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Abstract

If x = x1x2 · · · xn · · · is a random sequence, then the sequencey = 0x10x2 · · · 0xn · · · is clearly
not random; however,y seems to be “about half random”. L. Staiger [Kolmogorov complexity
and Hausdorff dimension, Inform. and Comput. 103 (1993) 159–194 and A tight upper bound
on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Syst. 31 (1998)
215–229] and K. Tadaki [A generalisation of Chaitin’s halting probabilityΩ and halting self-similar
sets, Hokkaido Math. J. 31 (2002) 219–253] have studied the degree of randomness of sequences or
reals by measuring their “degree of compression”. This line of study leads to various definitions of
partial randomness. In this paper we explore some relations between these definitions. Among other
results we obtain a characterisation ofΣ1-dimension (as defined by Schnorr and Lutz in terms of
martingales) in terms of strong Martin-Löfε-tests (a variant of Martin-Löf tests), and we show that
ε-randomness forε ∈ (0, 1) is different (and more difficult to study) than the classical 1-randomness.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The program-size complexityH (w) of a binary string w is the size, in bits, of the
shortest program for a universal self-delimiting Turing machineU to calculatew. This
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complexity measure plays an important role in characterising the (algorithmic) randomness
of infinite sequences and provides an elegant tool for proving information-theoretical forms
of Gödel incompleteness (see [2,3,5,17]).

Although the class of random sequences is large (it has constructive measure one), there
are many interesting examples of sequences which are not random, but “nearly random”.
For example, assumex = x1x2 · · · xn · · · is a random sequence; although the sequence
y = 0x10x2 · · · 0xn · · · is not random,y seems to be “about half random”. Can we model
this intuition?

Staiger [14,15] and Tadaki [16] have studied the degree of randomness of sequences
(or reals) by measuring their “degree of compression” with a computable real numberε in
theunit interval[0, 1] as a parameter indicating the degree of compression. Asε becomes
larger, the degree of randomness increases, so that in the case whereε = 1 one obtains
the classical randomness. This line of study leads to various definitions ofε-randomness,
probably not all equivalent. It is the aim of this paper to study various definitions forε-
randomness. Some natural results true for the caseε = 1 are false forε < 1. For example,
the analogue of the theorem stating that “a realα = 0.x is classically 1-random iff there
exist a constantc ≥ 0 and an infinite computable setM ⊆ IN suchthat H (x(n)) ≥ n − c,
for eachn ∈ M” is false for ε-randomness with 0< ε < 1, that is, the statement “a
real α = 0.x is ε-random iff there exist a constantc ≥ 0 and an infinite computable
set M ⊆ IN suchthat H (x(n)) ≥ ε · n − c, for eachn ∈ M” is false. The study ofε-
randomness withε < 1 is more difficult than the study of classical 1-randomness; one
of the reasons is that, as we shall see below, theε-analogue of the Lebesgue measure,
an essential tool for the study of randomness, is theε-dimensional Hausdorff measure
ILε, which is, unfortunately, infinite on every non-empty open set. This difficulty can be
circumvented by using measuresµε for sets of finite strings and relating them toILε.

The paper is organised as follows. InSection 2we describe the notation; inSection 3
we review the main definitions, notions and results used later in the paper; inSections 4
and5 we study new types ofε-randomness and relate them to classical 1-randomness; in
the last section we state some open problems.

2. Notation

We will follow the notation in [2]. By IN+ = {1, 2, . . .} we denote the set of positive
natural numbers;Q, R, R+ are the sets of rationals, reals, positive reals, respectively. The
cardinality of the setA is denoted by card(A). Let us fix X = {0, 1}; by X∗ we denote
the set of finite strings (words) onX, including theemptystringλ; occasionally we write
u · v = uv to denote the concatenation of the stringsu andv. The length of the stringw
is denoted by|w| andXi = {w ∈ X∗ : |w| = i }. If v is a prefix ofw we writev � w. If
W, W′ ⊆ X∗, thenW W′ = {wv : w ∈ W, v ∈ W′}. A setW ⊆ X∗ is called prefix-free if
for eachu, v ∈ W with u � v, we haveu = v.

