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We study computably enumerable (c.e.) prefix codes that are capable of coding all positive

integers in an optimal way up to a fixed constant: these codes will be called universal. We

prove various characterisations of these codes, including the following one: a c.e. prefix code

is universal if and only if it contains the domain of a universal self-delimiting Turing

machine. Finally, we study various properties of these codes from the points of view of

computability, maximality and density.

1. Introduction and notation

We study computably enumerable prefix codes that are capable of coding all positive

integers in an optimal way up to a fixed constant: these codes will be called universal.

Our arguments combine elementary facts from coding theory, algorithmic information

theory and formal language theory. We prove various characterisations of these codes

including the following one: a c.e. prefix code is universal if and only if it contains the

domain of a universal self-delimiting Turing machine. Various properties of these codes

are then presented.

We will follow the notation in Calude (2002). We use IN = {0, 1, 2, . . .} to denote the set

of positive integers. The cardinality of a set A is denoted by |A|. Let us fix X = {0, . . . , r−1}
an alphabet of cardinality r, and use X∗ to denote the set of finite strings (words) on X,

including the empty string λ.

The length of the string w is denoted by |w|, and we use Xi = {w ∈ X∗ | |w| = i},

X�i = {w ∈ X∗ | |w| � i} and X�i = {w ∈ X∗ | |w| � i} to denote the sets of strings having

lengths exactly i, not larger than i, or not smaller than i, respectively. If v is a prefix of w,

we write v � w, and write v � w if v � w and v �= w. A natural ordering of X∗ is the quasi-

lexicographical (or length-lexicographical ) ordering ‘�qlex’ where strings are ordered first

according to their length, and strings of the same length are then ordered lexicographically

(with respect to some ordering of the alphabet X)†. We use stringr(n) to denote the

† Work done in Halle; the support of Martin-Luther University and Institute of Informatics is gratefully

acknowledged. Part of this project was supported by UARC Grant 3607895/2006.
† This ordering is not to be confused with the lexicographical ordering where the string 1 is preceded by all

strings starting with 0.
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nth string in the quasi-lexicographical ordering of X∗ = {0, . . . , r − 1}∗, for example,

stringr(0) = λ, stringr(1) = 0, stringr(2) = 1, . . . , stringr(r + 1) = 00, . . . , and so on.

Moreover, we fix a prefix-free encoding of strings in X∗ in the same way as, for

example, in Zvonkin and Levin (1970), so that for w = x1 · · · xl where xi ∈ X, l � 0 we

set x1 · · · xl := 0x10x2 · · · 0xl1.

For V ,W ⊆ X∗, we use VW to denote the set {vw | v ∈ V∧ ∈ W } of concatenations

of strings from Vwith strings from W . For V = {u} we write uW instead of {u}W . A

prefix code is a prefix-free subset of strings. Prefix codes over X satisfy Kraft’s inequality:∑
w∈A r

−|w| � 1.

A self-delimiting Turing machine (a machine for short) is a Turing machine C processing

binary strings such that its program set (domain) dom(C) = {π | π ∈ X∗ ∧ C(π) halts} is

a prefix-free set of strings. As usual, we define the self-delimiting (prefix, or program-size)

complexity of a string w with respect to a machine C as HC(w) := inf{|π| | π ∈ X∗ ∧C(π) =

w}. See Chaitin (1987), Calude (2002) and Downey and Hirschfeldt (to appear) for further

details.

A prefix code is computably enumerable (c.e.) if and only if it is the domain of a

self-delimiting Turing machine.

We can effectively construct a machine U (called universal) such that for every machine

C , there exists a constant k (depending only on U and C) such that for every string

π ∈ dom(C) there exists a string π′ ∈ dom(U) such that U(π′) = C(π) and |π′| � |π| + k.

