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Abstract

If X =X1X2---Xn--- isarandom sequence, then the sequenee0x;0x5 - - - Oxp - - - is clearly
not random; howevery seems to be “about half random”. L. Staiger [Kolmogorov complexity
and Hausdorff dimension, Inform. and Comput. 103 (1993) 159-194 and A tight upper bound
on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Syst. 31 (1998)
215-229] and K. Tadaki [A generaligan of Chaitin’s hédting probability 2 and halting self-similar
sets, Hokkaido Math. J. 31 (2002) 219-253] have studied the degree of randomness of sequences or
reals by measuring their “degre& @pmpression”. This line of study leads to various definitions of
partial randomness. In this paper we explore soategions between thesefihitions. Among other
results we obtain a characterisation ¥f-dimension (as defined by Schnorr and Lutz in terms of
martingales) in terms of strong Martin-Léftests (a variant of Martin-L6f tests), and we show that
e-randomness fog € (0, 1) is different (and more difficult to study) than the classical 1-randomness.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The program-size complexitid (w) of a binay sting w is the size, in bits, of the
shortest program for a universal self-delimiting Turing machihéo calculatew. This
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complexity measure plays an important role in characterising the (algorithmic) randomness
of infinite sequences and provides an elegant tool for proving information-theoretical forms
of Godel incompleteness (se&3,5,17)).

Although the class of random sequences is large (it has constructive measure one), there
are many interesting examples of sequences which are not random, but “nearly random”.
For exampe, assumex = X1X2---Xp--- IS @ random sequence; although the sequence
y = 0x10x2- - - OXp - - - is not randomy seems to be “about half random”. Can we model
this intuition?

Staiger [14,15] and Talaki [16] have dudied the degree of randomness of sequences
(or reals) by measuring their “degree of compression” with a computable real naritber
theunit interval[0, 1] as a parameter indicating the degree of compression.bexomes
larger, the degree of randomness increases, so that in the caseavhefeone obtains
the classical randomness. This line tfdy leads to various definitions efrandomness,
probably not all equivalent. It is the aim of this paper to study various definitions-for
randomness. Some natural results true for the casd are false foe < 1. For example,
the analogue of the theorem stating that “a reat 0.x is classically 1-random iff there
exist a onstant > 0 and an infiite computable se¥1 € N suchthatH (x(n)) > n —c,
for eachn € M” is false for e-randomness with O< ¢ < 1, that is, the statement “a
reala = 0.x is e-random iff there exist a constant> 0 and an ifinite computable
setM C N suchthatH(x(n)) > ¢ - n —c, for eachn € M” is false. The study ofs-
randomness witlk < 1 is more difficult than the study of classical 1-randomness; one
of the reasons is that, as we shall see below,tlamalogue of the Lebesgue measure,
an essential tool for the study of randomness, isstiBmensional Hausdorff measure
IL¢, which is, unfortunately, infinite on every non-empty open set. This difficulty can be
circumvented by using measures for sets of finite strings and relating themitq.

The paper is organised as follows. $ection 2we descie the notation; irBection 3
we review the main definibins, notions and results used later in the pape8dntbns 4
and5 we sudy new types of-randomness and relate them to classical 1-randomness; in
the last section we state some open problems.

2. Notation

We will follow the notation in ]. By N+ = {1, 2, ...} we denote the set of positive
natural numbersR, R, R, are the sets of rationals, reals, positive reals, respectively. The
cardinality of the setA is denoted by cardA). Let us fix X = {0, 1}; by X* we denote
the set of finite sings (words) onX, including theemptystring A; occasionally we write
u - v = uv to denote the concatenation of the stringgindv. The length of the stringw
is denoted by|w| and X! = {w € X* : |w| = i}. If vis a prefix ofw we writev C w. If
W, W C X* thenWW = {wv: w e W,v € W}. AsetW C X* is called prefix-free if
for eachu, v € W with u C v, we haveu = v.