A self-delimiting Turing machine(for short, a machine) is a Turing machine T
processing binary strings such that its program set (domain)P ROGT = {

x ∈ X∗ :
T halts onx

}
is a prefix-free set of strings. Theprogram-size complexityof the string

x ∈ X∗ (induced byT) is HT(x) = min
{|y| : y ∈ X∗, T(y) = x

}
, where min∅ = ∞.
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We can effectively construct a machineU (called universal) such that for every machine
T , HU (x) ≤ HT (x) + O(1). In what follows we will fix U and putH = HU .

A real s is left (right) computable if there is acomputable sequence of rationals(st )

suchthatst ≤ st+1 (st ≥ st+1) ands = limt→∞ st . Left computable reals are also called
c.e. reals.

We consider the Cantor spaceXω of infinite sequences (ω-words) overX. As we will
focus mainly on irrational numbers, we will identify realsα in the unit interval with
sequencesx ∈ Xω via α ↔ 0.x. If x = x1x2 · · · xn · · · ∈ Xω, thenx(n) = x1x2 · · · xn is the
prefix of lengthn of x. Strings and sequences will be denoted respectively byu, v,w, . . .

andx, y, . . ..
For W ⊆ X∗, W Xω denotes the set{wx : w ∈ W ∧ x ∈ Xω} of sequences having a

prefix in W. The setsW Xω are the open sets in the natural topology onXω. Computably
enumerable (c.e.) open sets are sets of the formW Xω, whereW ⊆ X∗ is c.e. Letµ denote
the usual product (Lebesgue) measure onXω given byµ({w}Xω) = 2−|w|, for w ∈ X∗.
For a measurable setR of infinite sequences,µ(R) is the probability thatx ∈ R whenx
is chosen by a random experiment in which an independent toss of a fair coin is used to
decide whetherxn = 1. If W is prefix-free, thenµ(W Xω) = ∑

w∈W 2−|w|.
Fix ε > 0. For any (not necessarily prefix-free) setW ⊆ X∗ we will write

µε(W) =
∑
w∈W

2−ε|w|.

Note thatµε(w) <
∑

x∈X µε(wx) whenε < 1.
Thei th section of a setV ⊆ X∗ × IN+ is Vi = {w ∈ X∗ : (w, i ) ∈ V}.
Finally we will need the Kraft–Chaitin Theorem (see [2], p. 53): Let n1, n2, . . . be

a computable sequence of non-negative integers such that
∑∞

i=1 2−ni ≤ 1. Then, we
can effectively construct a prefix-free sequence of stringsw1, w2, . . . such that for each
i ≥ 1, |wi | = ni .

3. Martingales, supermartingales and Hausdorff dimension

In this section we review the main definitions and results we need from the theories of
martingales and Hausdorff dimension.

Definition 3.1 (Ville [ 19] ). (a) A martingale is a functiond : X∗ → R+ such that
2d(w) = d(w0) + d(w1), for every w ∈ X∗. A supermartingaleis a function
d : X∗ → R+ such that 2d(w) ≥ d(w0) + d(w1), for everyw ∈ X∗.

(b) A (super)martingaled succeedson a sequencex (real 0.x) if lim supn→∞ d(x(n)) =
∞. A (super)martingaled succeeds on, or covers aset of sequences (reals) if it
succeeds on each sequence (real) in the set. Thesuccess set S[d] of d is the class
of all sequences (reals) on whichd succeeds.

(c) A (super)martingaled is left computableif the set{(x, r ) : x ∈ X∗, r ∈ Q, d(x) > r }
is c.e.;d is right computableif {(x, r ) : x ∈ X∗, r ∈ Q, d(x) < r } is c.e.;d is
computableif it is both left computable and right computable.

The following property of supermartingales with respect to prefix-free sets (see [13]) will
be useful in what follows.
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Proposition 3.2. Let C ⊆ X∗ be prefix-free, and let d: X∗ → R+ be a supermartingale.
Then d(λ) ≥ ∑

w∈C 2−|w| · d(w).