A prefix-universal machine U is a special universal machine defined by the following

property: for every self-delimiting Turing machine C there exists a string w (depending

only on U and C) such that for every string π ∈ dom(C) we have U(wπ) = C(π). We can

effectively construct prefix-universal machines; there exist universal machines that are not

prefix-universal. All quantifiers in the definition of universality and prefix-universality are

effective.

2. Motivation

Consider the binary alphabet X = {0, 1}. The computable prefix code S = {1n0 : n � 0}
codes every integer n � 0 with a string of n + 1 bits. A better solution is given by the

computable prefix code S = {1log n0string2(n) : n � 0}, which codes every integer n � 0

with a string of 2 log n + 1 bits. An even better solution is a computable prefix code T

that codes every integer n � 0 with a string of length log n + 2 log n log n + 1 bits. In

Levenšteı̆n (1968), two prefix codes for the natural numbers are introduced and shown to:

1 have an asymptotically minimal redundancy; and

2 be computable by a Turing machine with a minimal delay.

We may ask: is there a best way of representing integers with computable prefix codes,

or, more generally, with c.e. prefix codes? There are various ways to define optimality;

here we will focus on set-theoretic maximality, information-theoretic (rate/capacity) and

computable one-to-one translations (embedability).
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3. Properties of universal c.e. prefix codes

In this section we define and characterise universal c.e. prefix codes. We start with a

theorem that characterises universal c.e. prefix codes. Then we give a non-computability

result, and the final subsection is devoted to some consequences.

3.1. A characterisation theorem

Here we prove the following equivalences.

Theorem 1. Let V ⊆ X∗ be a c.e. prefix code. Then, the following statements are equivalent:

1 There exists a universal machine U such that V ⊇ dom(U).

2 For every partial computable one–one function g : IN → X∗ having a prefix-free

range, there exist a partial computable one–one function f : IN → X∗ and a constant

k ∈ IN such that:

(a) f(dom(f)) ⊆ V .

(b) dom(g) ⊆ dom(f) and |f(n)| � |g(n)| + k, for every n ∈ dom(g).

3 For every computable one–one function g : IN → X∗ having a prefix-free range, there

exist a computable one–one function f : IN → X∗ and a constant k ∈ IN such that:

(a) f(IN) ⊆ V .

(b) |f(n)| � |g(n)| + k, for every n ∈ IN.

4 For every c.e. prefix code D ⊆ X∗ there exist a partial computable one–one function

ϕ : X∗ → X∗ and a constant k ∈ IN such that:

(a) D ⊆ dom(ϕ), ϕ(D) ⊆ V .

(b) |ϕ(u)| � |u| + k, for every u ∈ dom(ϕ).

Proof. For the implication 1 ⇒ 2 we assume that U is a universal machine and

V ⊇ dom(U). Assume also that g is a partial computable one–one function from positive

integers to strings having a prefix-free range. Define C(g(n)) = g(n), for every n ∈ dom(g).

Clearly, C is a machine, so by virtue of the universality of U there exists a constant

k ∈ IN such that for every n ∈ dom(g) there exists a string xn ∈ dom(U) ⊆ V such that

U(xn) = C(g(n)) = g(n) and |xn| � |g(n)|+k. Now, using the constant k from above, define

f(n) := μψw(|w| � |g(n)| + k ∧U(w) = g(n)) , (1)

where w is the first string satisfying the condition taken with respect to some computable

enumeration ψ of dom(U). Clearly, f is partial computable. According to the choice

of the constant k, f(n) is defined whenever g(n) is defined, and, moreover, in this case

U(f(n)) = g(n), and |f(n)| � |g(n)| + k, for all n ∈ dom(g). Thus, dom(f) ⊇ dom(g) and

f(dom(f)) ⊆ dom(U) ⊆ V .

For the implication 2 ⇒ 3 we just observe that f is total because g is total and

dom(g) ⊆ dom(f).

If D is finite, the implication 3 ⇒ 4 is trivial, just take as images of the strings w ∈ D

the first |D| strings in V .