A self-delimiting Turing machindfor short, amachin is a Turing machine T
processing binary strings such that its program set (donRROGr = {x e X* .
T halts onx} is a prefix-free set of strings. Thprogramsize complexityf the gring
x € X* (induced byT) is Hr(x) = min{|y| : y € X*, T(y) = x}, where ming = oo.
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We can effectively construct a machitk (cdled universa) such hat for every machine
T, Hu(X) < HT(X) + O(1). In what follows we will fix U and putH = Hy.

A reals is left (right) computable if there is @omputable sequence of rations)
suchthats < s+1 (& > s+1) ands = limi_, » &. Left conputable reals are also called
c.e.reals.

We mnsider the Cantor spac€” of infinite sequencesJ-words) overX. As we will
focus mainly on irrational numbers, we will identify realsin the unit interval with
sguencex € X® viaa <> 0.X. If X = XgX2 - - - Xp - - - € X?, thenx(n) = X1X2- - - Xn isthe
prefix of lengthn of x. Stiings and sequences will be denoted respectively,hy w, ...
andx,y, . ...

ForW C X*, W X® denotes the sdtwx : w € W A X € X?} of sequences having a
prefix in W. The setdV X“ are the open sets in the natural topology>h Conputably
enumerable (c.e.) open sets are sets of the WX, whereW C X* is c.e. Letu denote
the usual product (Lebesgue) measure ¥t given by u({w}X®) = 2=l forw e X*.
For a measurable seR of infinite sequencegy(R) is the probability thak € R whenx
is chosen by a random experiment in which adependent toss of a fair coin is used to
decide whethex, = 1. If W is prefix-free, thene (W X®) = 3~ . 271,

Fix ¢ > 0. For any (not necessarily prefix-free) gtc X* we will write

HS(W) — Z 2—s\w\.
weW

Note thatu® (w) < Y, cx u®(wx) whene < 1.

Theith sectionofaset € X* x Ny isV; = {w € X* : (w,i) € V}.

Finally we will need the Kraft—-Chaitin Theorem (se,[p. 53): Letni, np, ... be
a computable sequence of non-negative integers suchMjdy 2~™ < 1. Then, we
can effectively construct a prefix-free sequence of strimgsws, ... such that for each
P> 1, Jwil =ni.

3. Martingales, supermartingales and Hausdor ff dimension

In this section we review the main definitions and results we need from the theories of
martingales and Hausdorff dimension.

Definition 3.1 (Mlle [19]). (a) A matingaleis a functiond : X* — R, suchthat
2d(w) = dw0) + d(wl), for everyw € X*. A supermartingaleis a function
d: X* - Ry such that 2d(w) > d(w0) + d(wl), for everyw € X*.

(b) A (super)martingald succeedn a sequence (real @x) if limsup,_, o, d(x(n)) =
oco. A (super)martingaled succeeds onor covers aset of sguences (reals) if it
succeeds on each sequence (real) in the set.stheess set [@] of d is the class
of all sequences (reals) on whidrsucceeds.

(c) A (super)martingald is left conputableif the set{(x,r) : x € X*,r € Q, d(X) > r}
is c.e.;d is right computabléf {(x,r) : x € X*,r € Q,d(X) < r}isc.e.;d is
computablef it is both left computable and right computable.

The following property of supermartingales with respect to prefix-free sets 18penill
be useful in what follows.
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Proposition 3.2. Let C € X* be prefix-free, and let d X* — R be a supermartingale.
Thendir) > Y, cc 27 d(w).

We conthue with the following results linking Lebesgue measure and supermartingales.

Theorem 3.3 (Mille [19]). (a) A set ofreals R has Lebesgue measure zero iff there is a
(super)martingale that succeeds in
(b) Let d be a (super)martingale and define

Sd] = {x € X : @n > O)[dx(n) > k]}.
Then,u(S[d]) < d(k L.

Definition 3.4 (Schnorr [L3]). Anorderis anondecreasing unbounded functlonN —
N.! For a matingaled and ordeh we define

, d(x(n))
d] = X limsup————= = )
sld] {X & XIS °°}
Schnorr also used null sets of the forg[d] with h(n) = 2", ¢ € (0, 1], of exponential
order.
Finally, we define the classal Hausdorff dimensiorg] (see also Elconer p]).