We continue with the following results linking Lebesgue measure and supermartingales.

Theorem 3.3 (Ville [ 19] ). (a) A set ofrealsR has Lebesgue measure zero iff there is a
(super)martingale that succeeds onR.

(b) Let d be a (super)martingale and define

Sk[d] = {
x ∈ Xω : (∃n > 0)

[
d(x(n)) ≥ k

]}
.

Then,µ(Sk[d]) ≤ d(λ)k−1.

Definition 3.4 (Schnorr [13] ). An order is anondecreasing unbounded functionh : IN →
IN.1 For a martingaled and orderh we define

Sh[d] =
{

x ∈ Xω : lim sup
n→∞

d(x(n))

h(n)
= ∞

}
.

Schnorr also used null sets of the formSh[d] with h(n) = 2εn, ε ∈ (0, 1], of exponential
order.

Finally, we define the classical Hausdorff dimension [8] (see also Falconer [6]).

Definition 3.5. (a) A setC ⊆ X∗ is an n-cover if every stringw ∈ C has the length
|w| ≥ n. A setC ⊆ X∗ coversthe setR ⊆ Xω if R ⊆ ⋃

w∈C wXω.
(b) Put

ILε,n(R) = inf

{∑
w∈C

(
2−|w|)ε : C is ann-cover ofR

}
, (1)

and define theε-dimensional outer Hausdorff measureof R to be

ILε(R) = lim
n→∞ ILε,n(R).

(c) TheHausdorff dimensionof a setR ⊆ Xω is defined as dimR = inf{ε : ILε(R) =
0}.

It should be remarked that for everyR ⊆ Xω there is exactly one“changeover point”
α suchthat ILε(R) = ∞ for ε < α and ILε(R) = 0 for ε < α. Moreover, Hausdorff
dimension is countably stable, that is, dim

⋃
i∈IN Ri = sup{dimRi : i ∈ IN}.

Observe further that in Eq. (1) the sum
∑

w∈C

(
2−|w|)ε equalsµε(C) providedC is

prefix-free.
The following theorem links Hausdorff dimension and supermartingales.

Theorem 3.6 (Lutz [9] ). For any classR ⊆ Xω the following statements are equivalent:

(i) The classR has Hausdorff dimensionα,

1 An “Ordnungsfunktion” in Schnorr’s terminology is always computable, whereas we prefer to leave the
complexity of orders unspecified.
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(ii) α = inf
{
s ∈ Q : ∃d(d is a supermartingale∧ R ⊆ S2(1−s)n[d])}.

Remark 3.7. In fact, Lutz provedProposition 3.6using what he called s-gales. He
observed thatd′ : X∗ → X∗ is an s-gale iff d(w) = 2(1−s)|w|d′(w) is a martingale.
From this it easily follows that the concept ofs-gale gives rise to the same concept as
was used by Schnorr [13], using martingales with exponential ordersh(|w|) = 2−(1−s)|w|.
(This fact was also observed by Ambos-Spies et al. [1].)

We follow Schnorr’s approach, because itseems that the combination of
(super)martingales with order functions is more flexible at least in two respects: on the
one hand, as in the investigation of Hausdorff dimension, it allows for the use of order
functions other than exponential ones, and on the other hand, as the proof of Theorem 11
in [15] shows, computable martingales may achieve non-computable (exponential) order
functions, something which is not possible fors-gales, as computables-gales exist only
for computable realss.

4. Partial randomness

In this section we introduce Tadaki’s definition [16] of Martin-Löf ε-randomness and the
new notion of “strong Martin-Löfε-randomness”. We derive characterisations of strongly
Martin-Löf ε-random sequences in terms of supermartingales and in terms of a priori
program-size complexity.

A Martin-Löf test [10] is a uniform sequence{Vi } of c.e. subsets ofX∗ such that the
measureµ(Vi Xω) of the i -th set is smaller than 2−i . To adapt this definition to theε-case
Tadaki [16] replaced the conditionµ(Vi Xω) < 2−i by µε(Vi ) < 2−i . Thus one obtains
the following definition.