C. S. Calude and L. Staiger 4

Now let D ⊆ X∗ be an infinite c.e. prefix code and take a computable one–one function

g : IN → D that enumerates D. In view of 3, there exists a constant k and a computable

one–one function f : IN → X∗ such that f(IN) ⊆ V , and |f(n)| � |g(n)| + k for each n.

Next define the mapping ϕ by ϕ(v) = f(g−1(v)). The mapping ϕ is well defined (because

both functions g, f are one–one) and partial computable; moreover, dom(ϕ) ⊇ g(IN) = D

and ϕ(v) ∈ V , for all v ∈ D.

For every v ∈ D, we have |ϕ(v)| = |f(g−1(v))| � |g(g−1(v))| + k = |v| + k, because of

condition 3.b, and ϕ(D) ⊆ V .

Finally, for the implication 4 ⇒ 1 we consider a universal machine U ′ and put D =

dom(U ′). In view of 4, there exist a partial computable one–one function ϕ : X∗ → V ,

and a constant k (each depending upon V ,D) such that conditions 4.a, 4.b are satisfied.

Define U(u) = U ′(ϕ−1(u)).

We have dom(U) =ϕ(X∗) ⊆ V , by 4.b, a prefix code. To show that U is a universal

machine, we show that HU(w) � HU ′ (w) + k for each w ∈ X∗.

Let w ∈ X∗. Then there is a v ∈ dom(U ′) such that U ′(v) = w and |v| = HU ′ (w). Since,

by definition, w = U ′(v) = U(ϕ(v)), we have HU(w) � |ϕ(v)| � |v| + k = HU ′ (w) + k.

For the case V = dom(U), since U is a universal machine, we can strengthen the

condition 4 in Theorem 1 in the following way.

Corollary 2. For every c.e. prefix code D ⊆ X∗ and every universal machine U there are

a partial computable one–one function ϕ : X∗ → X∗ and a constant k ∈ IN such that:

(a) D ⊆ dom(ϕ), ϕ(D) ⊆ dom(U).

(b) |ϕ(u)| � |u| + k, for all u ∈ D.

(c) U(ϕ(u)) = u, for all u ∈ D.

Proof. Again the case of finite prefix codes is trivial; map v ∈ D to a shortest u ∈ dom(U)

such that U(u) = v.

If D is infinite, consider the implication 1 ⇒ 2 of the proof of Theorem 1. If we choose

g : IN → X∗ as a function enumerating exactly the set D and define f : IN → X∗

as in Equation (1), we get U(f(n)) = g(n) and |f(n)| � |g(n)| + k. Now, as above, let

ϕ(u) := f(g−1(n)), and we obtain U(ϕ(u)) = u and |ϕ(u)| � |u| + k for u = g(n) ∈ D.

Definition 3. We say that a c.e. prefix code is universal if it satisfies one of the equivalent

conditions 1 – 4 in Theorem 1.

As an immediate consequence of Theorem 1.4 or Corollary 2, we obtain the following

lemma.

Lemma 4. Let V ⊆ X∗ be a universal c.e. prefix code. Then for every c.e. prefix code

D ⊆ X∗, there is a constant k ∈ IN such that for all l ∈ IN, the inequality |D ∩ X�l | �
|V ∩X�l+k| holds.
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For domains of prefix-universal machines U, we have the following characterisation, which

is simpler than the one given in Theorem 1.

Fact 5. Let V ⊆ X∗ be a c.e. prefix code. The following statements are equivalent:

1 There exists a prefix-universal machine U such that V = dom(U).

2 For every c.e. prefix code D ⊆ X∗, there exists a string w ∈ X∗ such that wD = V∩wX∗.

Proof. The implication 1 ⇒ 2 follows from the definition of a prefix-universal machine.

For the converse implication, we consider a universal machine U ′ and put D = dom(U ′).

As D is a c.e. code, there exists a string w ∈ X∗ such that wD = V ∩ wX∗.