Definition 3.5. (a) A setC € X* is ann-cover if every stringw € C has the length
|lw| > n. AsetC € X* coversthe setR € X if R C |, cc wX®.
(b) Put

Len(R) =inf{ Y " (27")*: Cis ann-cover of R ¢ , (1)

weC

and define the-dimensional outer Hausdorff measweR to be

Le(R) = lim_ILen(R).

(c) TheHausdorff dimensionf a setR € X® is defined as dirR = inf{e : L, (R) =
0}.

It should be remarked that for eveR C X® there is exactly onéchangeover point”
a suchthatlL,(R) = oo for ¢ < a andIL,(R) = O for ¢ < «. Moreover, Haisdorff
dimension is countably stable, that is, dif) . Ri = supldimR; :i € N}.

Observe further that in Eq1) the sum)_, < (27*)* equalsu®(C) providedC is
prefix-free.

The following theorem links Hausdorff dimension and supermartingales.

Theorem 3.6 (Lutz [9]). For any classR C X® the following statemants are equivalent:

(i) The classk has Hausdorff dimensiam,

1an “Ordnungsfunktion” in Schnorr’s terminology is aly& computable, whereas we prefer to leave the
complexity of orders unspecified.
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(i) « =inf{s € Q:3d(d is a spermartingaler R € Sa-sn[d])}.

Remark 3.7. In fact, Lutz provedProposition 3.6using what le called s-gales. He
observed that’ : X* — X* is ans-gale iff d(w) = 23-9*Id’(w) is a martingale.
From this it easily follows that the concept sfgale gives rise to the same concept as
was wsed by Schnorr [L3], using martingales with exponential ordérgw|) = 2-A=9wl,
(This fact was also observed by Ambos-Spies etidl) [

We follow Schnorr's approach, because #ems that the combination of
(super)martingales with order functions is more flexible at least in two respects: on the
one hand, as in the investigation of Hausdorff dimension, it allows for the use of order
functions other than exponential ones, andtmndther hand, as the proof of Theorem 11
in [15] shows, computable martingales may achieve non-computable (exponential) order
functions, something which is not possible gales, as computabkegales exist only
for computable reals.

4. Partial randomness

In this section we intsduce Tadaki’s definitiorif6] of Martin-L6f e-randomness and the
new notion of “strong Martin-L6g-randomness”. We derive characterisations of strongly
Martin-Lof e-random sequences in terms of supermartingales and in terms of a priori
program-size complexity.

A Martin-Lof test [1Q] is a uniform sequencéV,;} of c.e. subsets oK* such that the
measurec(V; X©) of thei-th set is sraller than 2. To adapt this definition to thes-case
Tadi [16] replaced the conditiop(V; X®) < 27 by uf(Vi) < 27", Thus one obtains
the following definition.

Definition 4.1. A Martin-Lof e-testis a c.e. seV € X* x N suchthatu®(V;) < 271 A
realx € X® is Martin-Lof e-randomif for every Martin-Lof e-testV, x ¢ (), Vi X.

Since, as was mentioned aboyé(w) < ), x #°(wX) whenevee < 1, the $mple
procedure for transforming a Martin-Lof test into an equivalent Martin-L6f test having
only prefix-free section¥; (see e.g.13]) cannot be applied here. Therefore, we introduce
the following stronger version of Martin-L&f-tests.

Definition 4.2. A strong Martin-Lofe-testis a c.e. seV € X* x N such that for every
prefix-free seC C V; it holds thafu®(C) < 27'. Areala is strongly Martin-Léfs-random
if for every strong Martin-Lofe-testV, o & (), Vi X*.

Remark 4.3. (a) Every strong Martin-Lofe-test is a Martin-Lofe-test; consequently,
ewery strongly Martin-Lofe-random real is Martin-L6é-random.

(b) If there is a song Martin-Lofe-testV € X* x N4 suchthatR € (), VnX®, then
IL:(R) = 0 in an effective way.

