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We study computably enumerable (c.e.) prefix codes that are capable of coding all positive
integers in an optimal way up to a fixed constant: these codes will be called universal. We
prove various characterisations of these codes, including the following one: a c.e. prefix code
is universal if and only if it contains the domain of a universal self-delimiting Turing
machine. Finally, we study various properties of these codes from the points of view of
computability, maximality and density.

1. Introduction and notation

We study computably enumerable prefix codes that are capable of coding all positive
integers in an optimal way up to a fixed constant: these codes will be called universal.
Our arguments combine elementary facts from coding theory, algorithmic information
theory and formal language theory. We prove various characterisations of these codes
including the following one: a c.e. prefix code is universal if and only if it contains the
domain of a universal self-delimiting Turing machine. Various properties of these codes
are then presented.

We will follow the notation in Calude (2002). We use IN = {0, 1,2,...} to denote the set
of positive integers. The cardinality of a set 4 is denoted by |A4|. Let us fix X = {0,...,r—1}
an alphabet of cardinality r, and use X* to denote the set of finite strings (words) on X,
including the empty string /.

The length of the string w is denoted by |w|, and we use X' = {w € X" | |w| = i},
XS ={weX"||w <i}and X>' = {w € X" | |w| = i} to denote the sets of strings having
lengths exactly i, not larger than i, or not smaller than i, respectively. If v is a prefix of w,
we write v C w, and write v C w if v C w and v # w. A natural ordering of X is the quasi-
lexicographical (or length-lexicographical ) ordering ‘<q.x’ Where strings are ordered first
according to their length, and strings of the same length are then ordered lexicographically
(with respect to some ordering of the alphabet X)". We use string,(n) to denote the

T Work done in Halle; the support of Martin-Luther University and Institute of Informatics is gratefully
acknowledged. Part of this project was supported by UARC Grant 3607895/2006.

 This ordering is not to be confused with the lexicographical ordering where the string 1 is preceded by all
strings starting with 0.
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nth string in the quasi-lexicographical ordering of X* = {0,...,r — 1}", for example,
string,(0) = 4, string,(1) =0, string,(2) =1, ..., string,(r +1) =00, ..., and so on.

Moreover, we fix a prefix-free encoding of strings in X* in the same way as, for
example, in Zvonkin and Levin (1970), so that for w = x; - x; where x; € X, | = 0 we
set xq -+ x; ;= 0x10x;, - Ox;1.

For V,W < X*, we use VW to denote the set {vtw | v € VA € W} of concatenations
of strings from Vwith strings from W. For V = {u} we write uW instead of {u}W. A
prefix code is a prefix-free subset of strings. Prefix codes over X satisfy Kraft’s inequality:
EweA ri‘w‘ < L

A self-delimiting Turing machine (a machine for short) is a Turing machine C processing
binary strings such that its program set (domain) dom(C) = {n | = € X" A C(n) halts} is
a prefix-free set of strings. As usual, we define the self-delimiting (prefix, or program-size)
complexity of a string w with respect to a machine C as H¢(w) := inf{|n| | 1 € X*AC(n) =
w}. See Chaitin (1987), Calude (2002) and Downey and Hirschfeldt (to appear) for further
details.

A prefix code is computably enumerable (c.e.) if and only if it is the domain of a
self-delimiting Turing machine.

We can effectively construct a machine U (called universal) such that for every machine
C, there exists a constant k (depending only on U and C) such that for every string
n € dom(C) there exists a string 7’ € dom(U) such that U(n') = C(n) and |7'| < |n| + k.
A prefix-universal machine U is a special universal machine defined by the following
property: for every self-delimiting Turing machine C there exists a string w (depending
only on U and C) such that for every string = € dom(C) we have U(wn) = C(n). We can
effectively construct prefix-universal machines; there exist universal machines that are not
prefix-universal. All quantifiers in the definition of universality and prefix-universality are
effective.