Definition 4.1. A Martin-Löf ε-testis a c.e. setV ⊆ X∗ × IN+ suchthatµε(Vi ) < 2−i . A
realx ∈ Xω is Martin-Löf ε-randomif for every Martin-Löf ε-testV , x �∈ ⋂

i Vi Xω.

Since, as was mentioned above,µε(w) <
∑

x∈X µε(wx) wheneverε < 1, the simple
procedure for transforming a Martin-Löf test into an equivalent Martin-Löf test having
only prefix-free sectionsVi (see e.g. [13]) cannot be applied here. Therefore, we introduce
the following stronger version of Martin-Löfε-tests.

Definition 4.2. A strong Martin-Löfε-testis a c.e. setV ⊆ X∗ × IN+ such that for every
prefix-free setC ⊆ Vi it holds thatµε(C) < 2−i . A realα is strongly Martin-Löfε-random
if for every strong Martin-Löfε-testV, α �∈ ⋂

i Vi Xω.

Remark 4.3. (a) Every strong Martin-Löfε-test is a Martin-Löfε-test; consequently,
every strongly Martin-Löfε-random real is Martin-Löfε-random.

(b) If there is a strong Martin-Löfε-testV ⊆ X∗ × IN+ suchthatR ⊆ ⋂
n VnXω, then

ILε(R) = 0 in an effective way.

The last statement needs more explanation. For the case of random reals, that is, when
ε = 1, it is well known that every setR ⊆ Xω having non-null Lebesgue measure
µ(R) > 0 contains a random real. This is true also forε, 0 < ε ≤ 1, when we
replace the Lebesgue measureµ by the ε-dimensional measureILε. Indeed, observe
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that ILε(Vi Xω) ≤ µε(C) < 2−i , whereC ⊆ Vi is the prefix-free set mentioned in
Definition 4.2. ThusILε(

⋂
i Vi Xω) = 0, for every strong Martin-Löfε-testV , and asthere

are only countably many strong Martin-Löfε-tests we havethe following.

Proposition 4.4. Let ε ∈ (0, 1] and letRε ⊆ Xω be the set of all strongly Martin-Löf
ε-random reals. Then, ILε(Xω \ Rε) = 0.

The next two lemmata show an intrinsic relationship between left computable
supermartingales and strong Martin-Löfε-tests.

Lemma 4.5. Let s ∈ (0, 1] be a right computable real number and let V⊆ X∗ × IN+ be
a strong Martin-Löf s-test. Then there is a left computable supermartingale d: X∗ → R+
suchthat

⋂
n VnXω ⊆ S2(1−s)n[d].

Proof. SupposeV is a strong Martin-Löfs-test. Sinces is right computable there is a
computable sequence of rationals(st ) suchthatst ≥ st+1 ands = limt→∞ st . Let further
Vn,t be the computable approximation ofVn at staget , anddefine

dn,t (w) = n · max
{
2|w| ·

∑
v∈C

2−st |v| : C ⊆ Vn,t ∩ wX∗ prefix-free
}
.

Then

dn,t (wx) = n · max
{
2|wx| ·

∑
v∈Cx

2−st |v| : Cx ⊆ Vn,t ∩ wx X∗ prefix-free
}
,

for x ∈ X. Sincethe maximum achievable setsCx, x ∈ X, may bechosen independently
from each other such thatCx ⊆ Vn,t ∩ wx X∗, their unionC = ⋃

x∈X Cx is a prefix-free
subset ofVn,t ∩ wX∗ and∑

x∈X

dn,t (wx) =
∑
x∈X

n · max
{
2|wx| ·

∑
v∈Cx

2−st |v| : Cx ⊆ Vn,t ∩ wx X∗ prefix-free
}

≤ n · max
{
2 · 2|w| ·

∑
v∈C

2−st |v| : C ⊆ Vn,t ∩ wX∗ prefix-free
}

= 2 · dn,t (w).

