COPYRIGHT NOTICE

© 2002 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

Watermarking, Tamper-Proofing, and
Obfuscation—Tools for Software Protection

Christian S. Collberg, Member, IEEE Computer Society, and Clark Thomborson, Senior Member, IEEE

Abstract—We identify three types of attack on the intellectual property contained in software and three corresponding technical
defenses. A defense against reverse engineering is obfuscation, a process that renders software unintelligible but still functional. A
defense against software piracy is watermarking, a process that makes it possible to determine the origin of software. A defense
against tampering is tamper-proofing, so that unauthorized modifications to software (for example, to remove a watermark) will result in
nonfunctional code. We briefly survey the available technology for each type of defense.

Index Terms—Obfuscation, watermarking, tamper-proofing, intellectual property protection.

1
UNTIL recently, most computer security research was
concerned with protecting the integrity of a benign host
and its data from attacks from malicious client programs
(Fig. 1a). This assumption of a benign host is present in
Neumann’s influential taxonomy of “computer-related
risks,” in which the job of a security expert is to design
and administer computer systems that will fulfill “certain
stringent security requirements most of the time” [64, p. 4].
Other security experts express similar worldviews, some-
times by choosing a title such as “Principles and Practices
for Securing IT Systems” [82]; sometimes by making explicit
definitions that presuppose benign hosts “... a security flaw
is a part of a program that can cause the system to violate its
security properties” [48]; sometimes in an explanation “
vulnerabilities to the system ... could be exploited to
provide unauthorized access or use.” [42, p. 51]; and
sometimes in a statement of purpose “[we take] the
viewpoint of the system owner” [52].

The benign-host worldview is the basis of the Java
security model, which is designed to protect a host from
attacks by a potentially malicious downloaded applet or a
virus-infested installed application. These attacks usually
take the form of destroying or otherwise compromising
local data on the host machine.

To defend itself and its data against a malicious client, a
host will typically restrict the actions that the client is
allowed to perform. In the Java security model, the host
uses bytecode verification to ensure the type safety of the
untrusted client. Additionally, untrusted code (such as
applets) is prevented from performing certain operations,
such as writing to the local file system. A similar technique
is Software Fault Isolation [53], [90], [91], which modifies

o C.S. Collberg is with the Department of Computer Science, University of
Arizona, Tuscon, AZ 85721. E-mail: collberg@cs.arizona.edu.

e C. Thomborson is with the Department of Computer Science, University of
Auckland, Auckland, New Zealand. E-mail: cthombor@cs.auckland.ac.nz.

Manuscript received 1 July 2000; accepted 26 Nov. 2001.

Recommended for acceptance by M. Reiter.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112393.

4

BACKGROUND—MALICIOUS CLIENTS VS. MALicious HOSTS

the client code so that it is unable to write outside its
designated area (the “sandbox”).

A recent surge of interest in “mobile agent” systems has
caused researchers to focus attention on a fundamentally
different view of security [17], [88]. See Fig. 1b, illustrating a
benign client code being threatened by the host on which it
has been downloaded or installed. A “malicious host
attack” typically takes the form of intellectual property
violations. The client code may contain trade secrets or
copyrighted material that, should the integrity of the client
be violated, will incur financial losses to the owner of the
client. We will next consider three malicious-host attack
scenarios.

1.1 Malicious Host Attacks

Software piracy, the illegal copying and resale of applica-
tions, is a 12 billion dollar per year industry [67]. Piracy is
therefore a major concern for anyone who sells software. In
the early days of the personal computer revolution,
software developers experimented vigorously with various
forms of technical protection [34], [37], [56], [57], [58], [59],
[79], [96] against illegal copying. Some early copy protection
schemes have been abandoned since they were highly
annoying to honest users who could not even make backup
copies of legally purchased software, or who lost the
hardware “dongle” required to activate it. A number of
dongle manufacturers are still in business; one is frank
enough to state “... the software interrogating the dongle
[may be] the weakest part of the system... Any dongle
manufacturer who claims that their system is unbeatable is
lying” [83].

Software piracy is likely to continue so long as it
continues to be easy, delivers immediate tangible or
intangible rewards to the pirate, and is socially acceptable
[51]. Our goal in this paper is to make piracy more difficult.
We note that software piracy is socially acceptable in
settings that encourage a belief in insiders” entitlement [72],
price discrimination [33], “cooperation is more important
than copyright” [81], or traditional Confucian ethics
[16]—Dbut, also see [85].

0098-5589/02/$17.00 © 2002 IEEE

Benign host

Malicious client
program/applet

Download/
Install

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

Malicious host

Benign client
program/applet

Download/
po. & Install
z wéo}'
a
N

(b)

Fig. 1. Attacks by malicious clients and hosts. (a) Attack by a malicious client. (b) Attack by a malicious host.

Many software developers also worry about their
applications being reverse engineered [4], [55], [76], [78],
[87]. Several court cases have been tried in which a valuable
piece of code was extracted from an application and
incorporated into a competitor’s code. Such threats have
recently become more of a concern since, more and more,
programs are distributed in easily decompilable formats
rather than native binary code [68], [89]. Important
examples include the Java class file format and ANDF [54].

A related threat is software tampering. Many mobile
agents and e-commerce application programs must, by their
very nature, contain encryption keys or other secret
information. Pirates who are able to extract, modify, or

Receive
digital

C

theSong: WAV

PlaySong () {
pay ($0.05)
play (theSong)

R

(©

Bob

container @
s

otherwise tamper with this information can incur signifi-

cant financial losses to the intellectual property owner.
These three types of attack (software piracy, malicious

reverse engineering, and tampering) are illustrated in Fig. 2:

e In Fig. 2a, Bob makes copies of an application he has
legally purchased from Alice and illegally sells them
to unsuspecting customers.

e In Fig. 2b, Bob decompiles and reverse engineers an
application he has bought from Alice in order to
reuse one of her modules in his own program.

e In Fig. 2¢, finally, Bob receives a “digital container”
[27], [43], [44], [98] (also known as Cryptolope and

Make illegal

copies Resell

C®

c!

PlaySong () {
pay ($0.01)
play (theSong)

Modify
container

\Vl

}
Extract
media theSong: WAV
content

Fig. 2. Attacks against software intellectual property. (a) Software piracy attacks. Bob makes illegal copies of Alice’s program P and resells them.
(b) Malicious reverse engineering attack. Bob extracts a module M from Alice’s program P and reuses it in his own application Q. (c) Tampering
attack. Bob either extracts the media content from the digital container C or modifies C so that he has to pay less for playing the media.

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 3

Charles

Fig. 3. Defenses against malicious host attacks. (a) Software watermarking. Alice watermarks her program using a secret key K. Charles extracts
the watermark using the same key. (b) Tamper-proofing. Alice protects a secret S by adding tamper-proofing code 7 that makes the program fail if S
has been tampered with. (c) Obfuscation. Alice transforms her program into an equivalent one (using obfuscation transformations 7; - - - T3) to

prevent Bob from reverse engineering it.

DigiBox) from Alice, consisting of some digital
media content as well as code that transfers a certain
amount of electronic money to Alice’s account
whenever the media is played. Bob can attempt to
tamper with the digital container either to modify
the amount that he has to pay or to extract the media
content itself. In the latter case, Bob can continue to
enjoy the content for free or even resell it to a third

party.
1.2 Defenses against Malicious Host Attacks

It should be noted that it is much more difficult to defend a
client than it is to defend a host. To defend a host against a
malicious client, all that is needed is to restrict the actions
that the client is allowed to perform.