We now define U by the formula:

U(v) =

⎧⎪⎪⎨
⎪⎪⎩
U ′(u) if v = w · u
λ if w �� v and v ∈ V

undefined otherwise .

It is clear that U is a universal machine; if U ′ is prefix-universal, then so is U.

3.2. A non-computability result

Although every c.e. prefix code can be in a one-to-one manner effectively embedded into

any universal c.e. prefix code, it turns out that no universal c.e. prefix code is contained

in a computable prefix code. To this end, we consider the language-theoretic density of

(prefix) codes.

Lemma 6. If V ⊆ X∗ is a prefix code and |X| = r, then for every l ∈ IN there is an m ∈ IN

such that |V ∩X�l+m| < rm.

Proof. Since V ⊆ X∗ satisfies Kraft’s inequality
∑

v∈V |X|−|v| � 1, it has density

lim
m→∞

|V ∩X�m|
|X|m = 0

(cf. Berstel and Perrin (1985)). The proof then follows immediately from this.

Universal c.e. prefix codes have the following property.

Theorem 7 (Nies). Every universal c.e. prefix code is Turing complete.

A recursion-theoretic proof – communicated in Nies (2007) – can be found in Nies (to

appear, Section 2.2).

Lemma 6 and the results of the previous section allow us to give an elementary direct

proof of the weaker fact that no universal c.e. code can be computable.

Corollary 8. No universal c.e. prefix code is computable.

Before proceeding to the proof, we will briefly sketch the idea behind it. Under the

assumption that the universal c.e. prefix code V ⊆ X∗ is computable from V , we construct

a computable code D such that for every k ∈ IN there is an lk ∈ IN such that |D∩X�lk | >
|V ∩ X�lk+k|. This is done by choosing a computable sequence (vk)k∈IN of strings vk ∈ V ,

cristian
Highlight
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|vk| < |vk+1|, and replacing in V the string vk by a suitably large set of strings vk · Xmk .

Then we show that D is computable if V is computable, and, finally, we argue that V

cannot be computable in view of Lemma 4.

Proof. Assume the universal c.e. prefix code V ⊆ X∗ to be computable. We construct a

sequence of finite prefix codes (Di)i∈IN and a sequence of numbers (li)i∈IN such that:

1 Dk ⊂ Dk+1.

2 Dk ⊆ X�lk .

3 Dk ∪ (V ∩X�(lk+1)) is a prefix code.

4 |Dk ∩X�lk | > |V ∩X�lk+k|.
We start with v0 := min�qlex

V , that is, v0 is the minimum of V ⊆ X∗ with respect to the

quasi-lexicographical ordering†, and put l0 := |v0| + 1 and

D0 := (V ∩X�l0 ) \ {v0} ∪ v0 ·X .

Then it is obvious that conditions 2 and 4 are fulfilled and, since V is a prefix code,

condition 3 is also fulfilled.

Next, suppose Di−1 has already been constructed in such a way that conditions 1 to 4

are fulfilled. We construct Di as follows.

We let vi := min�qlex
(V ∩ X�(li−1+1)) and define the number mi as the smallest number

m ∈ IN such that

|Di−1 ∪ vi ·Xm ∪ {v | v ∈ V \ {vi} ∧ |vi| � |v| � |vi| + m}| > |V ∩X�(|vi|+m+i)| .

The number mi exists because, in view of Lemma 6, we already have

|vi ·Xm| = rm > |V ∩X�(|vi|+m+i)|

for some m ∈ IN.

Observe also that the three sets Di−1, vi ·Xm and {v | v ∈ V \ {vi} ∧ |vi| � |v| � |vi| + m}
are pairwise disjoint.

Then we set li := |vi| + mi and

Di := Di−1 ∪ vi ·Xmi ∪ {v | v ∈ V \ {vi} ∧ |vi| � |v| � li} .