This proves that for eachn and t , dn,t is a supermartingale. Observe that in view of
st ≥ st+1 andVn,t ⊆ Vn,t+1 we havedn,t (w) ≤ dn,t+1(w).

Evidently, eachdn,t is a computable function. Next we define

dn(w) = lim
t→∞ dn,t (w), d(w) =

∞∑
n=0

dn(w).

Then d(w) < ∞ for every w ∈ X∗, since d(λ) ≤ ∑
n dn(λ) ≤ ∑

n n · 2−n and
d is a supermartingale. Furthermore,d is left computable. Finally, ifw ∈ Vn, then
dn(w) ≥ n · 2(1−s)|w|; hence if x ∈ ⋂

n VnXω, thenx ∈ S2(1−s)n[d]. �
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Lemma 4.6. Let s ∈ (0, 1] be a left computable real number and let d: X∗ → R+ be a
left computable supermartingale. Then there is a strong Martin-Löf s-test V⊆ X∗ × IN+
such that S2(1−s)n[d] ⊆ ⋂

n VnXω.

Proof. Supposes is a left computable real andd is a left computable supermartingale. We
define the strong Martin-Löfs-testV in the following way. We choosek ≥ d(λ) and define

Vn = {
w : 2−|w| · d(w) ≥ 2−s|w| · 2nk

}
.

Note that ifx ∈ S2(1−s)n[d], then we have

lim sup
n→∞

d(x(n))

2(1−s)n
= ∞,

sox ∈ ⋂
n Vn.

We claim that the sets{Vn} form a strong Martin-Löfs-test. First observe thatV
is c.e. sinces and d are left computable. Next, letC ⊆ Vn be prefix-free. Then, by
construction ofVn, we have

2nk · µs(C) =
∑
w∈C

2−s|w| · 2nk ≤
∑
w∈C

2−|w|d(w).

UsingProposition 3.2this yields 2nk · µs(C) ≤ d(λ) ≤ k, soµs(C) ≤ 2−n. �
Now Lemmata 4.5and4.6yield the following.

Theorem 4.7. For any classR ⊆ Xω the following statements are equivalent:

(i) The realα is minimal such that for all ε > α there is a strong Martin-Löfε-test
V ⊆ X∗ × IN+ with R ⊆ ⋂

n VnXω.
(ii) TheΣ1-dimension ofR is α, that is, α = inf{s ∈ Q : ∃d (d is a left computable

supermartingale andR ⊆ S2(1−s)n[d])}.
The existence of a universal Martin-Löfε-test, for computableε was mentioned in [16,

Remark 3.1]. In the case of strong Martin-Löfε-tests the existence of universal left
computable supermartingales (see [2, Theorem 4.17] or [9, Theorem 3.6]) gives a simple
derivation of the existence of universal strong Martin-Löfε-tests.

Let d be Levin’s universal left computable supermartingale, that is, for every left
computable supermartingaled there is aconstantcd suchthat d(w) ≤ cd · d(w) holds
for all w ∈ X∗. ThenS2(1−s)n[d] ⊆ S2(1−s)n[d] andLemmata 4.5and4.6yield the existence
of a universal strong Martin-Löfε-test.

Theorem 4.8. If ε ∈ (0, 1] is a computable real number, then there is a universal
strong Martin-Löf ε-test U ⊆ X∗ × IN+, that is, U is a strong Martin-Löfε-test and⋂

n VnXω ⊆ ⋂
n UnXω, for every strongε-test V ⊆ X∗ × IN+.

For individual sequencesx ∈ Xω weobtain the following:

Theorem 4.9. Let ε ∈ (0, 1] be a computable real number and letx ∈ Xω. Then the
following are equivalent:

1. x is strongly Martin-Löfε-random.
2. x /∈ S2(1−ε)n[d].
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The a priori Kolmogorov complexity KA is defined by KA(w) = |w| − log2 d(w)

(see [18]). Thus we obtain the following complexity-theoretic characterisation of strongly
Martin-Löf ε-random sequences:

Corollary 4.10. Let ε ∈ (0, 1] be a computable real number. Then,x is strongly Martin-
Löf ε-random iff there is a constant c such thatKA(x(n)) ≥ ε · n − c, for almost all n.