2. Motivation

Consider the binary alphabet X = {0,1}. The computable prefix code S = {1"0 : n > 0}
codes every integer n > 0 with a string of n 4 1 bits. A better solution is given by the
computable prefix code S = {1!°¢"0string,(n) : n > 0}, which codes every integer n > 0
with a string of 2logn + 1 bits. An even better solution is a computable prefix code T
that codes every integer n = 0 with a string of length logn + 2lognlogn 4+ 1 bits. In
Levenstein (1968), two prefix codes for the natural numbers are introduced and shown to:

1 have an asymptotically minimal redundancy; and

2 be computable by a Turing machine with a minimal delay.

We may ask: is there a best way of representing integers with computable prefix codes,
or, more generally, with c.e. prefix codes? There are various ways to define optimality;

here we will focus on set-theoretic maximality, information-theoretic (rate/capacity) and
computable one-to-one translations (embedability).
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3. Properties of universal c.e. prefix codes

In this section we define and characterise universal c.e. prefix codes. We start with a
theorem that characterises universal c.e. prefix codes. Then we give a non-computability
result, and the final subsection is devoted to some consequences.

3.1. A characterisation theorem
Here we prove the following equivalences.

Theorem 1. Let V' = X be a c.e. prefix code. Then, the following statements are equivalent:

1 There exists a universal machine U such that V' = dom(U).

2 For every partial computable one-one function g : IN — X" having a prefix-free
range, there exist a partial computable one—one function f : IN — X* and a constant
k € IN such that:

(a) f(dom(f)) = V.
(b) dom(g) = dom(f) and |f(n)| < |g(n)| + k, for every n € dom(g).

3 For every computable one—one function g : IN — X~ having a prefix-free range, there
exist a computable one—one function f : IN — X" and a constant k € IN such that:

(@) f(IN) = V.
(b) |f(n)| < |g(n)| + k, for every n € IN.

4 For every c.e. prefix code D < X there exist a partial computable one—one function
@ : X" — X" and a constant k € IN such that:

(a) D = dom(¢), (D) = V.
(b) |o(u)| < |u| + k, for every u € dom(p).

Proof. For the implication 1 = 2 we assume that U is a universal machine and
V = dom(U). Assume also that g is a partial computable one—one function from positive
integers to strings having a prefix-free range. Define C(g(n)) = g(n), for every n € dom(g).

Clearly, C is a machine, so by virtue of the universality of U there exists a constant
k € IN such that for every n € dom(g) there exists a string x, € dom(U) < V such that
U(x,) = C(g(n)) = g(n) and |x,| < |g(n)|+k. Now, using the constant k from above, define

f(n) == pypw(w| < [g(m)] +k A UW) = g(n), (1)

where w is the first string satisfying the condition taken with respect to some computable
enumeration p of dom(U). Clearly, f is partial computable. According to the choice
of the constant k, f(n) is defined whenever g(n) is defined, and, moreover, in this case
U(f(n)) = g(n), and [f(n)| < |g(n)| + k, for all n € dom(g). Thus, dom(f) = dom(g) and
f(dom(f)) = dom(U) = V.

For the implication 2 = 3 we just observe that f is total because g is total and
dom(g) = dom(f).

If D is finite, the implication 3 = 4 is trivial, just take as images of the strings w € D
the first |D| strings in V.
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Now let D < X™ be an infinite c.e. prefix code and take a computable one—one function
g : IN — D that enumerates D. In view of 3, there exists a constant k and a computable
one—one function f : IN — X~ such that f(IN) = V, and |f(n)| < |g(n)| + k for each n.
Next define the mapping ¢ by ¢(v) = f(g~!(v)). The mapping ¢ is well defined (because
both functions g, f are one—one) and partial computable; moreover, dom(¢p) =2 g(IN) = D
and ¢(v) € V, for all v € D.

For every v € D, we have |o(v)] = |f(g7'(v))| < |g(g™"(v))| + k = |v| + k, because of
condition 3.b, and ¢(D) = V.