It remains to verify that Di fulfils conditions 1 to 4. Conditions 1 and 2 are easy to see,

and condition 4 follows from the definition of the number mi. In order to verify the third

property, observe that

Di ∪ (V ∩X�(li+1)) = Di−1 ∪ (V ∩X�(li−1+1) \ {vi}) ∪ vi ·Xmi ,

where Di−1 ∪ (V ∩ X�(li−1+1)) is, by the induction hypothesis, a prefix code. Assume now

that w � v for some strings w, v ∈ Di ∪ (V ∩X�(li+1)).

The case in which both strings w, v do not belong to vi · Xmi is impossible by the

hypothesis. For the case with v ∈ vi · Xmi , we obtain w � vi or vi � w, contradicting the

† Since V is assumed to be computable, v0 and the subsequent vi can be effectively computed.
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fact that Di−1 ∪ (V ∩X�(li−1+1)) is a prefix code. The case w ∈ vi ·Xmi yields vi � v, which

also contradicts the hypothesis.

Finally, it is obvious from the above construction that D :=
⋃
i∈IN Di is computable

if only V is computable, and according to Lemma 4, the code V cannot be

universal c.e.

3.3. Non-maximality of c.e. prefix codes

In Section 3.1 we have seen that a universal c.e. prefix code V is large in the sense

that every c.e. prefix code can be one-to-one and computably embedded into V . In this

section we are going to investigate how large universal c.e. prefix codes are if we consider

set-theoretical containment rather than embeddability. To this end, we recall that a prefix

code V ⊆ X∗ is called maximal provided that for every prefix code W ⊆ X∗, we have

V ⊆ W implies W = V .

The following result from Berstel and Perrin (1985) gives an alternative characterisation

of maximal prefix codes.

Lemma 9. A code V ⊆ X∗ is a maximal prefix code if and only if V is a prefix code and

for every v ∈ X∗ there is a w ∈ V such that v � w or w � v.

Next, we note that for c.e. prefix codes, maximality implies computability.

Lemma 10. If V ⊆ X∗ is a c.e. maximal prefix code, then V is computable.

Proof. In order to decide whether v ∈ X∗ belongs to V , we enumerate V as long as a

string w ∈ V with v � w or w � v appears. Then v ∈ V if and only if v = w.

With Theorem 8, we obtain the following corollary.

Corollary 11. No universal c.e. prefix code is (contained in) a maximal prefix code.

It should be noted that the property in Corollary 11 is not typical for universal c.e. prefix

codes, as it can also hold for certain computable prefix codes – we give an example of a

computable prefix code that is not contained in a computable maximal prefix code.

Example 12. Let X= {0, 1} and consider a set K ⊆ IN that is infinite c.e. but not

computable. Then there is a one-to-one computable function IN → K enumerating

K . Since the graph of f is computable, the prefix code VK := {0f(|w|) · 1 ·w | w ∈ {0, 1}∗} ⊆
{0, 1}∗ is also computable, but not maximal.

Assume VK ⊆ V for some computable maximal prefix code V ⊆ {0, 1}∗. Observe that,

since V is a prefix code and K is infinite, 0∗ ∩ V = �. Thus, for every n ∈ IN, V contains

a string of the form 0n · 1 · v.
Therefore, in order to decide whether n ∈ K , one enumerates V as long as a string of

the form 0n · 1 · v appears and then tests whether f(|v|) = n.

If V is a prefix code that satisfies Kraft’s inequality with equality, that is, one for which∑
w∈V r

−|w| = 1, then it is maximal; the converse implication is true for finite codes, but

false in general. See Berstel and Perrin (1985) for further details.
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It should be mentioned that, unlike the case of finite codes, for every function f : IN →
IN with

∑
i�0 r

−f(i) � 1, there is a maximal prefix code Vf = {wi | i � 0} ⊆ X∗ such that

|wi| = f(i) (see Staiger (2007)). If f is computable and monotone, then Vf is computable

also. (More precisely, if f is monotone, then Vf is computable in f.)

