Proof Delivery Form
Mathematical structures in computer science

Date of delivery:

Journal and vol/article ref:

Number of pages (not including this page): 13

This proof is sent to you on behalf of Cambridge University Press. Please print out the file and check the
proofs carefully. Please ensure you answer all queries.

Please EMAIL your corrections within 3 days of receipt to:

<andrew@smithowen.co.uk>

Andrew Smith - Editorial Assistant
Smith Owen Associates

33 Cooper's Close

Stetchworth, Newmarket CB8 9TT

NOTE: If you have no corrections to make, please also email to authorise publication.

* You are responsible for correcting your proofs. Errors not found may appear in the published journal.

» The proof is sent to you for correction of typographical errors only. Revision of the substance of the
text is not permitted, unless discussed with the editor of the journal.

* Please answer carefully any queries listed overleaf.

* A new copy of a figure must be provided if correction of anything other than a typographical error
introduced by the typesetter is required.

» If you have problems with the file please email nmarshall@cambridge.org

Please note that this pdf is for proof checking purposes only. It should not be distributed to third parties
and may not represent the final published version.

Important: you must return any forms included with your proof.

Please do not reply to this email

Please refer to our FAQs at
http:/fjoumnals.cambridge_org/production_fags

Author queries:

Typesetter queries:
T1: isit OK?

Non-printed material:

AMBRIDGE

NIVERSITY PRESS

Offprint order form

PLEASE COMPLETE AND RETURN THIS FORM. WE WILL BE UNABLE TO SEND
OFFPRINTS (INCLUDING FREE OFFPRINTS) UNLESS A RETURN ADDRESS AND

ARTICLE DETAILS ARE PROVIDED. VAT REG NO. GB 823 8476 09
Mathematical Structures in Computer Science (MSC) Volume: ‘ ‘ no: ‘ ‘
Offprints

25 offprints of each article will be supplied free to each first named author and sent to a single address. Please complete this form and send it to the
publisher (address below). Please give the address to which your offprints should be sent. They will be despatched by surface mail within one month of
publication. For an article by more than one author this form is sent to you as the first named. All extra offprints should be ordered by you in
consultation with your co-authors.

Number of offprints required in addition to the 25 free copies:

Email:

All enquiries about offprints should be addressed to the publisher: Journals Production Department, Cambridge University
Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, UK.

Charges for extra offprints (excluding VAT) Please circle the appropriate charge:

Number of copies 25 50 100 150 200 per 50 extra

1-4 pages £68 £109 £174 £239 £309 £68

5-8 pages £109 £163 £239 £321 £399 £109

9-16 pages £120 £181 £285 £381 £494 £120

17-24 pages £131 £201 £331 £451 £599 £131

Each Additional 1-8 pages £20 £31 £50 £70 £104 £20
Methods of payment

If you live in Belgium, France, Germany, Ireland, Italy, Portugal, Spain or Sweden and are not registered for VAT we are required to charge VAT at the rate
applicable in your country of residence. If you live in any other country in the EU and are not registered for VAT you will be charged VAT at the UK rate.

If registered, please quote your VAT number, or the VAT

number of any agency paying on your behalf if it is registered. VAT Number:

Payment must be included with your order, please tick which method you are using:

O Cheques should be made out to Cambridge University Press.
O Payment by someone else. Please enclose the official order when returning this form and ensure that when the order is
sent it mentions the name of the journal and the article title.
O Payment may be made by any credit card bearing the Interbank Symbol.
Card Number:
Expiry Date (mm/yy): /o Card Verification Number:

The card verification number is a 3 digit number printed on the back of your Visa or Master card, it appears after and to the right of your card number. For
American Express the verification number is 4 digits, and printed on the front of your card, after and to the right of your card number.

Amount
Signature of (Including VAT
card holder: if appropriate): £

Please advise if address registered with card company is different from above

transfer of copyright
s CAMBRIDGE

UNIVERSITY PRESS

Please read the notes overleaf and then complete, sign, and return this form to Journals Publishing, Cambridge University
Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 8RU, UK as soon as possible.

MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
In consideration of the publication in MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
Of the cONtIIDULION ENEILIEA: 1..e.eeviiiiciieiiee ettt st s st e e s e te st e s be e e e ssesse s eneeneenensenes

1 To be filled in if copyright belongs to you
Transfer of copyright

I/we hereby assign to Cambridge University Press, full copyright in all formats and media in the said contribution.

I/we warrant that I am/we are the sole owner or co-owners of the material and have full power to make this agreement, and
that the material does not contain any libellous matter or infringe any existing copyright.

I/we further warrant that permission has been obtained from the copyright holder for any material not in my/our copyright
including any audio and video material, that the appropriate acknowledgement has been made to the original source, and
that in the case of audio or video material appropriate releases have been obtained from persons whose voices or likenesses
are represented therein. I/we attach copies of all permission and release correspondence.