Unfortunately, no such defense is available to protect a
client against a host attack. Once the client code resides on
the host machine, the host can make use of any conceivable
technique to extract sensitive data from the client, or to
otherwise violate its integrity. The only limiting factors are
the computational resources the host can expend on
analyzing the client code.

While it is generally believed that complete protection of
client code is an unattainable goal [7], recent results (by
ourselves and others) have shown that some degree of
protection can be achieved. Recently, software watermarking
[22], [28], [35], [60], tamper-proofing [5], [6], [38], [77], and
obfuscation [20], [23], [24], [25], [38], [49], [65], [92] have
emerged as feasible technical means for the intellectual
property protection of software. (Other promising techni-
ques, such as traitor tracing [14], secret sharing [8],

reference states [39], and secure evaluation [2], [77] are still
in the hands of theorists.) Obfuscation attempts to trans-
form a program into an equivalent one that is harder to
reverse engineer. Tamper-proofing causes a program to
malfunction when it detects that it has been modified.
Software watermarking embeds a copyright notice in the
software code to allow the owners of the software to assert
their intellectual property rights. Software fingerprinting is a
similar technique that embeds a unique customer identifica-
tion number into each distributed copy of an application in
order to facilitate the tracking and prosecution of copyright
violators.

These three types of defenses (software watermarking,
obfuscation, and tamper-proofing) are illustrated in Fig. 3:

e InFig. 3a, Alice watermarks her program P. At 1, the
watermark W is incorporated into the original
program, using a secret key C. At 2, Bob steals a
copy of P’ and Charles extracts its watermark using
K to show that P’ is owned by Alice.

e In Fig. 3b, Alice attempts to protect a secret S stored
in her program by adding special tamper-proofing
code. This code is able to detect if Bob has tampered
with S and, if that is the case, the code will make the
program fail.

e In Fig. 3¢, Alice protects her program from reverse
engineering by obfuscating it. The obfuscating
transformations make the program harder for Bob
to understand, while maintaining its semantics.

It should be noted that there is a vast body of practical
research and development on hardware assisted software

protection. The available art for hardware-assisted security
is based on memory devices such as floppy disks [31], CD-
ROMs [97], modern removable storage media (hard disk,
recordable DVD, secure digital memory card), and video
playback units [1]: secure processors [50], smart cards [10],
and hardware dongles [15], [58], [83].1 Many of these
schemes are trade secrets, although some are the subject of
patent disclosures. They have received little attention in the
academic literature. Some hardware-based schemes—in
particular, dongles—have had some commercial success,
especially for high-end, low quantity software. In general,
however, they have a poor reputation among users who
find them cumbersome and intrusive. We will not consider
hardware-based software protection methods further in this
paper.

We note, in passing, that software piracy, reverse
engineering, and tampering can be discussed from the
traditional “benign-host worldview” of computer security,
in which every computer system is (or should be) designed
to provide security. In this worldview, a software pirate is
defined as anyone who subverts system security for the
purpose of stealing intellectual property in software on that
system. However, this worldview begs the question of
“who defines the security objectives for a system?,” a
question which is especially vexing for any system with
multiple designers and administrators such as the world-
wide web. Accordingly, in this paper, we avoid the vexed
question by dismissing the traditional underlying assump-
tion of a “benign host.” Instead, we assume that any host
may be malicious, as we analyze computer security in this
paper from the viewpoint of the owner of the client
software. We leave it to others to commence the study of
computer security from the diverse viewpoints of a
representative range of users of an open system. We expect
that such user-centric security analysis will be a challenging
and important field of study, if only because some users
will surely disagree with some of the security design
objectives of any (possibly-compromised) software client
running on any possibly-hostile host.

2 OBFUSCATION

Security through obscurity has long been viewed with disdain
in the security and cryptography communities. There are,
however, situations where higher levels of protection than
that achievable through obscurity at the present time does
not seem achievable. For example, the media player in
Fig. 2c accepts digital containers which hold, among other
things, the media itself (encrypted), (partial) cryptographic
keys, and a set of business rules describing if the consumer
may play the media, resell it, store it, etc. The media player
itself also contains partial cryptographic keys as well as
algorithms for decoding, decrypting, and playing the
media. To prevent illegal use of the contents, these
algorithms and keys must be protected from an adversary.
If the media player is implemented in software, this means
preventing an attacker from reverse engineering the

1. A dongle is a device sold with a software application to protect against
piracy. The device attaches to a computer’s I/O port and is queried by the
application at regular intervals. If the dongle does not respond, the
application will refuse to run.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

security sensitive part of the code. As far as we know,
there do not exist any techniques for preventing attacks by
reverse engineering stronger than what is afforded by
obscuring the purpose of the code.

In [25] and [24], we explore new approaches to code
obfuscation, based on the following statement of the code
obfuscation problem.

Given a set of obfuscating transformations 7 =
{T1,---,7,} and a program P consisting of source code
objects (classes, methods, statements, etc.) {Sy,- - -, Sy}, find
a new program P’ = {---, 5" =7,(S;),---} such that:

e P’ has the same observable behavior as P, i.e., the
transformations are semantics-preserving.

e The obscurity of P’ maximized, i.e., understanding
and reverse engineering P’ will be strictly more
time-consuming than understanding and reverse
engineering P.

o The resilience of each transformation 7,(S;) is
maximized, i.e., it will either be difficult to construct
an automatic tool to undo the transformations or
executing such a tool will be extremely time-
consuming.

o The stealth of each transformation 7,(S;) is max-
imized, i.e., the statistical properties of S} are similar
to those of S;.

e The cost (the execution time/space penalty incurred
by the transformations) of P’ is minimized.

Code obfuscation is very similar to code optimization, except
that, with obfuscation, we are maximizing obscurity while
minimizing execution time; whereas, with optimization, we
are just minimizing execution time.

An upper bound on the time needed by an adversary to
reverse engineer a program P is the time needed to do a
black-box study of P (i.e., study the input-output relations of
P) plus the time needed to encode the discovered relations
in a new program. Most malicious reverse engineers,
however, will also do a white-box study of P, i.e. they will
decompile and examine the code itself. The ultimate goal of
code obfuscation is to construct P’ (an obfuscated version of
P) for which a white-box study will yield no useful
information. In other words, we would like the actual time
needed to reverse engineer P’ to approach the upper bound
needed to reverse engineer P.

2.1 Lexical Transformations

The advent of Java, whose strongly typed bytecode and
architecture-neutral class files make programs easy to
decompile, has left programmers scurrying for ways to
protect their intellectual property. On our website [21], we
list a number of “Java obfuscation tools,” most of which
modify only the lexical structure of the program. Typically,
they do nothing more than scramble identifiers. Such lexical
transforms will surely be annoying to a reverse engineer
and, therefore, will prevent some thievery of intellectual
property in software. However, any determined reverse
engineer will be able to read past the scrambling of
identifiers in order to discover what the code is really
doing.

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 5

(@)

Fig. 4. Control transformation by opaque predicate insertion.

2.2 Control Transformations

In [25], we introduced several control-altering transforma-
tions. These control transformations rely on the existence of
opaque predicates. A predicate P is opaque if its outcome is
known at obfuscation time, but is difficult for the
deobfuscator to deduce. We write P¥ (PT) if P always
evaluates to False (True) and P’ if P may sometimes
evaluate to True and sometimes to False.