The last statement needs more explanation. For the case of random reals, that is, when
¢ = 1, it is well known that every seR < X® having non-null Lebesgue measure
w(R) > 0 contains a random real. This is true also #or0 < ¢ < 1, when we
replace the Lebesgue measyreby the e-dimensional measurt .. Indeed, observe
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that IL.(V; X?) < uf(C) < 27', whereC C V, is the prefix-free set mentioned in
Definition 4.2 ThuslIL.("); Vi X*) = 0, for every strong Martin-L&§-testV, and aghere
are only countably many strong Martin-Léftests we havéhe following.

Proposition 4.4. Lete € (0,1] and letR, € X® be the set of all strongly Martin-Lof
e-random reals. Then, I(X® \ R,) = 0.

The next two lemmata show an intrinsic relationship between left computable
supermartingales and strong Martin-Lsétests.

Lemma4.5. Let se (0, 1] be a right computable real number and let& X* x N be
a drong Martin-Lo6f s-test. Then there is a left computable supermartingal®Et— R
suchthat (), VaX® € Sya-sn[d].

Proof. SupposeV is a strong Martin-Lofs-test. Sinces is right computable there is a
computable sequence of rationédg) suchthats > s+1 ands = limi_ « &. Let further
Vn.t be the computable approximation\df at stage, anddefine

dht(w)=n- max[z‘w‘ o2l c Vo nwX* prefix-fre%.
veC
Then
Ont(wx) =n- max{z‘wx‘ 2278 Gy € Ve Nwx X* prefix—free%,
veCy

for x € X. Sincethe maximum achievable seBx, x € X, may bechosen independently
from each other such th&@ly < Vit N wx X*, theirunionC = | J,.x Cx is a prefix-free
subset ofVj+ N wX* and

> dntwx) =) _n- max{z‘wx‘ - 278 Gy € Ve Nwx X* prefix—free%

xeX xeX veCy
<n- max[2- 2wl Z 278l C c Vo nwX* prefix—free]
veC
= 2. dn(w).

This proves that for each andt, dnt is a supermantigale. Observe that in view of
& > S+1andVpt € V41 We havedn 1 (w) < tnt+1(w).
Evidently, eacldn + is a conputable function. Next we define

dn(w) = lim dnt(w), dw) = dn(w).
n=0

Thend(w) < oo for everyw e X*, sinced(x) < > ,dn(2) < > ,n-2" and
d is a sipermartingale. Furthermoré, is left computable. Finally, ifw € V,, then
dh(w) > n- 239 herce ifx € ), Vo X?, thenx € S,a-sn[d]. O
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Lemma4.6. Let s e (0, 1] be a left computable real number and let X* — R, be a
left computable supermartingale. Then there is a strong Martin-Lof s-teSt X* x N
such hat Sa-9n[d] S [, Va X®.

Proof. Supposesis a left computable real ardlis a left conputable supermartingale. We
define the strong Martin-L&-testV in the following way. We choosk > d (i) and define

Vo= {w: 27" d(w) > 275" 2"},
Note that ifx € Sa-sn[d], then we have
dx(m) _

lim supm =

n—oo
sox € (), Vh.
We chim that the set§Vy} form a strong Martin-Lofs-test. First observe tha¥
is c.e. sinces andd are left computable. Next, le€ < V, be prefix-free. Then, by
construction oV, we have

2%k p(C) = Y279 2% < Y 27ld(w).

weC weC

UsingProposition 3.2his yields 2k - u5(C) < d()) < k,sous(C) <2™". O
Now Lemmata 4.5and4.6yield the following.

Theorem 4.7. For any classkR € X the following statemants are equivalent:

() The reala is minimal sub that for all ¢ > « there is a strong Martin-Log-test
V C X* x Ny with R € ), VaX®.

(ii) The X1-dimension ofR is «, that is,« = inf{s € Q : 3d (dis a left omputable
supermartingale andR < S,a-s9n[d])}.

The existence of a universal Martin-Léftest, for computable was mentbned in [L6,
Remark 31]. In the case of strong Martin-L&f-tests the existence of universal left
computable supermartingales (s€eTheorem 4.17] or §, Theorem 3.6]) gives a simple
derivation of the existence of universal strong Martin-edgests.