I/we hereby assert my/our moral rights in accordance with the UK Copyrights Designs and Patents Act (1988).
Signed (tick one) O the sole author(s)

O one author authorised to execute this transfer on behalf of all the authors of the above article
INAME (DIOCK LELETS) .viveeeeeeeeeiee ettt e e e s e s e e e e ese s s e s e enesse st et enseneesessensensesessessensennenensensens
INSEIEULION/COMPANY ...ttt ettt et e e e ea e eaeeseee e e et ea e e e e eaeeae e e e e e emeeates e es e e et eaeee et eaeeaeeseaseesensemteaeeseae et eneeseanens
SIENALUIE: v D TSRS
(Additional authors should provide this information on a separate sheet.)

2 To be filled in if copyright does not belong to you
a Name and address of copyright holder....

b The copyright holder hereby grants to Cambridge University Press the non-exclusive right to publish the contribution in
the journal and to deal with requests from third parties in the manner specified in paragraphs 4 and S overleaf.

(Signature of copyright holder or authoriSed AZENL)oveoieirerecreeee e e e e eeeeen

3 US Government exemption
I/we certify that the paper above was written in the course of employment by the United States Government so that no
copyright exists.

SIGNATUIE: ..ottt Name (Block Letters):ccueviirieriieieniieieniiiesieie sttt

4 Requests received by Cambridge University Press for permission to reprint this article should be
sent to

(see para. 4 overleaf)
Name and address (DIOCK TEHETS)eviiireriieeeeeesee ettt sttt e s e sessesseaeseesessesenseneesensenes

Notes for contributors

1 The Journal's policy is to acquire copyright in all contributions. There are two reasons for this: () ownership of copyright by one
central organisation tends to ensure maximum international protection against unauthorised use; (b) it also ensures that requests
by third parties to reprint or reproduce a contribution, or part of it, are handled efficiently and in accordance with a general
policy that is sensitive both to any relevant changes in international copyright legislation and to the general desirability of
encouraging the dissemination of knowledge.

2 Two “moral rights’ were conferred on authors by the UK Copyright Act in 1988. In the UK an author’s ‘right of paternity’, the
right to be properly credited whenever the work is published (or performed or broadcast), requires that this right is asserted in
writing.

3 Notwithstanding the assignment of copyright in their contribution, all contributors retain the following
non-transferable rights:

» The right to post either their own version of their contribution as submitted to the journal (prior to revision arising from peer
review and prior to editorial input by Cambridge University Press) or their own final version of their contribution as accepted for
publication (subscquent to revision arising from peer review but still prior to cditorial input by Cambridge University Press) on
their personal or departmental web page, or in the Institutional Repository of the institution in which they worked at the time
the paper was first submitted, or (for appropriate journals) in PubMedCentral, provided the posting is accompanied by a
promincnt statement that the paper has been accepted for publication and will appear in a revised form, subscquent to peer
review and/or editorial input by Cambridge University Press, in Mathematical Structures in Computer Science published by
Cambridge University Press, together with a copyright notice in the name of the copyright holder (Cambridge University Press
or the sponsoring Society, as appropriate). On publication the full bibliographical details of the paper (volume: issue number
(date), page numbers) must be inserted after the journal title, along with a link to the Cambridge website address for the journal.
Inclusion of this version of the paper in Institutional Repositories outside of the institution in which the contributor worked at the
time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be
unreasonably withheld).

¢ The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form)
on their personal or departmental web page, no sooner than upon its appearance at Cambridge Journals Online, subject to file
availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the
name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online
cdition of the journal at Cambridge Journals Online.

= The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) in
the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate
journals) in PubMedCentral, no sooner than one year after first publication of the paper in the journal, subject to file availability
and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the
copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the
journal at Cambridge Journals Online. Inclusion of this definitive version after one year in Institutional Repositories outside of
the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional
permission of Cambridge University Press (not to be unreasonably withheld).

« The right to make hard copies of the contribution or an adapted version for their own purposes, including the right to make
multiple copies for course use by their students, provided no sale is involved.

¢ The right to reproduce the paper or an adapted version of it in any volume of which they are editor or author. Permission will
automatically be given to the publisher of such a volume, subject to normal acknowledgement.

4 We shall use our best endeavours to ensure that any direct request we receive to reproduce your contribution, or a substantial part
of it, in another publication (which may be an electronic publication) is approved by you before permission is given.

5 Cambridge University Press co-operates in various licensing schemes that allow material to be photocopied within agreed
restraints (e.g. the CCC in the USA and the CLA in the UK). Any proceeds received from such licenses, together with any
proceeds from sales of subsidiary rights in the Journal, directly support its continuing publication.

6 It is understood that in some cases copyright will be held by the contributor’s employer. If so, Cambridge University Press
requires non-exclusive permission to deal with requests from third parties, on the understanding that any requests it receives
from third partics will be handled in accordance with paragraphs 4 and 5 above (note that your approval and not that of your
employer will be sought for the proposed use).