Given such opaque predicates, it is possible to construct
obfuscating transformations that break up the flow-of-
control of a procedure. In Fig. 4a, we split up the block A; B
by inserting an opaquely true predicate P which makes it
appear as if B is only executed sometimes. In Fig. 4b, B is
split into two different obfuscated versions B and B'. The
opaque predicate P’ selects either of them at runtime. In
Fig. 4c, finally, P” always selects B over Bp,, a buggy
version of B.

There are many control transformations similar to those
in Fig. 4, some of which are discussed in [25]. The resilience
of these transformations is directly related to the resilience
of the opaque predicates on which they rely. It is therefore
essential that we are able to manufacture strong opaque
predicates.

Equally important is the cost and stealth of opaque
predicates. An introduced predicate that differs wildly from
what is in the original program will be unacceptable since it
will be easy for a reverse engineer to detect. Similarly, a
predicate is unacceptable if it introduces excessive compu-
tational overhead.

Since we expect most deobfuscators to employ various
static analysis techniques, it seems natural to base the
construction of opaque predicates on problems which these
techniques cannot handle well. In particular, precise static
analysis of pointer-based structures and parallel regions is
known to be intractable [29], [41], [70]. In [25], we discuss
two general methods for generating resilient and cheap
opaque predicates that are based on the intractability of
these static analysis problems.

Fig. 5 shows a simple example of how strong opaque
predicates can be constructed based on the intractability of
alias analysis. The basic idea is to extend the program to be
obfuscated with code that builds a set of complex dynamic
structures. A number of global pointers reference nodes
within these structures. The introduced code will occasion-
ally update the structures (modifying pointers, adding
nodes, splitting and merging structures, etc.), but will

T‘F ‘ ll __F__i

El

I

maintain certain invariants, such as “pointers p and ¢ will
never refer to the same heap location,” or “there may be a
path from pointer p to pointer ¢,” etc. These invariants are
then used to manufacture opaque predicates as needed.

For example, in Fig. 5a, 5b, and 5¢, we can ask the opaque
query if (f == g)’ then - - since the two pointers f and g
move around in the same structure and could possibly alias
each other. Then, after the one component in Fig. 5c is split
into two components in Fig. 5d, we can ask the query
if (f == g)" then --- since f and g now move around in
different structures. Finally, in Fig. 5f, the two components
have been merged and we can again ask the query
if (f==g) then---.

It should be noted that, although theoretical studies have
shown alias analysis to be hard, it is to the best of our
knowledge unknown whether a random instance of aliasing is
hard. However, many years of experience from optimizing
compilers have shown us that it is very difficult to construct
fast and precise alias analyzers. We also have a good
understanding where such analyzers fail: They typically
have problems with deeply nested recursive structures and
with destructive operations (such as Split, Merge, and
Delete above). We therefore conjecture that carefully
constructed instances of aliasing will be a good source of
opaque predicates. It is an open problem whether alias
analysis will eventually be shown to be average case complete
[94].

2.3 Data Transformations

In [24], we present several transformations that obfuscate
data structures. As an example, consider the Variable
Splitting transformation in Fig. 6. In this example, a Boolean
variable V is split into two integer variables p and ¢ using
the new representation shown in Fig. 6a. Given this new
representation, we create new implementations for the
built-in Boolean operations. Only the implementation of & is
shown in Fig. 6b.

In Fig. 6¢c, we show the result of splitting three Boolean
variables A, B, and C into short variables al and a2, bl,
and b2, and cl and c2, respectively. An interesting
aspect of our chosen representation is that there are
several possible ways to compute the same Boolean
expression. Statements (2) and (3’), for example, look
different, although they both assign False to a variable.
Similarly, while statements (4") and (5’) are completely
different, they both compute A&B.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

f.Insert()

g.Move ()

g.Merge(f) \\\ un« g.Delete() \\\
o]+

¢

(f)

(e)

(©)

Fig. 5. Strong opaque predicates based on the intractability of alias analysis.

g(V) | flp.a) A
P q \% 2p+q AND[A,B] |O I 2 3
0 0| False 0 013(0]0]|0
0 1| True 1 B 113|123
1 0| True 2 21012113
1 1| False 3 313/10(013

(a) (b)
(1) bool A,B,C; (1) short al,a2,bl,b2,cl,c2;
(2) B = False; (27) bl=0; b2=0;
(3) C = False; Jo (37) cl=1; c2=1;
(4) C = A & B; i (47) x=AND[2*al+a2,2*bl+b2]; cl=x/2; c2=x%2;
(5) C = A & B; (57) cl=(al "~ a2) & (bl "~ b2); c2=0;
(6) if (A) ---; (67) x=2*al+a2; if ((x==1) H (x==2)) --+;
(7) 1f (B) ---; (7)Y if (bl ~ b2) ---;

(c)

Fig. 6. A data transformation that splits Boolean variables.

2.4 Other Defenses against Reverse Engineering
In a general sense, we can consider an “obfuscation” to be
anything that slows down or dissuades a reverse engineer.
We list two such methods below and we describe two
others near the end of Section 3.

Antidisassembly. We may write the machine code in an
executable distribution in such a way that a disassembler is
unlikely to be able to print out an accurate rendition of the
assembly code. Cohen describes several such techniques,
applicable to any machine codes with variable-length byte-
addressible instructions, such as the Intel x86 series. For
example, “... we can include jump instructions whose last
byte (usually the address jumped to) corresponds to a
desired operation code and places the code jumped to
appropriately so that the jump works and the proper return

address is in the middle of the previously executed
instruction. In this way, we reuse the last bytes of the jump
location as operation codes on the next pass through the
code” [20].

Antidebugging. We may disable or confuse a debugger,
for example, by writing code that actively uses all available
interrupts (including the breakpoint interrupt) [84]. If we
know what debugger the reverse-engineer is likely to be
using, then our code may be able to “attack” the debugger
by writing into its address area [20]. We can write time-
sensitive code, for example, involving races between
processes on two CPUs that will terminate its operation
whenever a debugger is probing a process intensively—
because this will slow down its operation [84].

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 7

3 WATERMARKING

Watermarking embeds a secret message into a cover
message. In media watermarking [3], [9], [45], [66], the secret
is usually a copyright notice and the cover a digital image or
an audio or video production. Watermarking an object
discourages intellectual property theft or, when such theft
has occurred, allows us to prove ownership.

Fingerprinting is similar to watermarking, except a
different secret message is embedded in every distributed
cover message. This may allow us not only to detect when
theft has occurred, but also to trace the copyright violator. A
typical fingerprint includes a vendor, product, and custo-
mer identification numbers.

Our interest is in the watermarking and fingerprinting of
software [22], [28], [35], [40], [46], [60], [69], [75], a problem
that has received much less attention than media water-
marking. We can describe the software watermarking
problem as follows:

Embed a structure W (the watermark) into a program P
such that:

e W can be reliably located and extracted from P (the
embedding is resilient to dewatermarking attacks).

e W is large (the embedding has a high data rate).

e Embedding W into P does not adversely affect the
performance of P (the embedding is cheap).

e Embedding W into P does not change any statistical
properties of P (the embedding is stealthy).

e W has a mathematical property that allows us to
argue that its presence in P is the result of deliberate
actions.

