obfuscation individual Metrics for KlassMaster v2.3 See Table 6_15.

 Table 6_15 The result of obfuscating Benchmarks by KlassMaster v2.3

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 1 Data Obfuscation

Folding one dimension array 0

Control Obfuscation Change “if…else”, “for” or “while” loop 1

Score for Layout, Data and Control Obfuscations 6

 75

From this table, we can see that KlassMaster v2.3 gets total 6 marks for obfuscating my

Benchmarks. Four marks are from Layout Obfuscation Metrics. One mark is from Date

Obfuscation metrics and another one mark is from Control Obfuscation metrics.

6.2.10 Summary

Total nine Obfuscators were used to obfuscate my Benchmarks. See Table 6_16.

 Table 6_16 The Summary of Synthetic Workload Test

Benchmark1 Benchmark2 Obfuscators
Obfuscated Run Obfuscated Run

Score

2LKit Obfuscator
v1.1

Failure Failure 0

 DashO-Pro v2.0

Success Success N/A N/A 4

JCloak v3.5.3
From Force5

Success Success N/A N/A 4

Jproof
1stBarrier MINI

Success Success N/A N/A 3

Jshrink v1.18

Success Success N/A N/A 2

Jzipper v1.08

Success Failure N/A N/A 0

RetroGuard v1.1

Success Failure N/A N/A 0

SourceGuard 4.0

Success Success N/A N/A 4

Zelix
KlassMaster2.3

Success Success Success Success 6

 The “blank” cell means that this step is not attempted because a prior step had failed.

All these nine obfuscators were tested by Benchmark1. Only one obfuscators were tested by

Benchmark2.

Six obfuscators could not only successfully obfuscate my Benchmarks but also keep their

original functions. So these six obfuscators are “Success” obfuscators in this Synthetic

Workload test . Two obfuscators, Jzipper and RetroGuard, could obfuscate Benchmark1 (I did

not try them by Benchmark2). However, their obfuscated codes could not pass the function test.

Therefore they are unsuccessful obfuscators by my experiment. I scored them “0” mark. Only

one obfuscator, 2Lkit Obfuscator v1.1, failed to obfuscate my Benchmarks. So I scored it “0”.

In my Synthetic Workload test, KlassMaster got the highest mark 6 in these 9 obfuscators. 2Lkit,

Jzipper and RetroGuard got the lowest mark 0. Others which do not attend in the Synthetic

Workload test also got 0 mark for the Layout, Data and Control Obfuscation metrics.

 76

6.3 Logic Program

In this test, I measured obfuscators with the far more complicated program, Logic

Program. Because of intellectual property rights, I am not going to list the logic codes

here

6.3.1 Introduction

The "Logic Program" is provided by Philosophy department of UCLA in America. They wanted

their logic code to be obfuscated so that they could distribute the Logic Program freely and

maintain their intellectual property rights.

The purpose of the program is to assist students to learn the first order logic. It contains several

modules such as doing derivations, parsing the expressions of the symbolic language,

symbolizing sentences of English and so on.

The program is written in JAVA using AFC (Application Foundation Classes). It is an

application that uses some facilities of windows. It contains on the order of more than 15,000

lines and 700KB.

Though I could measure these obfuscators’ behavior on what is known as a “synthetic

workload” of my Benchmarks, testing with a “real workload” of the Java Logic Program makes

my result more realistic and correct. Therefore I added “Obfuscating Logic Program” as an

individual metric to my Obfuscation Metrics.

In a word, there are two purposes for me to obfuscate the Logic Program. One is to help

protect UCLA's intellectual property; the other is to assess the quality of the Java

obfuscators currently available on the Internet.

I used the similar approach as I did in Synthetic workload to obfuscate the Logic Program.

Here is the process of this test:

 77

Figure 6_3: Evaluation Process for Logic Program

6.3.2 Selection of obfuscators

There are many different obfuscators that are available on the Internet today. It is very important

to select the correct obfuscators. It not only saves the time but also helps to analyze the result

clearly, especially for a complicated program such as Logic Program. Therefore, we chose only

6 obfuscators that can successfully obfuscate our Benchmarks. They are DashPro version2.0,

Jcloak version3.5.3, Jproof 1st Barrier MINI v1.1, Jshrinkv1.18, SourceGuard 4.0 and Zelix

KlassMaster version2.3.2.

I selected these obfuscators because I would like to know whether they could obfuscate

complicated Java programs and still keep their functions. I am sure that other obfuscators, which

failed to obfuscate my simple benchmark programs, would not function well for obfuscating the

Complicated Logic Programs.

6.3.3 Obfuscating Logic Program

Obfuscation environment:

JDK1.2.2

Window 98

Personal computer

Obfuscated object: Logic class files, logic20001209.zip

Tools:

1. Six Obfuscators:

For each obfuscator o {

Attempt to obfuscate Logic Program with obfuscator o, at

highest available security options a

simply verify that the obfuscated program still function

if attempt fails, try again with a lower security options a ,

repeats (o,a)

 If attempts fail, report “failure” or report “Success” (o,a)

 }

 78

DashPro version2.0, Jcloak version3.5.3,

Jproof 1st Barrier MINI v1.1, Jshrinkv1.18,

 SourceGuard 4.0 and Zelix KlassMaster version2.3.2.

2. WinZip.

Because UCLA did not provide us details in which classes, methods or attributes they did not

want to obfuscate. Therefore, I obfuscated the files with as high security level as I could.

6.3.3.1 DashO-Pro v2.0

System supported: Windows, Unix, and Macs.

File type support: .ZIP, .JAR, and *. Class (or file folder).

Project type: Applet, Application, Library, Servlet and EJB

I tried several times to obfuscate the Logic Program. Following are three of them I tried.

Trying 1.
Test Time: 22/12/2000

Main steps:

1. Input classpath:
C:\jdk1.2.2\Jre\rt.jar
C:\DashOPro\DashPro.jar
C:\DashOPro\Jh.jar
D:\lhy\project\logic_obfsource\logic20001209.zip

2. Selected Project type: Application.

The main application class is edu.ucla.phil.logic.LogicProgram

3. Chose Obfuscation options:

• Rename class names

• Remove All.

Obfuscating Code Result: Error message

 Class file com.ms.ui.UIEdit.class not found

Reason: missing “com” package.

After I received “com” package (afc102.zip) from UCLA, I tried it again.

Trying 2.

Test Time: 28/12/2000

Main steps:

1. Input classpath: The same as above and adding
D:\lhy\afc102.zip

 79

C:\windows\Java\Packages\Yl1vbrpb.zip

(Yl1vbrpb.zip contains part of “com”. afc102.zip cannot cover all need

“com” according to my experiment).

2. Select the same options as above.

Obfuscating Code Result: Success

Function Test Result: Eerror message:

Java.long.NoClassDetFoundErrorr

Trying 3.