On the other hand, it is known from the Kraft–Chaitin Theorem (see Calude (2002),

for example) that for every computable function f : IN → IN with
∑

i�0 r
−f(i) � 1, there

is a universal c.e. prefix code Vf = {wi | i � 0} ⊆ X∗ such that |wi| = f(i).

There is, however, no computable procedure assigning to a (non-monotone) computable

function f : IN → IN with
∑

i�0 r
−f(i) � 1 a c.e. maximal prefix code Vf = {wi | i � 0}

such that |wi| = f(i) for every i � 0.

To show this, we use the following property.

Proposition 13. If V ⊆ X∗ is c.e. (computable), its set of lengths {|w| | w ∈ V } ⊆ IN is

also c.e. (computable).

Assuming now that a computable function fK that enumerates {i + 2 | i ∈ K}, where

K ⊆ IN is c.e. but not computable, yields, in a computable way, a maximal prefix code

VfK , we can, by virtue of Lemma 10 and Proposition 13, compute K , contradicting the

uncomputability of K .

4. Information-theoretic size

In the preceding section we have shown that universal c.e. prefix codes are not maximal

with respect to set inclusion, so they are in some sense not large. This observation is

supported by the fact mentioned in the proof of Lemma 6 that their language-theoretic

density is 0 .

Here we derive results on universal c.e. prefix codes that show that they are large in

some information-theoretic respect. To this end, we consider a different quantity, which

measures the amount of information necessary to print a string of length n in a certain

language.

For a language W ⊆ X∗, let its structure generating function (cf. Kuich (1970),

Staiger (1993) and Staiger (2005)) be sW : [0,∞) → [0,∞] where sW(t) :=
∑

n∈IN |W ∩
Xn| · tn. Then

sW(r−α) =
∑

w∈W
r−α·|w| ,

and sW(r−α) = ∞ means that the function sW (n) := |W ∩ Xn| cannot be upper-bounded

by rα·n.

4.1. The structure generating function of a c.e. prefix code

From Kraft’s inequality, it is known that for any code D ⊆ X∗ and α= 1 we have the

bound
∑

w∈D r
−|w| � 1. If sD is a rational function, in particular, when D is a regular

language, we have sD(1

r
+ ε) < ∞ for some ε > 0. This amounts to

∑
w∈D r

−α·|w| < ∞ for

some α < 1.
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In this section we are going to show that universal c.e. prefix codes do not have this

behaviour, that is, they satisfy sD(r−α) =
∑

w∈D r−α·|w| = ∞ for all α, 0 � α < 1. We will

also investigate some reasons for and consequences of this behaviour.

We start with a consequence of Theorem 1: a technical result from which we derive a

simplification of the proof of Theorem 3.2.(b) in Tadaki (2002).

Lemma 14. Let D ⊆ X∗ be a c.e. prefix code and α ∈ (0,∞), and let U be a universal

machine. If D is finite or α � 1, then there is a constant k such that∑
w∈D

r−α·|w| � rα·k ·
∑

w∈D
r−α·HU (w) � rα·k ·

∑
v∈dom(U)

r−α·|v| .

Remark. Note that for infinite D and α < 1 the sum
∑

w∈D r
−α·HU (w) is always infinite.

The more general fact that
∑

w∈W r−α·HU (w) diverges for α < 1 and arbitrary infinite c.e.

W ⊆ X∗ was derived in Equation (49) of Tadaki (2002). For the sake of completeness, we

prove it as Lemma 15 below.

Proof of Lemma 14 . We use the one–one function ϕ of Corollary 2. In order to verify

the first inequality, observe that the third condition of Corollary 2 implies HU(w) �
|ϕ(w)| � |w| + k, for w ∈ D. Now the second inequality follows immediately from the fact

that {v | U(v) ∈ D ∧ |v| = H(U(v))} ⊆ dom(U).

Lemma 15. Let W be an arbitrary infinite c.e. subset of X∗ and 0 � α < 1. Then∑
w∈W

r−α·HU (w) = ∞ .