Any software watermarking technique will exhibit a
trade-off between resilience, data rate, cost, and stealth. For
example, the resilience of a watermark can easily be
increased by exploiting redundancy (i.e., including the
mark several times in the cover program), but this will
result in a reduction in bandwidth. In many situations, a
high data rate may be unnecessary. For example, a 32-bit
integer could provide 10 bits of vendor and product
information as well as a 22-bit customer identification
number. In other situations, however, we might want the
watermark to contain some internal structure that will
allow us to detect tampering (parity or error-correcting bits
may be used for this purpose) or which allows us to argue
that the watermark has some unique property that could
not have occurred by chance. For example, the watermark
could be the product of two large primes which only the
owner of the watermarked program knows how to factor.

It should be noted that there are two possible interpreta-
tions of stealth, static stealth and dynamic stealth. A water-
mark is statically stealthy if a static analysis reveals no
statistical differences between the original and the water-
marked program. Similarly, the watermark is dynamically
stealthy if a execution trace of the program (say, an address
trace or an instruction trace) reveals no differences. An
attacker may, of course, analyze a program statically or
dynamically or both in order to discover the location of a
watermark. In this paper, we (like many others, for
example, Wang et al. [93]) will mostly consider attacks by
static analysis.

Goldreich and Ostrovsky [32], on the other hand,
provide a theoretical treatment of oblivious machines,
computational devices that leak no runtime information to
an attacker about the internal execution of a program. In
particular, when running an oblivious program twice on
different inputs (that have the same running time), the
program will access exactly the same sequence of memory
locations.

Similarly, Aucsmith [5] presents a practical obfuscation
method designed not to leak information about execution
paths and data accesses. The idea is to break up the program
in segments which are continuously relocated in memory.
Every time a particular piece of code is executed, it will be
moved to a different segment of memory, therefore making
an address trace of no value to an adversary. We will discuss
this technique further in Section 4.

3.1 Threat-Model

To evaluate the resilience of a watermarking technique
(how well the mark will resist intentional attempts at
removal), we must first define our threat-model. In other
words, what constitutes a reasonable level of attack and
what specific techniques is an attacker likely to employ? It is
generally accepted that no software protection scheme will
withstand a determined manual attack, where the software is
inspected by a human reverse engineer for an extensive
period of time. Of more interest are automated or class
attacks where an automated watermark removal tool that is
effective against a whole class of watermarks is constructed.

Assume the following scenario: Alice watermarks a
program P with watermark W and key K and then sells
P to Bob. Before Bob can sell P on to Douglas, he must
ensure that the watermark has been rendered useless or else
Alice will be able to prove that her program has been stolen.
Fig. 7 illustrates the kinds of dewatermarking attacks
available to Bob:

e In Fig. 7a, Bob launches an additive attack by adding
his own watermark W; to Alice’s watermarked
program P'. This is an effective attack if it is
impossible to detect that Alice’s mark temporally
precedes Bob’s.

e In Fig. 7b, Bob launches a distortive attack on Alice’s
watermarked program P'. A distortive attack applies
a sequence of semantics-preserving transformations
uniformly over the entire program, in the hope that

a. the distorted watermark W' can no longer be
recognized and

b. the distorted program P” does not become so
degraded (i.e., slow or large) that it no longer
has any value to Bob.

e In Fig. 7c, Bob buys several copies of Alice’s
program P, each with a different fingerprint (serial
number) F. By comparing the different copies of the
program, Bob is able to locate the fingerprints and
can then easily remove them.

We will assume a threat-model consisting primarily of
distortive attacks, in the form of various types of semantics-
preserving code transformations. Ideally, we would like our
watermarks to survive translation (such as compilation,

i@

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

Additive

Collusive

Attack 7 ﬁ

Fig. 7. Attacks on watermarks and fingerprints. (a) An effective additive attack. (b) An effective distortive attack. (c) An effective collusive attack.

decompilation, and binary translation [26]), optimization,
and obfuscation.

3.2 Static Watermarking Techniques

Software watermarks come in two flavors, static and
dynamic. Static watermarks are stored in the application
executable itself; whereas, dynamic watermarks are
constructed at runtime and stored in the dynamic state
of the program. While static watermarks have been
around for a long time, dynamic marks were only
introduced recently in [22].

Moskowitz and Cooperman [60] and Davidson and
Myhrvold [28] are two techniques representative of typical
static watermarks. Moskowitz and Cooperman describe a
static data watermarking method in which the watermark is
embedded in an image using one of the many media
watermarking algorithms. This image is then stored in the
static data section of the program. Davidson and Myhrvold
[28] describe a static code watermark in which a fingerprint
is encoded in the basic block sequence of a program’s
control flow graphs.

Venkatesan et. al. [86] present what appears to be the
strongest known static software watermarking technique.
The idea is to treat the source program as a control flow
graph G of basic blocks, to which a watermark graph W is
added forming a new control flow graph H. See Fig. 8b
which shows how G and W are merged by adding code to
the watermarked program that introduces new control flow
edges between the two graphs. These edges (dashed in the
figure) can be realized, for example, by using opaque
predicates.

To detect the watermark of Venkatesan et. al.,
extractor needs to

the

a. reconstruct the control flow graph of the water-
marked program,

b. identify which of the nodes of the control flow graph
belong to the watermark graph (or, at least identify
most of these nodes), and

c. reconstruct the watermark graph itself.

To identify the watermark nodes, the authors suggest
“stor[ing] one or more bits at a node that flags when a node
is in W by using some padded data....” This is a serious
weakness of the algorithm. If the method by which
watermark nodes are marked is publically known (and
we would normally expect this to be the case), then
destroying the mark is trivial: Simply scramble the mark
bits in each watermark node. Even if the exact marking
method is unknown, an adversary can apply a variety of
local code optimization techniques (such as peephole
optimization, register reallocation, and instruction schedul-
ing), that will completely restructure every basic block of
the program. This will make watermark recognition
virtually impossible.

Thus, unfortunately, all currently known static water-
marks are susceptible to simple distortive dewatermarking
attacks. For example, any code motion optimization
technique will destroy Davidson’s method. Code obfusca-
tion techniques that radically change the control flow or
reorganize data will also successfully thwart the recognition
of static watermarks.

3.3 Dynamic Watermarking Techniques
There are three kinds of dynamic watermarks. In each case,
the mark is recognized by running the watermarked program
with a predetermined input sequence Z =7 ---Z;. This
highly unusual input makes the application enter a state
which represents the watermark.

There are three dynamic watermarking techniques:

Easter Egg Watermarks. The defining characteristic of an
Easter Egg watermark is that, when the special input
sequence is entered, it performs some action that is

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 9

Fig. 8. Static watermarking algorithm of Venkatesan et al. [86].

61x73=3-6*+2-63+3-62+4-6'+1-6°

(@)

O—=0—=0—-=0—=0—=0—=0

Fig. 9. Graphic embeddings of watermarks. (a) Radix-6 encoding. The right pointer field holds the next field, the left pointer encodes a base-k digit.
(b) Enumeration encoding. These are the first, second, 22nd, and 48th trees in an enumeration of the oriented trees with seven vertices.

immediately perceptible by the user. Typically, a copy-
right message or an unexpected image is displayed. For
example, entering the URL about : mozilla in Nets-
cape 4.0 will make a fire-breathing creature appear.
The main problem with Easter Egg watermarks is that
they seem to be easy to locate. There are even several
Web site repositories of such watermarks, e.g., [62].