A similar property relating Martin-Löfε-randomness to the program-size complexity
H was shown by Tadaki [16].

Lemma 4.11. Letε ∈ (0, 1] be a computable real number. Then,x is Martin-Löfε-random
iff there isa constant c such that H(x(n)) ≥ ε · n − c, for almost all n.

Both Lemma 4.11and Corollary 4.10 show that the two versions of Martin-Löf
ε-randomness do not limit the upper complexity of sequences. Thus every (strong) Martin-
Löf ε-randomx ∈ Xω is also (strong) Martin-Löfε′-random forε′ < ε.

5. Randomness versus ε-randomness

In this section we continue to compare the classical theory of 1-randomness with the
theory of ε-randomness withε ∈ (0, 1]. First we mention that random reals have the
following regular behaviour on a computable set of grid points ([7] and [11]; for a proof
see [12]).

Theorem 5.1. A real x ∈ Xω is random iff there exist a constant c≥ 0 and an infinite
computable set M⊆ IN such that H(x(n)) ≥ n − c, for each n∈ M.

This result is no longer true for Martin-Löfε-random reals 0.x (0 < ε < 1); see also
Lemma 4.11. It was shown in [14, Example3.18] that there are realsα = 0.x which satisfy
lim supn→∞ H (x(n))/n = 1 and, simultaneously, lim inf n→∞ H (x(n))/n = 0. A closer
look into this phenomenon yields the following:

Example 5.2. There is anx ∈ Xω such that for every 1/2 < ε < 1, there are
infinite computable setsMε, M ′

ε ⊆ IN for which H (x(n)) ≥ ε · n, whenn ∈ Mε and
H (x(n)) ≤ (1 − ε) · n, whenn ∈ M ′

ε .

Proof. We use an idea of Daley [4] and the construction of Example 3.18 in [14]. We
definex = ∏∞

i=0 wi ·0(2i+1)!, wherewi is a string with|wi | = (2i )! havingH (wi ) ≥ |wi |.
Further let

mn =
n∑

i=0

((2i )! + (2i + 1)!) + (2n + 2)!, m′
n =

n∑
i=0

((2i )! + (2i + 1)!) ,

and consider the computable sets

M = {mn : n ∈ IN} andM ′ = {
m′

n : n ∈ IN
}
.
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Thenx(mn) = x(m′
n) · wn+1 andx(m′

n) = x(mn−1) · 0(2n+1)!, for the finite prefixesx(mn)

andx(m′
n) of x. This leads to the inequalities

H (x(mn)) ≥ H (wn+1) − c ≥ (2n + 2)! − c ,

H (x(m′
n)) ≤ 2 · (mn−1 + log(2n + 1)!) + c′,

for all n ∈ IN and suitably chosen constantsc, c′.
Then, by construction ofmn andm′

n, for 1/2 < ε < 1 there are only finitely manyn
suchthat

(2n + 2)! − c

mn
< ε and 1− ε <

2(mn−1 + log(2n + 1)!) + c′

m′
n

.

Consequently, the setsMε = {mn : mn ∈ M ∧ (2n + 2)! − c ≥ ε · mn} and

M ′
ε = {m′

n : m′
n ∈ M ′ ∧ 2(mn−1 + log(2n + 1)!) + c′ ≤ (1 − ε) · m′

n}
are infinite computable sets satisfying our requirements.�

We proved above that a setR ⊆ Xω havingILε(R) > 0 contains a strongly Martin-Löf
ε-random real, and, consequently, it contains also a Martin-Löfε-random real.

Next we are now going to show that the same is true for reals which were called strongly
Chaitinε-random in [16]. According toLemma 4.11every strongly Chaitinε-random real
is also Martin-Löfε-random.