Test Time: 28/12/2000

Main steps:

1. Input classpath:

C:\jdk1.2.2\Jre\rt.jar

C:\DashOPro\DashPro.jar

C:\DashOPro\Jh.jar

D:\lhy\project\logic_obfsource\logic20001209.zip

D:\lhy\afc102.zip

C:\windows\Java\Packages\Yi1vbrpb.zip

2. Selected Project type: Application.

The main application class is edu.ucla.phil.logic.LogicProgram

3. Chose Obfuscation options:

• Do not rename class names

• Remove None.

Obfuscating Code Result: Success.

Function Test Result: Success.

Summary:

• DashO-Pro v 2.0 could obfuscate Logic20001209 class files and the obfuscated files

could run. Therefore, on my Obfuscation individual metric “Obfuscating Logic

Program” I scored “1” for it.

• DashO-Pro v 2.0 provides several options such as renaming public, protected and

private names and removing unused methods and fields. According to my test,

no matter what options I chose, it could obfuscate the logic class files

successfully. However, most of the cases, when I run the obfuscated class file, it

crashed. Only when I chose the not “renaming class names” and not “remove

none” options, the obfuscated codes could run correctly.

 80

• Even though we could not obfuscate the Logic program with highest options, it

does not mean that there are bugs in DashO-Pro. Changing class names and

removing unused methods and fields are not safe, especially where

class.forName is used or native code refers to a private members. It might be the

reason that Dash-Pro need provide several entries to exclude or include for

obfuscating class input. But, from my point if view, if it can automatically

analyse and not obfuscate these unsafe classes or methods, it will be used more

conveniently and widely because it is impossible (at least inconvenient) for a

complicated program like Logic files to input “unsafe class” manually.

• DashO-Pro has a friendly and sophisticated graphic user interface with detail help

information. However, when one starts it, it takes too much time to wait for the first

window.

6.3.3.2 JCloak v 3.5.3

System supported: Windows, Solaris/Unix.

File type Supported: .ZIP, .JAR, and *. Class (or file folder).

Project type: Applet, Application, Library.

I also tried several times to obfuscate the Logic Program. Following gives two of them I tried.

Trying 1.

Test Time: 22/12/2000

Main Steps:

1. Select the classpath:

C:\Program Files\JavaSoft\JRE\1.2\lib\i18n.jar

C:\Program Files\JavaSoft\JRE\1.2\lib\plugprov.jar

C:\Program Files\JavaSoft\JRE\1.2\lib\rt.jar

D:\lhy\project\logic_obfsource\logic20001209.zip

main() class: 'edu.ucla.phil.logic.LogicProgram'

2. Choose Obfuscate Options:

a. obfuscate symbols

b. obfuscate classnames

c. strip linenumbers

d. strip localsymbols

Obfuscating Code: Error Message:

 81

WARN: 'com.ms.ui.UIDrawText' load failed, (referenced from
'edu.ucla.phil.logic.LogicProgram', error: Can't find class 'com.ms.ui.UIDrawText' on classpath
"C:\Program Files\JavaSoft\JRE\1.2\lib\i18n.jar;C:\Program
Files\JavaSoft\JRE\1.2\lib\plugprov.jar;C:\Program
Files\JavaSoft\JRE\1.2\lib\rt.jar;C:\lhy\project\JCloak\logic.zip")
WARN: 'com.ms.fx.FxFontMetrics' load failed, (referenced from
'edu.ucla.phil.logic.ILPFontMap', error: ……

Reason: missing “com” package.

After I received “com” package (afc102.zip) from UCLA, I tried it again.

Test Time: 26/12/2000
Main steps:

1. Input classpath: The same as above and adding
D:\lhy\afc102.zip

C:\windows\Java\Packages\Yl1vbrpb.zip

2. Select the same options as above.

Obfuscating Code Result: Success

Function Test Result: Failure. The error message is as follow:

Class file Format Error

No matter what options I chose, the logic files ware able to obfuscate, but the transformed codes

do not function. The problems might be from the complication of the Logic codes, the limitation

of the evaluation versions, or the bugs inherited from the obfuscator. Because of time limited, I

will leave it to my future work. Nevertheless, I scored it “0” because the obfuscated codes failed

to run.

Summary:

• JCloak could obfuscate the Logic Program, but the obfuscated codes could not run.

Therefore on my Obfuscation individual metric “Obfuscating Logic Program” I scored

“0” to JCloak.

• JCloak can automatically analyze the classes referenced by logic application to

determine what is “safe” to obfuscate. Therefore, it is very convenient.

• JCloak uses a sophisticated GUI wizard to handle the work of obfuscation parameter

options.

6.3.3.3 Jproof 1stBarrer MINI version1.1

System supported: windows.

File type Supported : JAR.

 82

Project type: applets, applications and libraries

Test Time: 26/12/2000
Main steps:

1. Archived the logic program, logic20001209.zip:

• Unzip logic20001209.zip with WinZip to a folder, LogicFolder.

• Archive all class files in LogicFolder into an archive, testLogic.jar

pprroommpptt >>jjaarr ccvvff tteessttLLooggiicc..jjaarr **..ccllaassss

2. Choose Obfuscation Options: Default, it is the highest security level

Obfuscating Code Result: Success

Function Test Result: Success.

Summary:

• Jproof 1stBarrer MINI version1.1 could obfuscate the Logic Program and their

obfuscated code could run simply. Therefore I gave it “1” point.

• Jproof just supports .JAR input form and Logic Program runs on .zip form. Therefore t

is inconvenient for Jproof to obfuscate Logic Program.

6.3.3.4 Jshrink v1.18

System supported: Windows/NT command line.

File type Supported : *. Class.

Project type: Applet, Application, Library.

Test Time: 20/12/2000

Main step:
In the Logic Program class path, input :

PPrroommpptt>>JJsshhrriinnkk ..ccllaassss

Obfuscating Code Result: Success. Message:

Processed 165 class files

Function Test Result: Success.

Summary:

• Jshrink v1.18 can successfully obfuscate the codes and the obfuscated codes can

run properly. Therefore I scored “1” to for it.

• It obfuscates codes without options.

 83

6.3.3.5 SourceGuard Enterprise (Evaluation), Version 4.0

System supported: Windows /NT, Unix.

File type Supported : .ZIP, .JAR, and *. Class (or file folder).

Project type: Applet, Application, Library, Beans, Servlet

Test Time: 28/12/2000

Main Step:

1. Create Sourceguard project to protect appliction: project_0.

2. Application Input: D:\lhy\project\logic_obfsource\logic20001209.zip

3. Libraries Input:

C:\windows\temp

C:\Program Files\JavaSoft\JRE\1.2\lib\rt.jar

D:\lhy\project\logic_obfsource\logic20001209.zip

D:\lhy\afc102.zip

C:\windows\Java\Packages\Yi1vbrpb.zip

Obfuscation options and result:

Choice 1: both rename and enable code pruning

The result was successful. However, when I run the obfuscated codes, I got an

error message: “Java.long.illegalAccessError”.