Proof. Let f : IN → X∗ be a computable one–one function enumerating W . Then every

string w ∈ W has a unique pre-image n ∈ IN. Hence∑
w∈W

r−α·HU (w) =
∑

n∈IN
r−α·HU (f(n)) .

Now, HU(f(n)) � logr n + 2 · logr logr n + c for n � r, and if nα, depending on α with

0 � α < 1, is large enough, we have 2α · logr logr n � (1 −α) · logr n whenever n � nα. Thus,

we obtain

r−α·HU (f(n)) � c′ · 1

n
,

and hence the series diverges.

As a corollary to Lemma 15, we obtain Theorem 3.2.(b) of Tadaki (2002).

Theorem 16. For 0 � α < 1 and every universal machine U, the series
∑

v∈dom(U) r
−α·|v|

diverges.

Our proof of Lemma 15 shows that every infinite c.e. subset W of X∗ is enumerated

starting with low complex strings. This observation is supported by Kolmogorov’s result

(cf. Zvonkin and Levin (1970, Theorem 1.3) or Staiger (1993, Theorem 2.9)) that a

string w of length n in every c.e. subset W ⊆ X∗ has a complexity H(w) bounded by

logr |W ∩Xn| + o(n).

The ‘conclusion’ that the complements of c.e. subsets consist of only highly complex

strings is, however, not true. We will use Staiger (1993, Theorem 2.9), which proves a
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result analogous to the above-mentioned Kolmogorov theorem for complements of c.e.

subsets of X∗. We will exploit this construction to show that an analogue of Lemma 15

is also true for a large class of complements of c.e. subsets of X∗.

As usual, a language W ⊆ X∗ is called sparse if there is a polynomial p(n) such that

|W ∩Xn| � p(n) for every n ∈ IN.

Theorem 17. Let W ⊆ X∗ be the complement of c.e. subset of X∗, and let W be

non-sparse. Then, for all 0 � α < 1, we have∑
w∈W

r−α·HU (w) = ∞ .

Proof. It is shown in the proof of Staiger (1993, Theorem 2.9) that if W ⊆ X∗ is the

complement of c.e. subset, then there is a computable partial function ψ :⊆ X∗ × IN → X∗

such that:

1 |ψ(π, n)| = n whenever (π, n) ∈ dom(ψ).

2 For every w ∈ W there is a π, |π| � �logr |W ∩X |w||� such that ψ(π, |w|) = w.

This function ψ is transformed into a computable prefix (partial) function ϕ as follows:

ϕ(v) :=

⎧⎨
⎩
ψ(π, n), if v = stringr(n) · stringr(|π|) · π

for some (π, n) ∈ X∗ × IN, and

undefined, otherwise.

Clearly, our construction shows that dom(ϕ) is prefix-free. Moreover, for every w ∈
W ∩Xn there is a π′ with

|π′| � logr |W ∩Xn| + 2 · logr logr |W ∩Xn| + 2 · logr n+ 6

such that ϕ(π′) = w†. Since logr |W ∩Xn| � n, we get

HU(w) � logr |W ∩Xn| + 4 · logr n+ c

for all w ∈ W ∩Xn where the constant c is suitably chosen. Then

∑
w∈W∩Xn

r−α·HU (w) � |W ∩Xn|1−α · 1

n4α
· r−α·c

whenever W ∩Xn �= �.

Next we use the assumption that W is non-sparse. Then, for every α, 0 � α < 1, there

are infinitely many n such that |W ∩Xn| � nk(α) where k(α) := � 4·α
1−α�. Thus

∑
w∈W∩Xn

r−α·HU (w) � r−α·c

for infinitely many n ∈ IN, hence the series∑
w∈W

r−α·HU (w) =
∑

n∈IN

∑
w∈W∩Xn

r−α·HU (w)

diverges.

† Here it is understood that logr α := 0 for α � 1.
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As a corollary to Lemma 15 and Theorem 17 we obtain the following generalisation of

Theorem 16.