Let d be Levin’s universal left computable supermartingale, that is, for every left
computable supermartingadethere is aconstantcy suchthatd(w) < c¢g - d(w) holds
forallw € X*. ThenS,a-sn[d] € Sa-sn[d] andLemmata 4.5nd4.6yield the existence
of a universal strong Martin-L&d-test.

Theorem 4.8. If ¢ € (0,1] is a conputable real number, then there is a universal
strong Martin-Lofe-test U € X* x N4, that is, U is a strong Martin-Lofe-test and
M VaX® € M), UnX?, for every stronge-test VC X* x N.

For individual sequencese X® we obtain the following:

Theorem 4.9. Lete € (0, 1] be a computable real number and bete X®. Then the
following are guivalent:

1. x is strongly Martin-Lofe-random.
2. X & Sa-on[d].



C.S. Calude et al. / Annals of Pure and Applied Logic 138 (2006) 20-30 27

The a priori Kolmogorov complexity KA is defined by K&) = |w| — log, d(w)
(see [L8]). Thus we obtain the following complexity-theoretic characterisation of strongly
Martin-L6f e-random sequences:

Corollary 4.10. Lete € (0, 1] be a computable real number. Thenis strongly Martin-
Lof e-random iff there is a constant ¢ such théA (x(n)) > ¢ - n — ¢, for dmost all n.

A similar property relating Martin-L6g-randomness to the program-size complexity
H was shavn by Tadaki [16].

Lemma4.11. Lete € (0, 1] be a computable real number. Tharis Martin-Lofe-random
iff there isa constant ¢ such that kk(n)) > ¢ - n — ¢, for dmost all n.

Both Lemma 4.11and Corollay 4.10 show that the two versions of Martin-Lof
e-randomness do not limit the upper complexity of sequences. Thus every (strong) Martin-
L6f e-randomx € X“ is also (strong) Martin-L6¢’-random fore” < &.

5. Randomness ver sus e-randomness

In this section we continue to compare the classical theory of 1-randomness with the
theory of e-randomness witlk € (0, 1]. First we mention that random reals have the
following regular behaviour on a computable set of grid point$ &hd [11]; for a proof

see [L2)).

Theorem 5.1. A real x € X% is random iff there exist a constantx 0 and an infinite
computable set Mc N such hat H(x(n)) > n — ¢, for each ne M.

This result is no longer true for Martin-Léfrandom reals & (0 < ¢ < 1); see also
Lemma 4.111t was stown in [14, Example3.18] that there are reals= 0.x which satisfy
limsup,_, . HX(M))/n = 1 and, simultaneody, liminf,_. . H(x(n))/n = 0. A closer
look into this ph@omenon yields the following:

Example5.2. There is anx € X® such that for every ¥2 < ¢ < 1, there are
infinite computable setM,, M, < N for which H(x(n)) > ¢ - n, whenn € M, and
Hx()) < (1 —¢)-n, whenn € M.

Proof. We use andea of Daley 4] and the onstruction of Example 3.18 inlf]. We
definex = [[72o wi - 0@ +D!, wherew; is a string withjwi | = (2i)! havingH (wi) > |wi.
Further let

n n
M=) ()14 @ + D)+ @n+2)!, my =Y () + 2 + 1)),
i=0 i=0

and consider the computable sets

M = {mn:ne N} andM’' = {m;:ne N}.
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Thenx(mp) = X(M) - wny1 @ndx(mM,) = x(Mp_1) - 0@"D* for the finite prefixesx(mn)
andx(my,) of x. This leads to the inequalities

H(X(mp)) > H(wny1) —c> 2n+2)! —c,

Hx(m))) < 2- (Mp_1 +log(2n + 1)) + ¢,
for all n € N and sutably chosen constants c'.

Then, by construction af, andmy, for 1/2 < ¢ < 1 there ae only finitely manyn
suchthat

| — | /
(2n + 2)! C<sand 1o e < 2(mn_1+log(2n+1).)+c.
mn my,

Consequently, the setd, = {mp:mpe M A(@2n+2)! —c>¢-my}and
M, ={m,:m,eM A2(mp_1+log@n+ DY) +¢ <1 —e)-my}
are infinite computable sets satisfying our requiremenis.