 Choice 2: only rename.

The result SourceGuard can both obfuscate Logic Program and keep their

function.

Summary:

• SourceGuard 4.0 could successfully obfuscate the codes and the obfuscated codes could

run properly. Therefore I scored “1” for it.

• Even though, SourceGuard 4.0 could analyse class files to generate dependency

information, it could not keep the obfuscated codes’ function when I chose pruning code

option to obfuscate the Logic Program.

• SourceGuard 4.0 provides many obfuscation option sets. However, I could not

obfuscate the Logic Program with the highest security level option set.

• SourceGuard 4.0 has a sophisticated and friendly GUI.

 84

6.3.3.6 Zelix KlassMaster version 2.3.2

System supported: Windows /NT, Unix.

File type Supported : .ZIP, .JAR, and *. Class (or file folder).

Project type: Applet, Application, Library.

Test Time: 27/12/2000

Main steps:

3. Double click “ZKM.jar” to start ZKM

4. Input classpath:

C:\KLASSM~1\ZKM.JAR

C:\PROGRAM FILES\JAVAOSFT\JRE\1.2\LIB\rt.jar

D:\lhy\project\logic_obfsource\logic20001209.zip

D:\lhy\afc102.zip

C:\windows\Java\Packages\Yi1vbrpb.zip

5. Choose Obfuscation Options:

• Rename and remove all

• Obfuscate Control Flow: aggressive

• Encrypt String Literal: flow obfuscate.

• Exclude main class names

Obfuscating Code Result: Success. Output message:

 165 class loaded 19 seconds 10587k of memory used.

Function Test Result: Success.

I also used this way to obfuscate other logic program versions such as logic2001208,

logic20001218, logic20010105, logic20010106b, logic20010107, and logic20010107c.

According to the feedback from UCLA, these obfuscated files functioned properly.

Summary:

• KlassMaster could successfully obfuscate the codes and the obfuscated codes could run

properly. Therefore I scored “1” for it.

• I also had successfully obfuscated all other logic program versions that were required by

UCLA. These obfuscated files all function well.

• KlassMaster has a sophisticated and friend GUI. It is easy to use.

 85

6.3.3.7 Summary

Six obfuscators, which have successfully obfuscated my Benchmarks, have been tested on this

stage. Five of them successfully obfuscate the Logic Program and their obfuscated codes could

run properly. See Following table.

 Table 6_17: The Summary of Logic Program Test

Logic Program (logic2001209) Obfuscators
Obfuscated Run

Score

 DashO-Pro v2.0

Success Success 1

JCloak v3.5.3
From Force5

Success Failure 0

Jproof
1stBarrier MINI

Success Success 1

Jshrink v1.18

Success Success 1

SourceGuard 4.0

Success Success 1

Zelix
KlassMaster2.3

Success Success 1

From above Table 6_17, we can see that all six obfuscators could obfuscate the Logic Program,

logic20001209.zip. Five out of them, their obfuscated codes could run properly.

JCloak v3.5.3 could obfuscate the Logic program. However, its obfuscated codes failed to run.

So it got “0” point on this stage. Other five got “1” score each. Those obfuscators that did not

qualify to be tested by the Logic Program would be scored “0” because of their failure on prior

steps.

Many obfuscators provide various options for different security levels. Some options are easy to

choose correctly, some are not. For example, SourceGuard and DashO-Pro, their options are not

easy to choose correctly because they needs too many manually analyses and input. The classes

obfuscated with these options do not function well even though the classes can be obfuscated

successfully. But some obfuscators like JCloak can automatically analyses which classes are

“safe” to be obfuscated. However, when they obfuscate a complicated program like Logic

Program, they might get some trouble. From my point of view, both kinds of obfuscators are

usually difficult to obfuscate the complicated programs with full options because of the limited

knowledge about the obfuscated programs or the quality of the obfuscators.

 86

Most obfuscators support multiple file types such as .JAR, .ZIP and .CLASS. Some obfuscators

such as Jproof just support only JAR file. It is good for the program whose executable file is

JAR file. But it is not convenient for the ZIP file runner to change its form.

6.4 Decompilation by SourceAgain

In this test, I used SourceAgain decompiler to decompile all the obfuscated Benchmarks and

obfuscated Logic Programs. The purpose of this test is to assess the obfuscators and assign two

of my individual metrics. They are “Decompiling Obfuscated Benchmarks” and “Decompiling

Obfuscated Logic Program”.

6.4.1 Decompiling Obfuscated Benchmarks

The Obfuscated Benchmarks were all from the results of Synthetic Workload test. From Table

6_14, we can see that there are 6 obfuscators that could successfully obfuscate my Benchmarks.

They are DashPro v2.0, Jcloak v3.5.3, Jproof 1st Barrier MINI v1.1, Jshrinkv1.18, SourceGuard

4.0 and Zelix KlassMaster version2.3.2. The class files obfuscated by these six obfuscators

would be decompiled in this step.

Here is the process of this test:

6.4.1.1 DashO-Pro v2.0

Dasho-pro obfuscated only Benchmark1. Therefore its output of the obfuscated files consist of

TestOBF.class and b.class.

For each set of obfuscated class files f {

 For each obfuscated benchmark I {

Attempt to decompile obfuscated benchmark i by SourceAgain,

verify that the decompiled program still function

 If attempts fail, report “Success” or report “Failure” (f,i)

 }

}

Figure 6_4: Decompilation Process for

 87

Following shows the steps of decompiling these files:

1. Decompile them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

Get the result: _b.java and _TestOBF.java

Therefore SourceAgain could decompile this obfuscated Benchmark1 (See detail

code in appendix)

2. Recompiling the decompiled files:

• Rename _TestOBF.java and _b.java to TestOBF.java and b.java

• Recompile them by running:

PPrroommpptt >>jjaavvaacc TTeessttOOBBFF..jjaavvaa

and

PPrroommpptt >>jjaavvaacc bb..jjaavvaa

Get class files:

TestOBF.class and b.class

3. Run them to test their functions

PPrroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

HELLO
GOOD
number=1

Therefore these decompiled class files still function properly.

Result report: Failure.

This Obfuscated Benchmarks could be successfully decompiled by SourceAgain. Therefore I

assigned “0" to the metric “Decompiling Obfuscated Benchmarks” of Dasho-Pro v2.0.

6.4.1.2 Jcloak v3.5.3

Jcloak v3.5.3 obfuscated only Benchmark1. Therefore its output of the obfuscated files consist

of TestOBF.class and C0.class.