Finally, for the implication 4=-1 we consider a universal machine U’ and put D =
dom(U’). In view of 4, there exist a partial computable one—one function ¢ : X* — V,
and a constant k (each depending upon V, D) such that conditions 4.a, 4.b are satisfied.
Define U(u) = U'(¢~(u)).

We have dom(U)=¢(X*) < V, by 4.b, a prefix code. To show that U is a universal
machine, we show that Hy(w) < Hy/(w) + k for each w € X*.

Let w € X*. Then there is a v € dom(U’) such that U'(v) = w and |v| = Hy(w). Since,
by definition, w = U’(v) = U(¢(v)), we have Hy(w) < |o(v)| < |[v] +k = Hy(w) + k. [

For the case V' =dom(U), since U is a universal machine, we can strengthen the
condition 4 in Theorem 1 in the following way.

Corollary 2. For every c.e. prefix code D = X* and every universal machine U there are
a partial computable one—one function ¢ : X* — X" and a constant k € IN such that:

(a) D = dom(¢), ¢(D) = dom(U).
(b) |p(u)] < |u| +k, for all u € D.
(c) U(p(u)) = u, for all u € D.

Proof. Again the case of finite prefix codes is trivial; map v € D to a shortest u € dom(U)
such that U(u) = v.

If D is infinite, consider the implication 1=>2 of the proof of Theorem 1. If we choose
g : IN - X* as a function enumerating exactly the set D and define f : N —» X*
as in Equation (1), we get U(f(n)) = g(n) and |f(n)| < |g(n)| + k. Now, as above, let
o(u) := f(g~(n)), and we obtain U(¢(u)) = u and |p(u)| < |u| +k foru=gn) € D. [

Definition 3. We say that a c.e. prefix code is universal if it satisfies one of the equivalent
conditions 1 — 4 in Theorem 1.

As an immediate consequence of Theorem 1.4 or Corollary 2, we obtain the following
lemma.

Lemma 4. Let V = X" be a universal c.e. prefix code. Then for every c.e. prefix code
D < X*, there is a constant k € IN such that for all [ € IN, the inequality |D N X<¥/| <
|V N X<I*K| holds.
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For domains of prefix-universal machines U, we have the following characterisation, which
is simpler than the one given in Theorem 1.
Fact 5. Let V < X" be a c.e. prefix code. The following statements are equivalent:

1 There exists a prefix-universal machine U such that V' = dom(U).

2 For every c.e. prefix code D = X7, there exists a string w € X~ such that wD = VnwX™.

Proof. The implication 1 = 2 follows from the definition of a prefix-universal machine.
For the converse implication, we consider a universal machine U’ and put D = dom(U’).
As D is a c.e. code, there exists a string w € X~ such that wD =V NwX".

We now define U by the formula:

U'(u) ifo=w-u
Up)=< A ifwiZvandveV
undefined otherwise.

It is clear that U is a universal machine; if U’ is prefix-universal, then so is U. ]

3.2. A non-computability result

Although every c.e. prefix code can be in a one-to-one manner effectively embedded into
any universal c.e. prefix code, it turns out that no universal c.e. prefix code is contained
in a computable prefix code. To this end, we consider the language-theoretic density of
(prefix) codes.

Lemma 6. If V = X" is a prefix code and |X| = r, then for every [ € IN there is an m € IN
such that |V N X<Hm| < pm,

Proof. Since V = X" satisfies Kraft’s inequality >°,_,, |X|7"/ < 1, it has density

VX
lim ——— =

m—oo ‘X‘m

(cf- Berstel and Perrin (1985)). The proof then follows immediately from this. U]
Universal c.e. prefix codes have the following property.
Theorem 7 (Nies). Every universal c.e. prefix code is Turing complete.

A recursion-theoretic proof — communicated in Nies (2007) — can be found in Nies (to
appear, Section 2.2).

Lemma 6 and the results of the previous section allow us to give an elementary direct
proof of the weaker fact that no universal c.e. code can be computable.