Execution Trace Watermarks. Unlike Easter Egg water-
marks, Execution Trace watermarks produce no special
output. Instead, the watermark is embedded within the
trace (either instructions or addresses, or both) of the
program as it is being run with the special input Z. The
watermark is extracted by monitoring some (possibly
statistical) property of the address trace and/or the
sequence of operators executed. Unfortunately, many
simple optimizing and obfuscating transformations will
obliterate Execution Trace watermarks.

Data Structure Watermarks. Like Execution Trace water-
marks, Data Structure watermarks do not generate any
output. Rather, the watermark becomes embedded
within the state (global, heap, and stack data, etc.) of
the program as it is being run with the special input 7.
The watermark is extracted by examining the current
values held in the program’s variables after the end of
the input sequence has been reached. Unfortunately,
many data structure watermarks are also susceptible to
attacks by obfuscation. Several obfuscating transforma-
tions have been devised which will effectively destroy
the dynamic state (while maintaining semantic equiva-
lence) and make watermark recognition impossible.

3.4 Dynamic Graph Watermarking

In [22], we describe a new Data Structure watermarking
technique called Dynamic Graph Watermarking. The central
idea is to embed a watermark in the topology of a
dynamically built graph structure. Code that builds this
graph is then inserted into the program to be watermarked.
Because of pointer aliasing effects, the graph-building code
will be hard to analyze and detect and it can be shown that
it will be impervious to most dewatermarking attacks by

code optimization and code obfuscation.
The watermarking algorithm runs in three steps:

1. Select a number n with a unique signature property.
For example, let n = p x ¢, where p and ¢ are prime.

2. Embed n in the topology of a graph G. Fig. 9a shows
a Radix-k embedding in a circular linked list and
Fig. 9b shows how we can embed n by selecting the
nth graph in a particular enumeration of a particular
class of graphs. Many other such embeddings are
possible.

3. Construct a program W which builds G. Embed W
in the program to be watermarked such that, when
the program is run with a particular input sequence
7, G is built.

To recognize the mark, the watermarked program is run
with 7 as input, G is extracted from the heap, n is extracted
from G, and n is factored. We refer to [22] for a more

detailed exposition.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

4 TAMPER-PROOFING

There are many situations where we would like to stop
anyone from executing our program if it has been altered in
any way. For example, a program P should not be allowed
to run if 1) P is watermarked and the code that builds the
mark has been altered, 2) a virus has been attached to P, or
3) P is an e-commerce application and the security-sensitive
part of its code has been modified. To prevent such
tampering attacks we can add tamper-proofing code to our
program. This code should

a. detect if the program has been altered and
b. cause the program to fail when tampering is
evident.

Ideally, detection and failure should be widely dispersed in
time and space to confuse a potential attacker. Simple-
minded tamper-proofing code like

if (tampered with()) i =1/0

is unacceptable, for example, because it is easily defeated by
locating the point of failure and then reversing the test of
the detection code.

There are three principal ways to detect tampering:

1. We can examine the executable program itself to see
if it is identical to the original one. To speed up the
test, a message-digest algorithm such as MD5 [71]
can be used.

2. We can examine the validity of intermediate results
produced by the program. This technique is known
as program (or result) checking [12], [13], [30], [73],
[74], [95] and has been touted as an alternative to
program verification and testing.

3. We can encrypt the executable, thereby preventing
anyone from modifying it successfully unless they
are able to decrypt it. The decryption routines must
be protected from reverse-engineering by hardware
means, by obfuscation, or both.

In our literature search, we find only a few publications
that describe tamper-proofing methods. One commercial
website describes a tamper-proofing system that uses
continual self-examination and encryption (methods 1 and
3 above), along with its own keyboard handler for pass-
word input [63]. Torrubia and Mora describe an encryption
method in which the protected code is arranged in nested
loops and the loop-entry code decrypts the body of the loop
[84]. In both cases, antidebugging measures are taken to
make it difficult for a reverse-engineer to examine the code.

Aucsmith [5] and Aucsmith and Graunke’s encryption
method [6] breaks up a binary program into individually
encrypted segments. The tamper-proofed program is
executed by decrypting and jumping to segments based in
part on a sequence of pseudorandom values generated from
a key. After a segment has been executed, it is reencrypted
so that only one segment is ever in plain text. The process is
constructed so that any state the program is in is a function
of all previous states. Thus, should even one bit of the
protected program be tampered with, the program is
virtually guaranteed to eventually fail and the point of
failure may occur millions of instructions away from the
point of detection.

Tamper-proofing of type-safe distribution formats such
as Java bytecode is more difficult than tamper-proofing
assembly code. For example, Aucsmith’s technique requires
a decryption and jump, which is possible in Java bytecode;
however, it cannot be done stealthily since it will always
involve a call to a class loader from the standard Java
library. One hacker claims to have quickly defeated several
of the early protection schemes for Java bytecodes generally
by disassembling to discover the authentication code and
then by applying patches either to jump around it or to
ignore its result [47].

Tamper-proofing by program checking is more likely to
work well in Java since it does not require us to examine
classfiles directly. Some such detection techniques were
discussed in [22], in the context of tamper-proofing soft-
ware watermarks.

4.1 Tamper-Proofing Viruses

It is interesting to compare the work done on software
protection with the on-going struggle between virus writers
and virus detector writers. A computer virus [11], [18], [19],
[80] is a piece of code that has the ability to reproduce by
attaching itself to other programs, disks, data files, etc. Most
viruses are malicious, performing destructive operations on
infected systems, although good viruses have also been
discussed.

Virus writers employ many obfuscation-like techniques
to protect a virus from detection and tamper-proofing-like
techniques to protect it from being easily removed from the
infected host program. So-called armored viruses add extra
code to a virus to make it difficult to analyze. Polymorphic
(or self-mutating) viruses generate new versions of them-
selves as part of the infection process. This is, in many ways,
similar to Aucsmith’s technique, although viruses tend to
mutate only on infection while Aucsmith mutates the code
continuously.

5 DISCUSSION

We have identified three types of attacks by malicious hosts
on the intellectual property contained in software. Any of
these attacks may be dissuaded by legal means if the
software is protected by patent, copyright, contract, or trade
secrecy laws. However, it is generally difficult to discover
that an attack on intellectual property in software has
occurred. After an attack is discovered, it may be expensive
or even impossible to obtain a remedy in courtroom
proceedings. For example, a charge of copyright infringe-
ment may fail if reverse engineering is accepted by the court
as a defense. For these reasons, we believe that technical
defenses (known in legal circles as “self-help”) will continue
to be important for any software developer who is
concerned about malicious hosts.

The most common attack on intellectual property in
software is software piracy. This typically takes the form of
unauthorized copying. Nowadays, most licensed software
has a weak form of technical protection against illegal
copying, typically a password activation scheme. Such
schemes can generally be circumvented easily by an expert
hacker [47], or indeed by anyone who is willing to
undertake a search for “warez” sites and “cracks” news-
groups on the Internet [72].

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 11

Software watermarking provides an alternate form of
protection against piracy. To the extent that a watermark is
stealthy, a software pirate will unwittingly copy the
watermark along with the software being stolen. To the
extent that a watermarks is resilient, it will survive a
pirate’s attempts at removal. The watermark must also be
detectable by the original developer of the software. In this
paper, we have argued that dynamic watermarking
techniques are more stealthy and more resilient than the
existing alternative technology of static watermarks.