Following shows the steps of decompiling these files:

 1. Decompile them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

Get the result _TestOBF.java and _C0.java

Therefore SourceAgain could decompile this obfuscated Benchmark1 (See detail code

in appendix)

2. Recompiling the decompiled files:

 88

• Rename _TestOBF.java and _C0.java to TestOBF.java and C0.java

• Recompile them by running:

PPrroommpptt >>jjaavvaacc CC00..jjaavvaa

PPrroommpptt >>jjaavvaacc TTeessttOOBBFF..jjaavvaa

Get class files:

C0.class and TestOBF.class

3. Run them to test their functions

PPrroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

HELLO
GOOD
number=1

Therefore these decompiled class files still function properly.

Result report : Failure.

This Obfuscated Benchmarks could be successfully decompiled by SourceAgain. Therefore I

assigned “0" to the metric “Decompiling Obfuscated Benchmarks” of Jcloak v3.53.

6.4.1.3 Jproof 1st Barrier MINI v1.1

Jproof 1st Barrier MINI v1.1 obfuscated only Benchmark1. Therefore its output of the

obfuscated files consist of TestOBF.class and dl.class.

Following shows the steps of decompiling these files:

 1. Decompile them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

Get the result _TestOBF.java and _dl.java

Therefore SourceAgain could decompile this obfuscated Benchmark1 (See detail code

in appendix)

2. Recompiling the decompiled files:

• Rename _TestOBF.java and _dl.java to TestOBF.java and dl.java

• Recompile them by running:

PPrroommpptt >>jjaavvaacc ddll..jjaavvaa

PPrroommpptt >>jjaavvaacc TTeessttOOBBFF..jjaavvaa

Get class files:

dl.class and TestOBF.class

3. Run them to test their functions

PPrroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

 89

HELLO
GOOD
number=1

Therefore these decompiled class files still function properly.

Result report : Failure

This Obfuscated Benchmarks could be successfully decompiled by SourceAgain. Therefore I

assigned “0" to the metric “Decompiling Obfuscated Benchmarks” of Jproof 1st Barrier MINI

v1.1.

6.4.1.4 Jshrinkv1.18

Jshrinkv1.18 obfuscated only Benchmark1. Therefore its output of the obfuscated files consist

of TestOBF.class and Hello.class.

Following shows the steps of decompiling these files:

 1. Decompile them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

Get the result _TestOBF.java and _Hello.java

Therefore SourceAgain could decompile this obfuscated Benchmark1 (See detail code

in appendix_B)

 2. Decompiling the decompiled files:

• Rename _TestOBF.java and _Hello.java to TestOBF.java and Hello.java

• Recompile them by running:

PPrroommpptt >>jjaavvaacc HHeelllloo..jjaavvaa

PPrroommpptt >>jjaavvaacc TTeessttOOBBFF..jjaavvaa

Get class files:

Hello.class and TestOBF.class

 3. Run them to test their functions

PPrroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

HELLO
GOOD
number=1

Therefore these decompilated class files still function properly.

Result report : Failure

This Obfuscated Benchmarks could be successfully decompiled by SourceAgain. Therefore I

assigned “0" to the metric “Decompiling Obfuscated Benchmarks” of Jshrinkv1.18.

 90

6.4.1.5 SourceGuard 4.0

SourceGuard 4.0 obfuscated just Benchmark1. Therefore its output of the obfuscated files

consist of TestOBF.class and a.class.

Following shows the steps of decompiling these files:

 1. Decompile them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

Get the result _TestOBF.java and _a.java

Therefore SourceAgain could decompile this obfuscated Benchmark1 (See detail code

in appendix_B)

 2. Recompiling the decompiled files:

• Rename _TestOBF.java and _a.java to TestOBF.java and a.java

• Recompile them by running:

PPrroommpptt >>jjaavvaacc aa..jjaavvaa

PPrroommpptt >>jjaavvaacc TTeessttOOBBFF..jjaavvaa

Get class files:

a.class and TestOBF.class

 3. Run them to test their functions

PPrroommpptt >>jjaavvaa TTeessttOOBBFF

Get result:

HELLO
GOOD
number=1

Therefore these decompiled class files still function properly.

Result report : Failure

This Obfuscated Benchmarks could be successfully decompiled by SourceAgain. Therefore I

assigned “0" to the metric “Decompiling Obfuscated Benchmarks” of SourceGuard 4.0.

6.4.1.6 KlassMaster v2.3

KlassMaster v2.3 obfuscated both Benchmark1 and Benchmark2. Their output of the obfuscated

files consist of b.class, a.class and 0.class.

When I decompiled them by running:

PPrroommpptt >>ssrrccaaggaaiinn **..ccllaassss

SourceAgain run into infinity.

SourceAgain can not decompile the obfuscated classes properly. See the incomplete codes on

the Appendix.

 91

Result report : Failure

SourceAgain could not successfully decompile this Obfuscated Benchmarks. Therefore I

assigned “1" to the metric “Decompiling Obfuscated Benchmarks” of KlassMaster v2.3

6.4.1.7 Summary:

Summarising all the decompiling result from above. I got following Table 6_18

 Table 6_18 The Summary of Decompilation Obfuscated Benchmarks

Benchmark1 Benchmark2 Obfuscators
Decompiled Run Decompiled Run

Score

 DashO-Pro v2.0

Failure Failure N/A N/A 0

JCloak v3.5.3
From Force5

Failure Failure N/A N/A 0

Jproof
1stBarrier MINI

Failure Failure N/A N/A 0

Jshrink v1.18

Failure Failure N/A N/A 0

SourceGuard 4.0

Failure Failure N/A N/A 0

Zelix KlassMaster
v2.3

Success Success 1

 The “blank” cell means that this step is not attempted because the code could not be decompiled.

From the Table 6_18, we can see that six obfuscators were tested. Five out of them got “0”.

SourceAgain successfully decompiled all the Benchmark class files obfuscated by these five

obfuscators. Only Zelix KlassMaster v2.3 could got 1 score. It is the only one that could prevent

SourceAgain from decompiling its obfuscated Benchmarks

6.4.2 Decompiling Obfuscated Logic Program

The Obfuscated Logic Programs were all from the results of Logic Program test. From Table

6_17, we can see that there are 5 obfuscators that could successfully obfuscate my Benchmarks.

They are DashPro v2.0, Jproof 1st Barrier MINI v1.1, Jshrinkv1.18, SourceGuard 4.0 and Zelix

KlassMaster version2.3.2. The class files obfuscated by these five obfuscators would be

decompiled in this step.

In this test, I would not verify the decompiled programs’ function. I just decompiled the

obfuscated files and checked the results.

 92

Here is the process of this test:

I followed this process to test the all the Logic files obfuscated by the five obfuscators.

The way I used to decompile these obfuscated files is the same as I did in Decompiling

Obfuscated Benchmarks. Here is the result for Decompiling Obfuscated Logic Program.