Corollary 18. Let U be a universal prefix machine, let W ⊆ X∗ be computably enumerable

or a non-sparse complement of a computably enumerable language and let D = {π : π ∈
dom(U) ∧U(π) ∈ W }. Then

∑
w∈D r

−α·|w| = ∞ for all α < 1.

4.2. The entropy of c.e. prefix codes

As mentioned above, the convergence of the series sW(r−α) =
∑

w∈W r−α·|w|, for 0 � α < 1,

depends on the numbers |W ∩ Xn|. The unique value HW ∈ [0, 1] such that
∑

w∈W r−α·|w|

converges for all α > HW is known as the entropy of the language W . It can be calculated

as follows (see Kuich (1970), Staiger (1993) and Staiger (2005)):

HW = lim sup
n→∞

logr(|W ∩Xn| + 1)

n
. (2)

Now Corollary 16 yields the following corollary.

Corollary 19. Let V ⊆ X∗ be a universal c.e. prefix code. Then HV = 1.

Moreover, for a universal c.e. prefix code V ⊆ X∗, the function

fV (α) :=
∑
w∈V

r−α·|w|

has the following typical plot:

0

1

0

fV (α)

α1

∞

fV (1)

�

�

We can substitute the upper limit in Corollary 19 by the lower one.

Theorem 20. Let V ⊆ X∗ be a universal c.e. prefix code. Then, the lower entropy of V

is 1:

lim inf
n→∞

1

n
logr(|V ∩X�n| + 1) = 1 .
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Proof. Consider a universal prefix machine U such that dom(U) ⊆ V , and consider

the one-to-one mapping that maps every string w ∈ X∗ to a shortest πw such that

U(πw) = w. It is known that |πw| � |w| + 2 · logr |w| + c for some c ∈ IN. Consequently,

|dom(U) ∩X�(n+2·logr n+c)| � rn, and the assertion follows.

The property of Theorem 20 is, however, not only fulfilled by universal c.e. prefix codes.

There are even languages of low complexity, more precisely, simple deterministic context-

free languages (see Autebert et al. (1997) for a definition) that also have a lower entropy

of 1. We will now give an example generalising Theorem 10 of Calude and Stay (2006) to

the case |X| > 2.

Example 21. As in Kuich (1970) and Staiger (2005), we consider the �Lukasiewicz-language

�Lr ⊆ X∗ defined by the equation

�Lr = {1, . . . , r − 1} ∪ 0 · �Lr
r .

By considering Raney sequences (cf. Graham et al. (1989)), it was shown in Kuich (1970)

that for the language Wr ⊆ {0, 1} defined by the equation Wr = 1 ∪ 0 ·Wr
r , we have

|Wr ∩ {0, 1}r·n+1| =
(n · r)!

n! · ((r − 1)n+ 1)!
=

1

(r − 1) · n+ 1

(
n · r
n

)
,

and |Wr∩{0, 1}l | = 0 if l �≡ 1 (mod r). Moreover, every string w ∈ Wr of length |w| = n·r+1

has exactly n occurrences of the letter 0.

The strings of �Lr can be obtained by substituting the letter 1 by letters from {1, . . . , r−1}.

Thus

|�Lr ∩Xr·n+1| =
1

(r − 1) · n+ 1

(
n · r
n

)
· (r − 1)n(r−1)+1 .

Using the inequality (
n · r
n

)
>

1√
n

· rr(n−1)+1

(r − 1)(r−1)(n−1)
,

for n � 3 (from Stănică (2001, Corollary 2.9)), we get

|�Lr ∩Xr·n+1| �

(
r − 1

r

)r

· 1

((r − 1) · n+ 1) ·
√
n

· rr·n+1 ,

which proves that lim inf
l→∞

1
l

logr |�Lr ∩X�l | = 1.

Using Lemma 4, our Example 21 yields an alternative proof of Theorem 20.
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