We proved above that a s& < X® havinglL.(R) > 0 contains a strongly Martin-Lof
e-random real, and, consequently, it contains also a Martinelrdihdom real.

Next we are now going to show that the same is true for reals which were called strongly
Chaitine-random in [L6]. According toLemma 4.1%every strongly Chaitire-random real
is also Martin-L6fe-random.

Definition 5.3. Areala = 0.x is strongly Chaitine-randomif lim —, .o (H (X(N) —&-n) =
Q.

First we derive an auxiliary result which is essentially Theorem 3.4 @f [For the sake
of completeness we give its proof. To this end we introduce an extra piece of notation,
namely forW C X*,

W = {x:x e X? A {n:x(n) € W} is infinite}.

Proposition 5.4. Lete € (0, 1] be a computable real. Ax € X® is not strongly Chaitin
e-random iff there is an c.e. set W X* suchthat}",, .\ 27¢!*! < co andx € W?.

Proof. Assume thaH (x(n)) < ¢ - |lw| + ¢, for infinitely manyn, and onsiderthe c.e. set
Wee={w:weX* AHw) <e¢-|w|+c}.

Then, clearlyx € W¢ ..

Next let W < X* be c.e. and)_, w2 ™! < 2° for somec e N. Then
> pew 27 0EMIFO < 1. Sinces is computate, the seMw = {([e|w| ]+, w) : w € W}
is also c.e. and, because of Kraft-Chaitin Theorem, there is a maghing¥* — X*
suchthat ¢ (X*) = W, and fa everyw € W there is ar suchthat¢(r) = w and
|| = [elw|] + c. This hiowsHg(w) < [e|w|] + ¢ and everyx e W? is not strongly
Chaiting-random. O

Using the fact thakX® \ ey WY . is the set of all strongly Chaitie-random sequences
and thaty", .,y 276! < oo impliesIL,(W?®) = 0O (see 14, Lemma 3.8]), we obtain the
following:
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Theorem 5.5. Lets € (0, 1] and let
Pe = {x:x e X? AHXX(n)) < ¢ -n+ c, forinfinitely manyn}.
Then, brallc e N, IL.(Pc) = 0.
From this result we get the following analogue of Lemma 3.1314f:[
Corollary 5.6. If L. (R) > 0, thenR contains a strongly Chaitia-random real.

We mnclude this sdwn by showing that the results dheorem 5.5andProposition 4.4
are tight, that is, there are sé®%C X® having Hausdorff dimension difR = ¢, 0 < ¢ <
1, but not containing any Martin-Lé&f-random real.

Example5.7. Fore, 0 < ¢ < 1 considerthe setQ, = {(p,q) : p,q € NL A p/q < ¢}
and let

R= |J xP.0iPy.
(P.DEQ

The setg XP - 09-P)@ are definable by finite automata, so the resultsldf edion 4]
apply.

Hence weobtain, on the one hand, limsyp., H(Xx())/n < p/q < &, whenever
X € (XP.097P)® and, on the other hand, difXP - 09-P)® = p/q and, consequently,
dimR = supdim(XP.-09=P)® : (p,q) € Q.} = .

6. Conclusion and open questions

Tad&i had invented in 16] two verdons of a concept of-randomness. He derived
also complexity-theoretic @racterisations of them (séemma 4.1landProposition 5.4
above). Up to now, it is open whether these concepts coincide or not.

Asrandom sequences can be also characterised using left-computable supermartingales,
we pursued thisaute and obtained a third concept ofrandomness, which gives a
close connection to supermartingales as well @smaplexity-theoric characterisation.
However, it is also notnown whether it coincides with one of Tadaki’s concepts.

We wmnjecture that Martin-Lofe-randomness does not imply strong Chaitin
randomness even for computallelt is alsoopen which relations hold between strong
Martin-L6f e-randomness and strong Chaititandomness.
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