 Table 6_19 The Summary of Decompiling Obfuscated Logic Program

Obfuscators Logic Program (logic20001209)
Decompiled

Score

 DashO-Pro v2.0

Failure 0

Jproof
1stBarrier MINI

Failure 0

Jshrink v1.18

Failure 0

SourceGuard 4.0

Failure 0

Zelix
KlassMaster2.3

Success 1

From the Table 6_19, we can see that five obfuscators were tested. Four out of them got “0”.

SourceAgain could successfully decompile the class files obfuscated by these four obfuscators.

Only Zelix KlassMaster v2.3 could got 1 score. It is the only one that could prevent SourceAgain

from decompiling its obfuscated Logic Programs.

6.4.3 Summary

Combining and summarizing above results, Table 6_18 and Table 6_19, I got the following

Table 6_20.

For each set of obfuscated class files f {

Attempt to decompile obfuscated Logic Program i by SourceAgain,

 If attempts fail, report “Success” or report “Failure” (f,i)

}

Figure 6_5 Decompilation Process for Logic

 93

 Table 6_20 The Summary of Decompilation

Benchmarks Logic Program Obfuscators
Decompiled Score Decompiled Score

Total
Scores

 DashO-Pro v2.0

Failure 0 Failure 0 0

JCloak v3.5.3
From Force5

Failure 0 0

Jproof
1stBarrier MINI

Failure 0 Failure 0 0

Jshrink v1.18

Failure 0 Failure 0 0

SourceGuard 4.0

Failure 0 Failure 0 0

Zelix KlassMaster
v2.3

Success 1 Success 1 2

 The “blank” cell means that this step is not attempted because prior steps had failed.

From the table, I concluded that:

• Total six obfuscators were tested on this step. All six were tested by Decompiling

Obfuscated Benchmarks. Five out of the them were tested by Decompiling Obfuscated

Logic Program.

• Zelix KlassMaster v2.3 is the only one that could prevent SourceAgain from

decompiling both its obfuscated Benchmarks and obfuscated Logic Programs. Others’

obfuscated files all could be decompiled by SourceAgain.

• On this step, Zelix KlassMaster v2.3 got the highest marks, 2 scores. One is from

Decompiling Obfuscated Benchmarks. Other one is from Decompiling Obfuscating

Logic Program. Other obfuscators got 0 mark because they fail to protect the code

obfuscated by them from decompilation.

6.6 Assess Metrics

Until now, I have finish all the tests and got the test results from each test. In this step, I will use

the results to assess all the metrics of the tested objects, 13 obfuscators.

6.6.1 2Lkit Obfuscator v1.1

From Table 6_16: The Summary of Synthetic Workload Test, the result shows that 2Lkit

Obfuscator v1.1 is “Failure” and gets 0 score. It did not qualify to attend other after tests such as

“Logic Program” test and “Decompilation by SourceAgain” Test and got 0 point on each test.

Therefore, I give it all 0 point for its metrics.

 94

6.6.2 Cloakware

From Table 6_3: The Summary of Installation Test, the result shows that Cloakware is “Failure”

and gets 0 score. Cloakware is an obfuscation service, not an obfuscator program for public

release, so I gave it all 0 point for its metrics.

6.6.3 DashO-Pro v2.0

DashO-Pro v2.0 was tested by all test steps: Installation, Synthetic Workload, Logic Program

and Decompilation by SourceAgain. Here is the table I sum it up from these test results:

Table 6_21: Obfuscation Metrics of DashO-Pro v2.0

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Data unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 0

Decompiling Obfuscated Logic Program 0

Total Scores 5

This table shows that:

• DashO-Pro v2.0 could successfully scramble public names, protected names and private

names and remove Line numbers. So it got 1 mark for each Layout Obfuscation

individual metrics. But it got 0 mark for each individual metrics of Data Obfuscations

and Control Obfuscations because it did not have any behaviors on these metrics. The

results are from Table 6_5: The result of obfuscating Benchmarks by DashO-Pro v2.0.

• DashO-Pro v2.0 could successfully obfuscate the complicated Logic Program. So got 1

mark for this metric. The result is from Table 6_17: The Summary of Logic Program

Test.

 95

• It could not prevent SourceAgain from decompiling its obfuscated codes. So I score 0

for its decompiling obfuscated code metrics. The results are from Table 6_20: The

Summary of Decompilation Test.

• The total number of scores it got is 5.

6.6.4 Hashjava

From Table 6_3, the result shows that Hashjava is “Failure” and gets 0 score because it failed

to download. It did not qualify to attend other later tests such as “Synthetic Workload” test,

“Logic Program” test and “Decompilation by SourceAgain” test and got 0 point on each test.

Therefore, I gave it all 0 point for its metrics.

6.6.5 JCloak v3.5.3 from Force5

JCloak v3.5.3 was tested by all test steps: Installation, Synthetic Workload, Logic Program and

Decompilation by SourceAgain. Here is the table I summed it up from these test results:

Table 6_22 Obfuscation Metrics of JCloak v3.5.3

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Data unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Obfuscating Logic Program 0

Decompiling Obfuscated Benchmarks 0

Decompiling Obfuscated Logic Program 0

Total Scores 4

This table shows that:

• JCloak v3.5.3 could successfully scramble public names, protected names and private

names and remove Line numbers. So it got 1 mark for each Layout Obfuscation

individual metrics. But it got 0 mark for each individual metrics of Data Obfuscations nd

Control Obfuscations because it did not have any behaviors on these metrics. The results

are from Table 6_7: The result of obfuscating Benchmarks by JCloak v3.5.3.

 96

• JCloak v3.5.3 could obfuscate the complicated Logic Program. But the codes

obfuscated by it could not run. So it got 0 mark for this metric. The result is from Table

6_17

• It could not prevent SourceAgain from decompiling its obfuscated Benchmarks. So I

score 0 for this metric. JCloak v3.5.3 did not attend the Decompiling Obfuscated

Logic Program test. So it got 0 on this metric. The results are from Table 6_20.

• The total number of scores it got is 4.

6.6.6 Jproof 1stBarrier MINI v1.1

Jproof 1stBarrier MINI v1.1 was tested by all test steps: Installation, Synthetic Workload, Logic

Program and Decompilation by SourceAgain. Here is the table I summed it up from these test

results:

Table 6_23 Obfuscation Metrics of Jproof 1stBarrier MINI v1.1

ITEMS CONTENTS SCORES

Public 1

Protected 0

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Data unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 0

Decompiling Obfuscated Logic Program 0

Total Scores 4

This table shows that:

• Jproof 1stBarrier MINI v1.1 could scramble public class names but not public method

names and public field names. However, according to my metric design, I had to score 1

mark for it. It could successfully obfuscate private names and remove Line numbers. So

it got 1 mark for each. But it lost mark for scrambling protected names. I scored 0 for

each individual metrics of Data Obfuscation and Control Obfuscation because it had not

any behaviors on these metrics. The results are from Table 6_9: The result of

obfuscating Benchmarks by Jproof 1stBarrier MINI v1.1.