Definition 5.3. A realα = 0.x is strongly Chaitinε-randomif lim n→∞(H (x(n)− ε ·n) =
∞.

First we derive an auxiliary result which is essentially Theorem 3.4 of [16]. For the sake
of completeness we give its proof. To this end we introduce an extra piece of notation,
namely forW ⊆ X∗,

Wδ = {
x : x ∈ Xω ∧ {n : x(n) ∈ W} is infinite

}
.

Proposition 5.4. Let ε ∈ (0, 1] be a computable real. Anx ∈ Xω is not strongly Chaitin
ε-random iff there is an c.e. set W⊆ X∗ suchthat

∑
w∈W 2−ε|w| < ∞ andx ∈ Wδ .

Proof. Assume thatH (x(n)) < ε · |w| + c, for infinitely manyn, and considerthe c.e. set

Wε,c = {w : w ∈ X∗ ∧ H (w) ≤ ε · |w| + c}.
Then, clearly,x ∈ Wδ

ε,c.
Next let W ⊆ X∗ be c.e. and

∑
w∈W 2−ε|w| < 2c, for some c ∈ IN. Then∑

w∈W 2−(�ε|w| �+c) < 1. Sinceε is computable, the setMW = {(�ε|w| �+c, w) : w ∈ W}
is also c.e. and, because of Kraft–Chaitin Theorem, there is a machineφ : X∗ → X∗
suchthat φ(X∗) = W, and for everyw ∈ W there is aπ suchthat φ(π) = w and
|π | = �ε|w| � + c. This shows Hφ(w) ≤ �ε|w| � + c and everyx ∈ Wδ is not strongly
Chaitinε-random. �
Using the fact thatXω \ ⋃

c∈IN Wδ
ε,c is the set of all strongly Chaitinε-random sequences

and that
∑

w∈W 2−ε|w| < ∞ implies ILε(Wδ) = 0 (see [14, Lemma 3.8]), we obtain the
following:
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Theorem 5.5. Let ε ∈ (0, 1] and let

Pc = {x : x ∈ Xω ∧ H(x(n)) ≤ ε · n + c, for infinitely manyn}.
Then, for all c ∈ IN, ILε

(Pc
) = 0.

From this result we get the following analogue of Lemma 3.13 of [14]:

Corollary 5.6. If IL ε(R) > 0, thenR contains a strongly Chaitinε-random real.

We conclude this section by showing that the results ofTheorem 5.5andProposition 4.4
are tight, that is, there are setsR ⊆ Xω having Hausdorff dimension dimR = ε, 0 < ε ≤
1, but not containing any Martin-Löfε-random real.

Example 5.7. For ε, 0 < ε ≤ 1 considerthe setQε = {(p, q) : p, q ∈ IN+ ∧ p/q < ε}
and let

R =
⋃

(p,q)∈Qε

(X p · 0q−p)ω.

The sets(X p · 0q−p)ω are definable by finite automata, so the results of [14, Section 4]
apply.

Hence weobtain, on the one hand, lim supn→∞ H (x(n))/n ≤ p/q < ε, whenever
x ∈ (X p · 0q−p)ω, and, on the other hand, dim(X p · 0q−p)ω = p/q and, consequently,
dimR = sup{dim(X p · 0q−p)ω : (p, q) ∈ Qε} = ε.

6. Conclusion and open questions

Tadaki had invented in [16] two versions of a concept ofε-randomness. He derived
also complexity-theoretic characterisations of them (seeLemma 4.11andProposition 5.4
above). Up to now, it is open whether these concepts coincide or not.

As random sequences can be also characterised using left-computable supermartingales,
we pursued this route and obtained a third concept ofε-randomness, which gives a
close connection to supermartingales as well as acomplexity-theoretic characterisation.
However, it is also notknown whether it coincides with one of Tadaki’s concepts.

We conjecture that Martin-Löfε-randomness does not imply strong Chaitinε-
randomness even for computableε. It is alsoopen which relations hold between strong
Martin-Löf ε-randomness and strong Chaitinε-randomness.
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