A second form of attack on intellectual property in
software is reverse engineering. A malicious reverse
engineer seeks to understand a software product well
enough to use its secret methodology without negotiating
for a license. Reverse engineers can be discouraged slightly
by lexical transformations on the software, such as the
scrambling or “stripping” of variable names. In this paper,
we have described many other, more powerful obfuscations
that obscure the control and data structures of the software.

We identify tampering as a third form of attack on
intellectual property in software. Sometimes tampering will
occur in conjunction with the other forms of attack. For
example, a reverse engineer may tamper with code in order
to extract the modules of interest, or in order to “see how it
works.” Also, a software pirate may tamper with code in an
attempt to remove its watermark. However, tampering may
occur independently of the other attacks, for example, if
someone wishes to corrupt an e-commerce application so
that it provides unauthorized discounts or free services. In
all cases, an appropriate technical self-help is to render the
code tamper-proof. If a tamper-proof code is modified in
any way, it will no longer be functional. In this paper, we
have described several previously published methods for
tamper-proofing code.

All of the methods described in this paper provide at
least a modicum of protection for software against attacks
by malicious hosts. Future research will show exactly which
attacks these methods are vulnerable to and to what extent
they can be improved. Particularly interesting are recent
theoretical results [7], [36], [61] which point the way toward
a deeper understanding of the limits of software protection.

ACKNOWLEDGMENTS

The authors are grateful for the extensive and insightful
comments of two anonymous referees.

REFERENCES

[1] 4C Entity, “Content Protection System Architecture,”revision 0.81,
available http://www.4centity.com/data/tech/cpsa/
cpsa081.pdf, Aug. 2001.

[2] M. Abadi and]. Feigenbaum, “Secure Circuit Evaluation: A
Protocol Based on Hiding Information from an Oracle,”].
Cryptology, vol. 2, no. 1, pp. 1-12, 1990.

[3] RJ. Anderson and F.A.P. Peticolas, “On the Limits of Stegano-
graphy,” IEEE]. Selected Areas Comm., vol. 16, no. 4, May 1998.

[4] Atari Games Corp. and Tengen, Inc. v. Nintendo of America Inc.
and Nintendo Co., Ltd., United States Court of Appeals for the
Federal Circuit, Sept. 1992.

[5] D. Aucsmith, “Tamper Resistant Software: An Implementation,”
Information Hiding, First Int’l Workshop, R.]. Anderson, ed., pp. 317-
333, May 1996.

[6] D. Aucsmith and G. Graunke, “Tamper Resistant Methods and
Apparatus,” US patent 5,892,899, Assignee: Intel Corporation,
1999.

(7]

(8]

B
(10]

(1]

[12]

[13]

(14]

[15]

[10]

(17

(18]
[19]
(20]

(21]

(22]

(23]

(24]

(23]

[26]
(27]
(28]
[29]

[30]

(31]

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.
Vadhan, and K. Yang, “On the (Im)possibility of Obfuscating
Programs (Extended Abstract),” Advances in Cryptology—CRYPTO
2001, J. Kilian, ed., 2001.

A. Beimel, M. Burmester, Y. Desmedt, and E. Kushilevitz,
“Computing Functions of a Shared Secret,” SIAM]. Discrete
Math., vol. 13, no. 3, pp. 324-345, 2000.

W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for
Data Hiding,” IBM Systems]., vol. 35, nos. 3 & 4, pp. 313-336, 1996.
P. Bieber, J. Cazin, P. Girard, J.L. Lanet, V. Wiels, and G. Zanon,
“Checking Secure Interactions of Smart Card Applets,” Proc. Sixth
European Symp. Research in Computer Security (ESORICS), 2000.
M. Bishop, “An Overview of Computer Viruses in a Research
Environment,” technical report, Dept. of Math. and Computer
Science, Dartmouth College, 1992.

M. Blum, “Program Result Checking: A New Approach to Making
Programs More Reliable,” Proc. 20th Int’l Colloquium Automata,
Languages, and Programming, S. Carlsson, A. Lingas, and
R.G. Karlsson, eds., pp. 1-14, July 1993.

M. Blum and S. Kannan, “Designing Programs that Check Their
Work,” . ACM, vol. 42, no. 1, pp. 269-291, Jan. 1995.

D Boneh and M.K. Franklin, “An Efficient Public Key Traitor
Tracing Scheme,” Advances in Cryptology—Crypto ‘99, pp. 338-353,
1999.

T.A. Budd, “Protecting and Managing Electronic Content with a
Digital Battery,” Computer, vol. 34, no. 8, pp. 2-8, Aug. 2001.
LK. Chen, “Computer Software Protection against Piracy in
Taiwan,” J. Asian Law, vol. 8, no. 1,1994, http://www.columbia.
edu/cu/asiaweb/v8nlchen. htm.

D.M. Chess, “Security Issues in Mobile Code Systems,” Mobile
Agents and Security, pp. 1-8, Lecture Notes in Computer Science,
vol. 1419, Springer-Verlag, 1998.

F. Cohen, “Computer Viruses—Theory and Experiments,” IFIP-
TC11, Computers and Security, pp. 22-35, 1987.

F. Cohen, “Current Trends in Computer Viruses,” Proc. Int'l Symp.
Information Security, 1991.

F.B. Cohen, Operating System Protection through Program Evolution.
http:/ /all.net/books/IP/evolve.html, 1992.

C. Collberg, “The Obfuscation and Software Watermarking Home
Page,” http://www.cs.arizona.edu/collberg/Research/Obfusca-
tion/index.html, 1999.

C. Collberg and C. Thomborson, “Software Watermarking:
Models and Dynamic Embeddings,” Principles of Programming
Languages (POPL '99), Jan. 1999, http://www.cs.auckland.ac.nz/
collberg/Research/nz/~collberg/Research/Publications/Col-
IbergThomborson99a/index.html.

C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of
Obfuscating Transformations,” Technical Report 148, Dept. of
Computer Science, Univ. of Auckland, July 1997, http://
www.cs.auckland.ac.nz/~collberg/Research /Publications /Col-
IbergThomborsonLow97a.

C. Collberg, C. Thomborson, and D. Low, “Breaking Abstractions
and Unstructuring Data Structures,” Proc. IEEE Int’l Conf.
Computer Languages (ICCL '98), May 1998, http://www.cs.auck-
land.ac.nz/collberg/Research/Publications/CollbergThombor-
sonLow98b/.

C. Collberg, C. Thomborson, and D. Low, “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs,” Proc. Symp. Principles
of Programming Languages (POPL ’98), Jan. 1998. http://
www.cs.auckland.ac.nz/collberg/Research/Publications /Col-
IbergThomborsonLow98a/.

Compagq, “FreePort Express,” http:/ /www.support.compaq.com/
amt/freeport/.

Convera, “Software Integrity System,”http://convera.com/.

R.L. Davidson and N. Myhrvold, “Method and System for
Generating and Auditing a Signature for a Computer Program,”
US Patent 5,559,884, Assignee: Microsoft Corporation, Sept. 1996.
A. Deutsch, “Interprocedural May-Alias Analysis for Pointers:
Beyond k-Limiting,” Proc. SIGPLAN Conf. Programming Language
Design and Implementation (PLDI '94), pp. 230-241, June 1994.