 97

• Jproof 1stBarrier MINI v1.1 could successfully obfuscate the complicated Logic

Program. So got 1 mark for this metric. The result is from Table 6_17.

• It could not prevent SourceAgain from decompiling its obfuscated codes. So I score 0

for its decompiling obfuscated code metrics. The results are from Table 6_20.

• The total number of scores it got is 4.

6.6.7 JOBE – the obfuscator

From Table 6_3, the result shows that JOBE– the obfuscator is “Failure” and gets 0 score

because it failed to download. It did not qualify to attend other after tests such as “Synthetic

Workload” test, “Logic Program” test and “Decompilation by SourceAgain” test and got 0 point

on each test. Therefore, I gave it all 0 point for its metrics.

6.6.8 Jshrinkv1.18

Jshrinkv1.18 was tested by all test steps: Installation, Synthetic Workload, Logic Program and

Decompilation by SourceAgain. Here is the table I summed it up from these test results:

Table 6_24 Obfuscation Metrics of Jshrinkv1.18

ITEMS CONTENTS SCORES

Public 0

Protected 0

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Data unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 0

Decompiling Obfuscated Logic Program 0

Total Scores 3

This table shows that:

• Jshrinkv1.18 could successfully obfuscate private names and remove Line numbers. So

it got 1 mark for each relative metric. But it lost mark for scrambling public names and

protected names. It also got 0 score for each individual metrics of Data Obfuscation and

 98

Control Obfuscation because it had not any behaviors on these metrics. The results are

from Table 6_11: The result of obfuscating Benchmarks by Jshrinkv1.18.

• Jshrinkv1.18 could successfully obfuscate the complicated Logic Program. So got 1

mark for this metric. The result is from Table 6_17.

• It could not prevent SourceAgain from decompiling its obfuscated codes. So I score 0

for its decompiling obfuscated code metrics. The results are from Table 6_20.

The total number of scores it got is 3.

6.6.9 Jzipper v1.08

From Table 6_16, the result shows that Jzipper v1.08 is “Failure” and gets 0 score. Though it

could obfuscate the Benchmark, the obfuscated code could not run properly. So it failed on this

test. It did not qualify to attend other after tests such as “Logic Program” test and

“Decompilation by SourceAgain” Test and got 0 point on each test. Therefore, I gave it all 0

point for its metrics.

6.6.10 ObfuscateTM v1.1

From Table 6_3, the result shows that ObfuscateTM v1.1 is “Failure” and gets 0 score because it

failed to run. It did not qualify to attend other after tests such as “Synthetic Workload” test,

“Logic Program” test and “Decompilation by SourceAgain” test and got 0 point on each test.

Therefore, I gave it all 0 point for its metrics.

6.6.11 RetroGuard v1.1

From Table 6_16, the result shows that RetroGuard v1.1 is “Failure” and gets 0 score. Though

it could obfuscate the Benchmark, the obfuscated code could not run properly. So it failed on

this test. It did not qualify to attend other after tests such as “Logic Program” test and

“Decompilation by SourceAgain” Test and got 0 point on each test. Therefore, I gave it all 0

point for its metrics.

6.6.12 SourceGuard 4.0

SourceGuard 4.0 was tested by all test steps: Installation, Synthetic Workload, Logic Program
and Decompilation by SourceAgain. Here is the table I summed it up from these test results:

 99

Table 6_25 Obfuscation Metrics of SourceGuard 4.0

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 0 Data Obfuscation

Data unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 0

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 0

Decompiling Obfuscated Logic Program 0

Total Scores 5

This table shows that:

• SourceGuard 4.0 could successfully scramble public names, protected names and

private names and remove Line numbers. So it got 1 mark for each Layout Obfuscation

individual metrics. But it got 0 mark for each individual metrics of Data Obfuscations

and Control Obfuscations because it did not any have behaviors on these metrics. The

results are from Table 6_13: The result of obfuscating Benchmarks by SourceGuard 4.0.

• SourceGuard 4.0 could successfully obfuscate the complicated Logic Program. So got

1 mark for this metric. The result is from Table 6_17.

• It could not prevent SourceAgain from decompiling its obfuscated codes. So I score 0

for its decompiling obfuscated code metrics. The results are from Table 6_20.

• The total number of scores it got is 5.

6.6.13 Zelix KlassMaster2.3

Zelix KlassMaster2.3 was tested by all test steps: Installation, Synthetic Workload, Logic

Program and Decompilation by SourceAgain. Table 6_26 is the result that I summed it up from

these test results.

 100

Table 6_26: Obfuscation Metrics of Zelix KlassMaster2.3

ITEMS CONTENTS SCORES

Public 1

Protected 1

Scramble Names

Private 1

Layout Obfuscation

Remove Line numbers 1

Encrypt String 1 Data Obfuscation

Data Unstructured 0

Control Obfuscation Change “if…else”, “for” or “while” loop 1

Obfuscating Logic Program 1

Decompiling Obfuscated Benchmarks 1

Decompiling Obfuscated Logic Program 1

Total Scores 9

This table shows that:

• Zelix KlassMaster2.3 could successfully scramble names and Line numbers. So it got 1

mark for each Layout Obfuscation individual metrics. It also could encrypt String and

gets 1 mark for this metric. But it lost mark for Data Unstructured metric. On Control

Obfuscation metric, it also got 1 mark for changing “if…else”, “for” or “while” loop.

The results are from Table 6_15: The result of obfuscating Benchmarks by Zelix

KlassMaster2.3.

• Zelix KlassMaster2.3 could successfully obfuscate the complicated Logic Program. So

got 1 mark for this metric. The result is from Table 6_17.

• It could prevent SourceAgain from decompiling its obfuscated codes. So I score 1 for its

decompiling obfuscated code metrics. The results are from Table 6_20.

• The total number of scores it got is 9.

 101

In this section, I compare the 13 obfuscators based on the Obfuscation Metrics criteria I

designed on the section 4 and the results from my experiment in section 6. Here is the table I

concluded from these two sections.

Table 7_1 Comparative results

No. Obfuscators Installation Synthetic
Workload

Logic
Program

Decompilation
by SourceAgain

Score

1 Zelix
KlassMaster2.3

Success Success Success Success 9

2 DashO-Pro v2.0

SUCCESS Success Success

Failure 5

3 SourceGuard 4.0

Success Success Success Failure 5

4 JCloak v3.5.3
From Force5

Success Success Failure 4

5 Jproof
1stBarrierMINI v1.1

Success Success Success Failure 4

6 Jshrinkv1.18 Success

Success Success Failure 3

8 2Lkit
Obfuscator v1.1

Success Failure 0

9 Cloakware Failure

 0

10 JOBE
– the obfuscator

Failure 0

11 Jzipper v1.08 Success

Failure 0

12 ObfuscateTM v1.1 Failure

 0

13 RetroGuard v1.1 Success Failure

 0

Total scores

30

The “blank” cell means that this step is not attempted because a prior step had failed.