Corollary 8. No universal c.e. prefix code is computable.

Before proceeding to the proof, we will briefly sketch the idea behind it. Under the
assumption that the universal c.e. prefix code V = X" is computable from V, we construct
a computable code D such that for every k € IN there is an I, € IN such that [D N X<k| >
|V N X<Ik+k| This is done by choosing a computable sequence (v )renv Of strings v, € V,
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|ok| < |vk+1l, and replacing in V' the string v, by a suitably large set of strings vy - X"™.
Then we show that D is computable if V' is computable, and, finally, we argue that V'
cannot be computable in view of Lemma 4.

Proof. Assume the universal c.e. prefix code V' < X* to be computable. We construct a
sequence of finite prefix codes (D;)iev and a sequence of numbers (/;)ien such that:

1 Dy < Dyss.

2 Dk < Xslk.

3 D U (V nX>EFD) is a prefix code.
4 |D N XS] > |V N XSk,

We start with vy := ming, V, that is, v is the minimum of V' = X* with respect to the

quasi-lexicographical ordering’, and put Iy := |vg| + 1 and
Dy :=(V ﬂXglO) \ {Uo} Uy X.

Then it is obvious that conditions 2 and 4 are fulfilled and, since V' is a prefix code,
condition 3 is also fulfilled.

Next, suppose D;_; has already been constructed in such a way that conditions 1 to 4
are fulfilled. We construct D; as follows.

We let v; := ming_(V N X>Ui-1+D) and define the number m; as the smallest number

m € IN such that o
IDiy Ui X" U {w [ v € V\ {oi} Al < o] < Joi] +m}| > [V A X<t
The number m; exists because, in view of Lemma 6, we already have
v - X" =" > |V N X Silmt)

for some m € IN.
Observe also that the three sets D;_y, v; - X™ and {v | v € V \ {vi} A |vi| < |v] < |vi] + m}
are pairwise disjoint.
Then we set [; := |v;| +m; and
D; = Di,1Uv,--X’”fU{v | (S V\{Ui}/\|l)i| < |U| Sl,}

It remains to verify that D; fulfils conditions 1 to 4. Conditions 1 and 2 are easy to see,
and condition 4 follows from the definition of the number m;. In order to verify the third
property, observe that

D;U(Vnxty=p, ;U (¥ XD Gy U - XM

where D;_; U (V N X>(-1+D) is, by the induction hypothesis, a prefix code. Assume now
that w C v for some strings w,v € D; U (V N X=0i+D),

The case in which both strings w,v do not belong to v; - X™ is impossible by the
hypothesis. For the case with v € v; - X™, we obtain w C v; or v; C w, contradicting the

T Since V is assumed to be computable, vy and the subsequent v; can be effectively computed.
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fact that D;_; U (V N X>-1%1) s a prefix code. The case w € v; - X™ yields v; C v, which
also contradicts the hypothesis.

Finally, it is obvious from the above construction that D := |J,.p Di is computable
if only V is computable, and according to Lemma 4, the code V cannot be
universal c.e. U]

3.3. Non-maximality of c.e. prefix codes

In Section 3.1 we have seen that a universal c.e. prefix code V' is large in the sense
that every c.e. prefix code can be one-to-one and computably embedded into V. In this
section we are going to investigate how large universal c.e. prefix codes are if we consider
set-theoretical containment rather than embeddability. To this end, we recall that a prefix
code V < X" is called maximal provided that for every prefix code W < X*, we have
V < W implies W = V.

The following result from Berstel and Perrin (1985) gives an alternative characterisation
of maximal prefix codes.

Lemma 9. A code VV < X* is a maximal prefix code if and only if V is a prefix code and
for every v € X* thereisa w € V such that v T w or w C v.

Next, we note that for c.e. prefix codes, maximality implies computability.
Lemma 10. If V < X" is a c.e. maximal prefix code, then V' is computable.