F. Ergiin, S. Kannan, S.R. Kumar, R. Rubinfeld, and M.
Vishwanathan, “Spot-Checkers,” Proc. 30th Ann. ACM Symp.
Theory of Computing (STOC '98), pp. 259-268, May 1998.

Ernie , “Disk Copy Protection,” Mar. 1997, Usenet:comp. misc,
http:/ /groups.google.com/groups?selm=33256CC1.7EE040mi-
tre.org.

(32]

(33]

(34]

(33]

[36]

(371

(38]

(39]

(40]
[41]

[42]

[43]
(44]

(43]

[40]

[47]

(48]

(49]
[50]

[51]

(52]

(53]

[54]

(53]

[56]

[57]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.6, JUNE 2002

O. Goldreich and R. Ostrovsky, “Software Protection and
Simulation on Oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431-
473, 1996.

R.D. Gopal and G.L. Sanders, “Global Software Piracy: You Can’t
Get Blood Out of Turnip,” Comm. ACM, vol. 43, no. 9, pp. 83-89,
Sept. 2000.

J.R. Gosler, “Software Protection: Myth or Reality? CRYP-
TO’85—Advances in Cryptology, pp. 140-157, Aug. 1985.

D. Grover, “Program Identification,” The Protection of Computer
Software: Its Technology and Applications, The British Computer Soc.
Monographs in Informatics, Cambridge Univ. Press, second ed.,
1992.

S. Hada, “Zero-Knowledge and Code Obfuscation,” AsiaCrypt
2000, pp. 443-457, 2000, http://link.springer.de/link/service/
series /0558 /papers /1976 /19760443.pdf.

A. Herzberg and S.S. Pinter, “Public Protection of Software,” ACM
Trans. Computer Systems, vol. 5, no. 4, pp. 371-393, Nov. 1987.

F. Hohl, “Time Limited Blackbox Security: Protecting Mobile
Agents from Malicious Hosts,” Mobile Agents and Security, pp. 92—
113, vol. 1419, Lecture Notes in Computer Science, Springer-
Verlag, 1998.

F. Hohl, “A Framework to Protect Mobile Agents by Using
Reference States,” Proc. 20th Int’l Conf. Distributed Computing
Systems, pp. 410-417, 2000.

K. Holmes, “Computer Software Protection,” US Patent 5,287,407,
Assignee: International Business Machines, Feb. 1994.

S. Horwitz, “Precise Flow-Insensitive May-Alias Analysis is NP-
Hard,” TOPLAS, vol. 19, no. 1, pp. 1-6, Jan. 1997.

J.D. Howard, “An Analysis of Security Incidents on the Internet,
1989-1995,” PhD thesis, Dept. of Eng. and Public Policy, Carnegie-
Mellon Univ., Apr. 1997.

IBM, “Cryptolopes,”http://www.ibm.com/software/security/
cryptolope/.

InterTrust, “Digital Rights Management,” http://www.intertrust.
com/de/index.html.

N.F. Johnson and S. Jajodia, “Computing Practices: Exploring
Steganography: Seeing the Unseen,” Computer, vol. 31, no. 2,
pp- 26-34, Feb. 1998, http://www.isse.gmu.edu/njohnson/pub/
r2026.pdf.

AB. Kahng,]J. Lach, W.H. Mangione-Smith, S. Mantik, LL.
Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Watermarking Techniques for Intellectual Property Protection,”
Proc. 35th ACM/IEEE DAC Design Automation Conf. (DAC '98),
pp- 776-781, June 1999, http://www.cs.ucla.edu/gangqu/ipp/
c79.ps.gz.

M.D. LaDue, “The Maginot License: Failed Approaches to
Licensing Java Software over the Internet,” http://www.geoci-
ties.com/securejavaapplets/maginot.html, Copyright 1997.

C.E. Landwehr, A.R. Bull,]J.P. McDermott, and W.S. Choi, “A
Taxonomy of Computer Program Security Flaws,” ACM Comput-
ing Surveys, vol. 26, no. 3, pp. 211-254, Sept. 1994.

D. Libes, Obfuscated C and Other Mysteries. Wiley, 1993.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural Support for Copy and Tamper
Resistant Software,” Architectural Support for Programming Lan-
guages and Operating Systems, pp. 168-177, Nov. 2000.

M. Limayem, M. Khalifa, and W.W. Chin, “Factors Motivating
Software Piracy: A Longitudinal Study,” Proc. 20th Int'l Conf.
Information Systems, pp. 124-131, 1999.

U. Lindqvist and E. Jonsson, “How to Systematically Classify
Computer Security Intrusions,” Proc. 1997 IEEE Symp. Security and
Privacy, pp. 154-163, 1997, http://www.ce.chalmers.se/staff/
ulfl/pubs/sp97.

S. Lucco, R. Wahbe, and O. Sharp, “Omniware: A Universal
Substrate for Web Programming,” Proc. WWW4, 1995.

S. Macrakis, “Protecting Source Code with ANDF,” ftp://
riftp.osf.org/pub/andf/andf_coll_papers/ProtectingSourceCo-
de.ps, Jan. 1993.

Apple’s QuickTime lawsuit, http://www.macworld.com/pages/
june.95/News.848. html and may.95/News.705.html, May-June
1995.

Y. Malhotra, “Controlling Copyright Infringements of Intellectual
Property: The Case of Computer Software,”]. Systems Manage-
ment, part 1, vol. 45, no. 6, pp. 32-35, June 1994, part 2: no. 7,
pp- 12-17, July 1994.

J. Martin, “Pursuing Pirates (Unauthorized Software Copying),”
Datamation, vol. 35, no. 15, pp. 41-42, Aug. 1989.

(58]

[59]

[60]

[o1]

[62]
[63]
[64]
[65]
[66]
[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(30]
(81]

(32]

(83]

T. Maude and D. Maude, “Hardware Protection against Software
Piracy,” Comm. ACM, vol. 27, no. 9, pp. 950-959, Sept. 1984.

R. Mori and M. Kawahara, “Superdistribution: The Concept and
the Architecture,” Technical Report 7, Inst. of Information Sci. &
Electron, Tsukuba Univ., Japan, July 1990, http://www.site.gmu.
edu/bcox/ElectronicFrontier/MoriSuperdist.html.

S.A. Moskowitz and M. Cooperman, “Method for Stega-Cipher
Protection of Computer Code,” US Patent 5,745,569, Assignee: The
Dice Company, Jan. 1996.

D. Naccache, A. Shamir, and].P. Stern, “How to Copyright a
Function?” Public Key Encryption ‘99, Hideki Imai, ed., Lecture
Notes in Computer Science, Springer-Verlag, 1999.

D. Nagy-Farkas, “The Easter Egg Archive,” http://www.eeggs.
com/Ir.html, 1998.

NetSafe, “EXE Guardian@®,” http:/ /members.ozemail.com.au/
netsafe/guardian_detailed_information.html, Copyright 1996.
P.G. Neumann, Computer-Related Risks. ACM Press, 1995.

L.C. Noll, S. Cooper, P. Seebach, and L.A. Broukhis, “The
International Obfuscated C Code Contest,” http://www.ioccc.
org/index.html, 2000.

F.A.P. Peticolas, R.J. Anderson, and M.G. Kuhn, “Attacks on
Copyright Marking Systems,” Proc. Second Workshop Information
Hiding, Apr. 1998.