The table shows that:

7 A comparative survey of Java obfuscators

 Comparative results

 102

• There are 13 obfuscators that had been tested in section 6. The tests divided into 4 steps:

Installation, Synthetic Workload, Logic Program, Decompilation by SourceAgain. The

scores are from the final work, Assess Metric, in the section 6.

• In the first step: Installation, nine out of thirteen obfuscators could successfully this step.

• In the second step: Synthetic Workload, six obfuscators could successfully obfuscate my

Benchmarks and the obfuscated codes still function.

• In the third step: Logic Program, five obfuscators could successfully obfuscate the

complicated Logic Programs.

• In the last step: Decompilation by SourceAgain, only one, KlassMaster v2.3 could

prevent SourceAgain from decompiling the codes obfuscated by it.

• KlassMaster v2.3 is also the only one that passed all four steps. Four obfuscators:

DashO-Pro v2.0, SourceGuard 4.0, Jproof 1stBarrierMINI v1.1and Jshrinkv1.18 passed

three steps. JCloak v3.5.3 from Force5 could pass two steps. Two obfuscators passed

one step. Others failed just on the first step.

• The total number of the scores is 30. Six out of thirteen got at least more than 1 makrs

marks. Others got all got 0. Here is the figure that represents the comparative result of

the non-zero point obfuscators .

0
1
2
3
4
5
6
7
8
9

KM DP SG JC JP JS

Figure 7_1 A Comparative Result Chart

Note:

KM: Zelix KlassMaster v2.3

DP: DashO-ProTM v2.0

SG: SourceGuard v4.0

JC: JCoak v3.5.3

 103

JP: Jproof 1stBarrier MINI v1.1

JS: Jshrink v1.1

The graph shows:

• KlassMaster wins the highest mark in my obfuscation metrics, it is 9. Jshrink get

the lowest marks, 2 points. There are two obfuscators got 5 marks and other two

got 4 marks.

 104

Obfuscators are the major tools for protecting Java program from reverse engineering. Given so

many obfuscators available on the Internet today, how can one know which is better?

In order to answer this question, I have designed my Obfuscation Metrics and my Benchmarks

as a criterion. I have also developed an "evaluation flowchart" to test all available obfuscators on

my synthetic workload and the "logic Program" from Philosophy department of UCLA in

America

The 13 available obfuscators scored between 0 and 9 points on my 10 point metric. Many

obfuscators got 0 mark. None got full marks on my metrics.

Most of obfuscators got marks only on their layout obfuscation metrics. However, they could not

prevent the decompiler, SourceAgain, from decompiling the codes obfuscated by them. Only

one obfuscator, which uses some techniques of data obfuscations and control obfuscations, could

make SouceAgain fail to decompile the obfuscated codes. From my point of view, future

obfuscators would be improved if they apply more techniques of data obfuscations and control

obfuscations. This might be a good way for an obfuscator to challenge decompilers. It is also a

challenge technical field.

Various obfuscators provide different protection levels for Java programs. Some can obfuscate

code with high level. They obfuscate code not only with layout obfuscations and data

obfuscation, but also with control obfuscations. Some obfuscators scramble private names,

which I consider to be a “low level” obfuscation.

Many obfuscators are safe when obfuscating codes. However some are not safe. Even though

they can obfuscate codes, the obfuscated codes function improperly. Some can successfully

obfuscate the simple codes, my Benchmarks, but they cannot properly obfuscate the complicated

program, Logic Program. From my point if view, “safe” is most important. If an “obfuscator”

could not keep obfuscated codes’ original functions, it would not be called an obfuscator even

8 A comparative survey of Java obfuscators

Conclusion

 105

though it has a very powerful technique. Some of obfuscators tested in my experiment lost their

marks because they were not “safe”.

Most of the obfuscators provide run-time options that may increase obfuscation quality.

However, for some option settings, they produced non-functional obfuscated code but were not

penalized for this bug in my study.

In future evaluations of obfuscators, error messages and non-functional output should affect the

comparison.

 106

[1] Christian Collberg and Clark Thomborson. Watermarking, Tamper-Proofing, and

Obfuscation

- Tools for Software Protection, Computer Science Department Technical Report 170,

University of Auckland, February 2000, 15 pp.

www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson2000a/index.html

[2] Christian Collberg, Clark Thomborson and Douglas Low. Breaking abstractions and

 unstructuring data structures, In IEEE International Conference on Computer Languages,

 ICCL'98, Chicago, IL, May 1998.

www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97/index.html

[3] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient,

and

 stealthy opaque constructs. In Principles of Programming Languages 1998, POPL’98, San

 Diego, CA, January 1998.

www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThobersonLow98a/index.html

[4] Douglas Low. Java Control Flow Obfuscation (full document in PDF, 1 MB)

www.cs.auckland.ac.nz/~cthombor/Pbubs/dlowthesis.pdf

[5] Qusay H. Mahmoud. Java Tip22: Protect your bytecodes from reverse

 engineering/decompilation, 1997.

http://www.javaworld.com/javatips/jw-javatip22/html.

[6] Benoit Marchal and Meurrens. Java Decompilation and Reverse Engineering Part 1. Digital

 Cat’s JavaTM Resource Center.

http://www.javacats.com/US/articles/decompiler1.html

[7] Benoit Marchal and Meurrens. Java Decompilation and Reverse Engineering Part 2. Digital

 Cat’s JavaTM Resource Center.

http://www.javacats.com/US/articles/decompiler2.html

[8] Robert Macgregor, Dave Durbin, John Owlett, Andrew Yeomans. Java Network Security.

 1998. ISBN 0-13-76529-9.

 [9] Mary Campione, Kathy Walrath, Alison Huml and the Tutorial Team. The JavaTM Tutorial

 Continued. The Rest of the JDKTM. 1999. ISBN 0201485583.

References

 107

Ofuscation tools

2LKit obfuscator v1.1 www.2Lkit.com download date: December 29, 2000

Cloakware www.cloakware.com

DashO-ProTM www.preemptive.com

HashJava: www.meurrens.org

JCloak from Force5 Software: www.force5.com.

JProof 1stBarrier MINI www.jproof.com

JOBE-The java Obfuscator: www.priment.com.

JShrink: www.e-t.com/jshrinkdoc.html.

JZipper: www.vegatech.net/jzipper

Nei Aggarwal’s Obfuscate and ObfuscatePro: www.jammconsulting.com

RetroGuard: www.retrologic.com.