Proof. In order to decide whether v € X* belongs to V, we enumerate V' as long as a
string w € V with v C w or w C v appears. Then v € V if and only if v = w. U]

With Theorem 8§, we obtain the following corollary.
Corollary 11. No universal c.e. prefix code is (contained in) a maximal prefix code.

It should be noted that the property in Corollary 11 is not typical for universal c.e. prefix
codes, as it can also hold for certain computable prefix codes — we give an example of a
computable prefix code that is not contained in a computable maximal prefix code.

Example 12. Let X ={0,1} and consider a set K <IN that is infinite c.e. but not
computable. Then there is a one-to-one computable function IN — K enumerating
K. Since the graph of f is computable, the prefix code Vi = {0/(")-1-w | w € {0,1}*} =
{0,1}" is also computable, but not maximal.

Assume Vi < V for some computable maximal prefix code V < {0,1}". Observe that,
since V is a prefix code and K is infinite, 0" NV = &. Thus, for every n € IN, V contains
a string of the form 0" - 1 - v.

Therefore, in order to decide whether n € K, one enumerates V' as long as a string of
the form 0" - 1 - v appears and then tests whether f(|jv|) = n. |

If V is a prefix code that satisfies Kraft’s inequality with equality, that is, one for which
> wey ™ =1, then it is maximal; the converse implication is true for finite codes, but
false in general. See Berstel and Perrin (1985) for further details.
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It should be mentioned that, unlike the case of finite codes, for every function f : IN —
IN with -, r /@ < 1, there is a maximal prefix code V; = {w; | i = 0} = X" such that
[wi| = f(i) (see Staiger (2007)). If f is computable and monotone, then V; is computable
also. (More precisely, if f is monotone, then V' is computable in f.)

On the other hand, it is known from the Kraft-Chaitin Theorem (see Calude (2002),
for example) that for every computable function f : IN — IN with Y r 7/ < 1, there
is a universal c.e. prefix code V; = {w; | i >0} = X~ such that |w;| = f(i).

There is, however, no computable procedure assigning to a (non-monotone) computable
function f : IN — IN with >, r /% < 1 a ce. maximal prefix code V; = {w; | i > 0}
such that |w;| = f(i) for every i = 0.

To show this, we use the following property.

Proposition 13. If V = X~ is ce. (computable), its set of lengths {|w| | w € V} = IN is
also c.e. (computable).

Assuming now that a computable function fx that enumerates {i +2 | i € K}, where
K < IN is c.e. but not computable, yields, in a computable way, a maximal prefix code
Vi, we can, by virtue of Lemma 10 and Proposition 13, compute K, contradicting the
uncomputability of K.

4. Information-theoretic size

In the preceding section we have shown that universal c.e. prefix codes are not maximal
with respect to set inclusion, so they are in some sense not large. This observation is
supported by the fact mentioned in the proof of Lemma 6 that their language-theoretic
density is 0.

Here we derive results on universal c.e. prefix codes that show that they are large in
some information-theoretic respect. To this end, we consider a different quantity, which
measures the amount of information necessary to print a string of length n in a certain
language.

For a language W < X", let its structure generating function (cf. Kuich (1970),
Staiger (1993) and Staiger (2005)) be sgy : [0,00) — [0,00] where soy(t) = >, 120N
X" - t". Then

s(v™) = Zmem el
and sgy(t™* = co means that the function sy (n) := |W N X"| cannot be upper-bounded
by r*".

4.1. The structure generating function of a c.e. prefix code

From Kraft’s inequality, it is known that for any code D = X* and a=1 we have the
bound >, ., r ™ < 1. If 55 is a rational function, in particular, when D is a regular
language, we have sp(; +¢) < oo for some ¢ > 0. This amounts to ), ., M < oo for
some o < 1.
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In this section we are going to show that universal c.e. prefix codes do not have this
behaviour, that is, they satisfy so(r™) = Y .o t*I® = oo for all o, 0 < o0 < 1. We will
also investigate some reasons for and consequences of this behaviour.