International Planning and Research Corporation, “Sixth Annual
BSA Global Software Piracy Study,” http://www.bsa.org/re-
sources /2001-05-21.55.pdf, 2001.

T.A. Proebsting and S.A. Watterson, “Krakatoa: Decompilation in
Java (Does Bytecode Reveal Source?),” Proc. Third USENIX Conf.
Object-Oriented Technologies and Systems (COOTS), June 1997.

G. Qu and M. Potkonjak, “Analysis of Watermarking Techniques
for Graph Coloring Problem,” Proc. IEEE/ACM Int’l Conf. Computer
Aided Design, pp. 190-193, Nov. 1998, http://www.cs.ucla.edu/
gangqu/publication/gc. ps.gz.

G. Ramalingam, “The Undecidability of Aliasing,” ACM Trans.
Programming Languages and Systems, vol. 16, no. 5, pp. 1467-1471,
Sept. 1994.

R. Rivest, “The MD5 Message-Digest Algorithm,” The Internet
Eng. Task Force RFC 1321, http://www.ietf.org/rfc/rfc1321.txt,
1992.

H. Rosner, “Steal this Software,” The.Standard.com, June 2000.
http://www.thestandard.com/article/article_print/
1,1153,16039,00.html.

R. Rubinfeld, “Batch Checking with Applications to Linear
Functions,” Information Processing Letters, vol. 42, no. 2, pp. 77—
80, May 1992.

R. Rubinfeld, “Designing Checkers for Programs that Run in
Parallel,” Algorithmica, vol. 15, no. 4, pp. 287-301, Apr. 1996.

P.R. Samson, “Apparatus and Method for Serializing and
Validating Copies of Computer Software,” US Patent 5,287,408,
Assignee: Autodesk, Inc., Feb. 1994.

P. Samuelson, “Reverse-Engineering Someone Else’s Software: Is
It Legal?” IEEE Software, pp. 90-96, Jan. 1990.

T. Sander and C.F. Tschudin, “Protecting Mobile Agents against
Malicious Hosts,” Mobile Agents and Security, Lecture Notes in
Computer Science 1419, Springer-Verlag, 1998.

Sega Enterprises Ltd. v. Accolade, Inc., United States Court of
Appeals for the Ninth Circuit, July 1992.

S.S. Simmel and I. Godard, “Metering and Licensing of Resour-
ces—Kala’s General Purpose Approach,” Technological Strategies
for Protecting Intellectual Property in the Networked Multimedia
Environment, pp. 81-110, Coalition for Networked Information,
Interactive Multimedia Assoc., John F. Kennedy School of
Government, Program on Digital Open High-Resolution Systems,
MIT, Jan. 1994.

E.H. Spafford, “Computer Viruses as Artificial Life,” Artificial Life,
vol. 1, no. 3, pp. 249-265, 1994.

R. Stallman, “Why Software Should not Have Owners,” http://
www.gnu.org/philosophy /why-free.html, 1994.

M. Swanson and B. Guttman, “Generally Accepted Principles and
Practices for Securing Information Technology Systems,” technical
report, Nat'l Inst. Standards and Technology, Dept. of Commerce,
US Government, Sept. 1996, http://www. auerbach-publica-
tions. com/white-papers/nist-security-guidelines.pdf.

Locksmith Tools, “Advanced Detailed Description of Dinkey
Dongle for Software Protection, Software Security, and License
Management,” Copyright 1988-1999, http:/ /www .locksmithshop.
com/Isdddetail.htm.

COLLBERG AND THOMBORSON: WATERMARKING, TAMPER-PROOFING, AND OBFUSCATION—TOOLS FOR SOFTWARE PROTECTION 13

(84]

[85]

(80]

(871

(88]

(89]

[90]

[o1]

[92]

(93]

(541
(9]
[90]

971

(98]

A. Torrubia and F.J. Mora, “Information Security in Multi-
processor Systems Based on the x86 Architecture,” Computers
and Security, vol. 19, no. 6, pp. 559-563, Oct. 2000.

R.E. Vaughn, “Defining Terms in the Intellectual Property
Protection Debate: Are the North and South Arguing Past Each
Other When We Say ‘Property’? A Lockean, Confucian, and
Islamic Comparison,” ILSA]. Comparative and Int’l Law, vol. 2,
no. 2, p. 308, Winter 1996, http://www.nsulaw.nova.edu/
student/organizations/ILSAJournal /2-2/Vaughan202-2.htm.

R. Venkatesan, V. Vazirani, and S. Sinha, “A Graph Theoretic
Approach to Software Watermarking,” Proc. Fourth Int’l Informa-
tion Hiding Workshop, Apr. 2001.

Vermont Microsystems Inc. v. AutoDesk Inc., United States Court
of Appeals for the Second Circuit, Jan. 1996.

G. Vigna, “Introduction,” Mobile Agents and Security, pp. xi—xii,
Lecture Notes in Computer Science, vol. 1419, Springer-Verlag,
1998.

H.P. Van Vliet, “Mocha—The Java Decompiler,” http://web.
inter.nl.net/users/H.P.van.Vliet/ mocha.html, Jan. 1996.

R. Wahbe and S. Lucco, “Methods for Safe and Efficient
Implementation of Virtual Machines,” US Patent 5,761,477,
Assignee: Microsoft Corporation, 1999.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient
Software-Based Fault Isolation,” Proc. Symp. System Principles
(SOSP '93), pp. 203-216, 1993.

C. Wang, “A Security Architecture for Survivability Mechanisms,”
PhD thesis, Univ. of Virginia, School of Eng. and Applied Science,
Oct. 2000, www.cs.virginia.edu/survive/pub/wangthesis.pdf.
C. Wang, J. Hill, J. Knight, and J. Davidson, “Software Tamper
Resistance: Obstructing Static Analysis of Programs,” Technical
Report CS-2000-12, Univ. of Virginia, Dec. 2000.

J. Wang, “Average-Case Complexity Forum,” http://www.unc-
g.edu/mat/acc-forum, 1999.

H. Wasserman and M. Blum, “Software Reliability via Run-Time
Result-Checking,” J. ACM, vol. 44, no. 6, pp. 826-849, Nov. 1997.
S.P. Weisband and S.E. Goodman, “Int'l Software Piracy,”
Computer, vol. 92, no. 11, pp. 87-90, Nov. 1992.

CD Media World, “CD Protections,” http:/ /www.cdmediaworld.
com/hardware/cdrom/cd_protections.shtml, Copyright 1998-
2001.

Xerox, “ContentGuard,” http:/ /www.contentguard.com.

Christian S. Collberg received the BSc and PhD degrees from Lund
University, Sweden. He was previously on the faculty at the University of
Auckland, New Zealand. Currently, he is a faculty member at the
Unversity of Arizona, Tuscon. His primary research interests are
compiler and programming language design, software security, and
domain-specific web search engines.

Clark Thomborson (SM’96, M’86) received the
PhD degree in computer science in 1980, under
his birth name Clark Thompson, from Carnegie-
Mellon University, Pennsylvania. He emigrated
to New Zealand in 1996, to take up his current
position as professor of Computer Science at the
University of Auckland, New Zealand. He has
published more than 70 refereed papers on
topics in software security, computer systems
performance analysis, VLSI algorithms, data
compression, and connection networks. He is a senior member of the
IEEE and a member of the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