SourceGuard: www.4thpass.com/sourceGuard
Zelix KlassMaster: www.zelix.com/klassmaster

 108

_TestOBF.java:
//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
import java.io.PrintStream;
public class TestOBF {
 public TestOBF()
 {
 System.out.println(a.a("HELLO"));
 System.out.println(a());
 System.out.println("number=" + b());
 }
 public b a = new b();
 public String b = "";
 public int[] c = new int[10];
 private int b()
 {
 c[0] = 1;
 return c[0];
 }
 public String a()
 {
 b = "GOOD";
 return b;
 }
 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }
}

_b.java:
 //
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
public class _b {
 public b()
 {
 int int1 = 1;
 }
 public String a(String String1)

APPENDIX

Decompiled Code Obfuscated by Dash-Pro v20.

 109

 {
 return String1;
 }
}

_TestOBF.java:

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

import java.io.PrintStream;

public class TestOBF {

 public TestOBF()
 {
 System.out.println(c.a("HELLO"));
 System.out.println(b());
 System.out.println("number=" + a());
 }

 public C0 c = new C0();
 protected String d = "";
 private int[] e = new int[10];

 private int a()
 {
 e[0] = 1;
 return e[0];
 }
 protected String b()
 {
 d = "GOOD";
 return d;
 }
 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }

}

_C0.java:

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

class C0 {
 public C0()
 {
 int int1 = 1;
 }

Decompiled Code Obfuscated by JCloak v3.5.3

 110

 public String a(String String1)
 {
 return String1;
 }
}

_TestOBF.java:

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

import java.io.PrintStream;

public class TestOBF {

 public TestOBF()
 {
 System.out.println(hello.getHello("HELLO"));
 System.out.println(getGood());
 System.out.println("number=" + lt());
 }
 public dl hello = new dl();
 protected String good = "";
 private int[] Lt = new int[10];

 private int lt()
 {
 Lt[0] = 1;
 return Lt[0];
 }

 protected String getGood()
 {
 good = "GOOD";
 return good;
 }

 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }
}

_dl.java.java:
//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
class dl {

 public dl()
 {
 int int1 = 1;
 }

Decompiled Code Obfuscated by Jproof 1stBarrier MINI v1.1

 111

 public String getHello(String String1)
 {
 return String1;
 }
}

_TestOBF.java:

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

import java.io.PrintStream;

public class TestOBF {

 public TestOBF()
 {
 System.out.println(hello.getHello("HELLO"));
 System.out.println(getGood());
 System.out.println("number=" + m_function1());
 }
 public Hello hello = new Hello();
 protected String good = "";
 private int[] m_function1 = new int[10];

 private int m_function1()
 {
 m_function1[0] = 1;
 return m_function1[0];
 }

 protected String getGood()
 {
 good = "GOOD";
 return good;
 }

 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }
}

_Hello.java

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

class Hello {
 public Hello()
 {
 int int1 = 1;
 }

Decompiled Code Obfuscated by Jshrink v1.18

 112

 public String getHello(String String1)
 {
 return String1;
 }
}

_TestOBF.java

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

import java.io.PrintStream;

public class TestOBF {

 public TestOBF()
 {
 System.out.println(b.a("HELLO"));
 System.out.println(b());
 System.out.println("number=" + a());
 }

 public a b = new a();
 protected String c = "";
 private int[] a = new int[10];

 public static void main(String[] String_1darray1)
 {
 new TestOBF();
 }
 protected String b()
 {
 c = "GOOD";
 return c;
 }

 private int a()
 {
 a[0] = 1;
 return a[0];
 }
}

_a.java:
//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
class a {

 public a()
 {
 int int1 = 1;
 }

Decompiled Code Obfuscated SourceGuard 4.0

 113

 public String a(String String1)
 {
 return String1;
 }
}

_b.java:
//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
import java.io.PrintStream;
public class b {
 public b()
 {
 int int1 = d;

 a = new a();
 b = "";
 c = new int[10];
 System.out.println(a.a(a("]\t\u0003\u0006X")));
 System.out.println(b());
 System.out.println(a("{9\"(rgq") + a());
 if(int1 != 0)
 a.a = (a.a) ? false : true;
 }

 public a a;
 protected String b;
 private int[] c;
 static int d;

 private int a()
 {
 c[0] = 1;
 return c[0];
 }

 protected String b()
 {
 b = a("R\u0003\u0000\u000E");
 return b;
 }

 public static void main(String[] String_1darray1)
 {
 new b();
 }

_a.java:
//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//
class a {
 public a()

Decompiled Code Obfuscated by Zelix KlassMaster2.3

 114

 {
 int int1 = 1;
 }
 public static boolean a;
 public String a(String String1)
 {
 return String1;
 }
}

_0.java:

//
// SourceAgain (TM) v1.10h (C) 2000 Ahpah Software Inc
//

import java.io.PrintStream;
public class type0 {
 public static boolean m_function2;
 public static boolean m_function3;
 public static void main(String[] String_1darray1)
 {
 boolean boolean5 = m_function3;
 boolean boolean4 = m_function2;
 int int2 = 0;
 int int3 = 0;
 boolean temp_boolean6 = boolean4;
 if(!boolean5)
 {
 if(temp_boolean6)
 {
 ++int2;
 ++int3;
 temp_boolean6 = int3;
 }
 else
 temp_boolean6 = int3;
 }
 for(;;)
 {
 if(temp_boolean6 >= true)
 {
 if(!boolean5)
 {
 boolean temp_boolean7 = boolean4;
 boolean temp_boolean8;
label_51:
 {
label_43:
 {
 if(!boolean5)
 {
 if(!temp_boolean7)
 {
 temp_boolean8 = int2;
 if(boolean5)
 break label_43;
 }

 115

 else
 {
 ++int3;
 temp_boolean6 = int3;
 continue;
 }
 }
 if(temp_boolean6 > true)
 {
 System.out.print(m_function2(

 m_function3(
 "V\u001B\bC(8\u0002\n\u0012k")));

 temp_boolean8 = boolean4;
 if(boolean5)
 break label_51;
 if(!temp_boolean8)
 {
 temp_boolean8 = int2;
 break label_51;
 }
 }
 System.out.println(m_function2(

 m_function3(
 "V\u001B\bC(8\u0002\n\u0010eE")));

 temp_boolean8 = boolean4;
 }
 if(!boolean5)
 {
 if(temp_boolean8)
 {
 --int2;
 temp_boolean8 = int2;
 }
 else
 temp_boolean8 = int2;
 }
 }
 while(temp_boolean8 > true)
 {
 --int2;
 temp_boolean8 = int2;
 }
 System.out.println(m_function2(m_function3(

 "V\u001B\bC(8\u0002\n\u0011")) + int2);
 return;
 }
 else
 {
 ++int3;
 temp_boolean6 = int3;
 }
 }
 else
 {
 ++int2;
 ++int3;
 temp_boolean6 = int3;
 }
 }
 }