We start with a consequence of Theorem 1: a technical result from which we derive a
simplification of the proof of Theorem 3.2.(b) in Tadaki (2002).

Lemma 14. Let D < X* be a c.e. prefix code and o € (0,00), and let U be a universal
machine. If D is finite or o > 1, then there is a constant k such that

—o|w| ok . —o-Hy(w) ok . —o|v|
r <r E r <r E r .
ZwED = weD = vedom(U)

Remark. Note that for infinite D and o < 1 the sum >, ., r~*Hv™) is always infinite.
The more general fact that Y, _, r~*Hv™) diverges for o < 1 and arbitrary infinite c..
W < X was derived in Equation (49) of Tadaki (2002). For the sake of completeness, we
prove it as Lemma 15 below.

Proof of Lemma 14. We use the one—one function ¢ of Corollary 2. In order to verify
the first inequality, observe that the third condition of Corollary 2 implies Hy(w) <
lp(w)| < |w| +k, for w € D. Now the second inequality follows immediately from the fact
that {v | U(v) € D Alv] = H(U(v))} = dom(U). O

Lemma 15. Let W be an arbitrary infinite c.e. subset of X* and 0 < « < 1. Then

g rmr ) — o
weW

Proof. Let f : IN — X* be a computable one—one function enumerating W. Then every
string w € W has a unique pre-image n € IN. Hence

—aHy(w) _ —a-Hy(f(n))
ZweW r ZnE]N r )

Now, Hy(f(n)) < log,n+ 2 -log,log,n+ c for n = r, and if n,, depending on o with

0 < a < 1, is large enough, we have 2u-log, log, n < (1 —«) - log, n whenever n = n,. Thus,
we obtain

el 5 o 1

n

and hence the series diverges. |

>

As a corollary to Lemma 15, we obtain Theorem 3.2.(b) of Tadaki (2002).

Theorem 16. For 0 < « < 1 and every universal machine U, the series Y, cjomu) """
diverges.

Our proof of Lemma 15 shows that every infinite c.e. subset W of X" is enumerated
starting with low complex strings. This observation is supported by Kolmogorov’s result
(¢f- Zvonkin and Levin (1970, Theorem 1.3) or Staiger (1993, Theorem 2.9)) that a
string w of length n in every c.e. subset W < X* has a complexity H(w) bounded by
log, |[W N X" + o(n).

The ‘conclusion’ that the complements of c.e. subsets consist of only highly complex
strings is, however, not true. We will use Staiger (1993, Theorem 2.9), which proves a
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result analogous to the above-mentioned Kolmogorov theorem for complements of c.e.
subsets of X*. We will exploit this construction to show that an analogue of Lemma 15
is also true for a large class of complements of c.e. subsets of X".

As usual, a language W < X" is called sparse if there is a polynomial p(n) such that
[W N X" < p(n) for every n € IN.

Theorem 17. Let W < X* be the complement of c.e. subset of X*, and let W be
non-sparse. Then, for all 0 < o < 1, we have

E rmHuO) = o
weW

Proof. It is shown in the proof of Staiger (1993, Theorem 2.9) that if W = X is the
complement of c.e. subset, then there is a computable partial function p := X* xIN —» X*
such that:

1 |p(m,n)] = n whenever (7,n) € dom(y).
2 For every w € W there is a n, |n| < [log, |W N X™ ] such that y(m, |w|) = w.

This function p is transformed into a computable prefix (partial) function ¢ as follows:

w(m, n), if v = string,(n) - string,(|7|) - =
o) = for some (7,n) € X* x IN, and
undefined, otherwise.

Clearly, our construction shows that dom(¢) is prefix-free. Moreover, for every w €
W N X" there is a n’ with

7’| <log, |[W N X" +2-log,log, |WNX"|+2 log,n+6
such that ¢(n') = w'. Since log, |W N X"| < n, we get
Hy(w) <log, |WNX"|+4-log.n+c¢

for all w € W N X" where the constant c is suitably chosen. Then

Z r—%HU(w) > ‘W N Xn|l—oc . L e
wewnx” n4“

whenever W N X" #+ .
Next we use the assumption that W is non-sparse. Then, for every o, 0 < « < 1, there
are infinitely many n such that |[W N X"| > n*® where k(«) := [{2]. Thus

§ r—OC‘Hu(W) > poe
weWwnxn

for infinitely many n € IN, hence the series

§ r—oc'HU(w) — § § r—%‘Hu(W)
weWw nelN weWnxn

diverges. ]

T Here it is understood that log, o := 0 for o < 1.
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As a corollary to Lemma 15 and Theorem 17 we obtain the following generalisation of
Theorem 16.

Corollary 18. Let U be a universal prefix machine, let W = X* be computably enumerable
or a non-sparse complement of a computably enumerable language and let D = {n : 7 €
dom(U)AU(rn) € W}. Then > pr > = oo for all o < 1.

4.2. The entropy of c.e. prefix codes

As mentioned above, the convergence of the series sgu(t™) = Y, oyt *1®, for 0 < < 1,
depends on the numbers |W N X”|. The unique value Hy € [0,1] such that >y, r—*™
converges for all « > Hyy is known as the entropy of the language W. It can be calculated
as follows (see Kuich (1970), Staiger (1993) and Staiger (2005)):

. 1 WnX"+1
Hy = lim sup 08 [+ ).

n—o0 n

(2)

Now Corollary 16 yields the following corollary.
Corollary 19. Let VV = X* be a universal c.e. prefix code. Then Hy = 1.

Moreover, for a universal c.e. prefix code V = X*, the function

frio) = r M

weV
has the following typical plot:
frv(@)
A
o0 7 \
\
I
I
\
\
\
ki !
fr(1)
0 ‘ e >
0 1

We can substitute the upper limit in Corollary 19 by the lower one.
Theorem 20. Let V' = X* be a universal c.e. prefix code. Then, the lower entropy of V
is 1:

1
lim inf ;logr(lVﬁXg’ﬂ +1)=1.

n—oo
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Proof. Consider a universal prefix machine U such that dom(U) < V, and consider
the one-to-one mapping that maps every string w € X to a shortest m, such that
U(n,) = w. It is known that |r,| < |w| + 2 - log, |w| + ¢ for some ¢ € IN. Consequently,
|dom(U) N X Str+2log nte)| > yn - and the assertion follows. O

The property of Theorem 20 is, however, not only fulfilled by universal c.e. prefix codes.
There are even languages of low complexity, more precisely, simple deterministic context-
free languages (see Autebert et al. (1997) for a definition) that also have a lower entropy
of 1. We will now give an example generalising Theorem 10 of Calude and Stay (2006) to
the case | X| > 2.

Example 21. As in Kuich (1970) and Staiger (2005), we consider the Lukasiewicz-language
L, = X* defined by the equation

L, ={l,...,r—1}U0-LI.

By considering Raney sequences (cf. Graham et al. (1989)), it was shown in Kuich (1970)
that for the language W, < {0, 1} defined by the equation W, =1U0- W/, we have

rn _ (}’li")' = 1 e
W00 = G e 1 = (r—1)~n+1< n )

and |W,n{0,1}!| = 0if # 1 (mod r). Moreover, every string w € W, of length |w| = n-r+1
has exactly n occurrences of the letter 0.

The strings of £, can be obtained by substituting the letter 1 by letters from {1,...,r—1}.
Thus

1 n-r
rotl) _ L 1\r—1)+1
IL, N X" (r—l)-n-l—l(n) r—1) .

n-r 1 rr(n—l)-‘rl
()>F e

for n = 3 (from Stanica (2001, Corollary 2.9)), we get

Using the inequality

-1\ 1
erXr--;1+1 > r . . r~n+1’
| | < r ) —hotn-gn

which proves that lirln inf { log, [L, N X< = 1.
—0

Using Lemma 4, our Example 21 yields an alternative proof of Theorem 20.
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