7 Permission to include material not in your copyright
If your contribution includes textual or illustrative material not in your copyright and not covered by fair use / fair dealing,
permission must be obtained from the relevant copyright owner (usually the publisher or via the publisher) for the non-exclusive
right to reproduce the material worldwide in all forms and media, including electronic publication. The relevant permission
correspondence should be attached to this form.

If you are in doubt about whether or not permission is required, please consult the Permissions Controller, Cambridge University
Press, The Edinburgh Building, Shafltesbury Road, Cambridge CB2 8RU, UK. I'ax: +44 (0)1223 315052.
Email: Inicol@cambridge.org.

The information provided on this form will be held in perpetuity for record purposes. The name(s) and address(es) of the author(s) of

the contribution may be reproduced in the journal and provided to print and online indexing and abstracting services and
bibliographic databascs

Please make a duplicate of this form for your own records

Math. Struct. in Comp. Science (2009), vol. 19, pp. 1-13. © 2009 Cambridge University Press
do0i:10.1017/S0960129508007238 Printed in the United Kingdom

On universal computably enumerable prefix codes

CRISTIAN S. CALUDE" and LUDWIG STAIGER?

tDepartment of Computer Science, The University of Auckland, Private Bag 92019, Auckland,
New Zealand
Email: cristian@cs.auckland.ac.nz

tMartin- Luther-Universitit Halle-Wittenberg, Institut fiir Informatik, D - 06099 Halle, Germany
Email: staiger@informatik.uni-halle.de

Received 11 October 2007

We study computably enumerable (c.e.) prefix codes that are capable of coding all positive
integers in an optimal way up to a fixed constant: these codes will be called universal. We
prove various characterisations of these codes, including the following one: a c.e. prefix code
is universal if and only if it contains the domain of a universal self-delimiting Turing
machine. Finally, we study various properties of these codes from the points of view of
computability, maximality and density.

1. Introduction and notation

We study computably enumerable prefix codes that are capable of coding all positive
integers in an optimal way up to a fixed constant: these codes will be called universal.
Our arguments combine elementary facts from coding theory, algorithmic information
theory and formal language theory. We prove various characterisations of these codes
including the following one: a c.e. prefix code is universal if and only if it contains the
domain of a universal self-delimiting Turing machine. Various properties of these codes
are then presented.

We will follow the notation in Calude (2002). We use IN = {0, 1,2,...} to denote the set
of positive integers. The cardinality of a set 4 is denoted by |A4|. Let us fix X = {0,...,r—1}
an alphabet of cardinality r, and use X* to denote the set of finite strings (words) on X,
including the empty string /.

The length of the string w is denoted by |w|, and we use X' = {w € X" | |w| = i},
XS ={weX"||w <i}and X>' = {w € X" | |w| = i} to denote the sets of strings having
lengths exactly i, not larger than i, or not smaller than i, respectively. If v is a prefix of w,
we write v C w, and write v C w if v C w and v # w. A natural ordering of X is the quasi-
lexicographical (or length-lexicographical) ordering ‘<q.x’ Where strings are ordered first
according to their length, and strings of the same length are then ordered lexicographically
(with respect to some ordering of the alphabet X)". We use string,(n) to denote the

T Work done in Halle; the support of Martin-Luther University and Institute of Informatics is gratefully
acknowledged. Part of this project was supported by UARC Grant 3607895/2006.

 This ordering is not to be confused with the lexicographical ordering where the string 1 is preceded by all
strings starting with 0.

C. S. Calude and L. Staiger 2

nth string in the quasi-lexicographical ordering of X* = {0,...,r — 1}", for example,
string,(0) = 4, string,(1) =0, string,(2) =1, ..., string,(r +1) =00, ..., and so on.

Moreover, we fix a prefix-free encoding of strings in X* in the same way as, for
example, in Zvonkin and Levin (1970), so that for w = x; - x; where x; € X, | = 0 we
set xq -+ x; ;= 0x10x;, - Ox;1.

For V,W < X*, we use VW to denote the set {vtw | v € VA € W} of concatenations
of strings from Vwith strings from W. For V = {u} we write uW instead of {u}W. A
prefix code is a prefix-free subset of strings. Prefix codes over X satisfy Kraft’s inequality:
EweA ri‘w‘ < L

A self-delimiting Turing machine (a machine for short) is a Turing machine C processing
binary strings such that its program set (domain) dom(C) = {n | = € X" A C(n) halts} is
a prefix-free set of strings. As usual, we define the self-delimiting (prefix, or program-size)
complexity of a string w with respect to a machine C as H¢(w) := inf{|n| | 1 € X*AC(n) =
w}. See Chaitin (1987), Calude (2002) and Downey and Hirschfeldt (to appear) for further
details.

A prefix code is computably enumerable (c.e.) if and only if it is the domain of a
self-delimiting Turing machine.

We can effectively construct a machine U (called universal) such that for every machine
C, there exists a constant k (depending only on U and C) such that for every string
n € dom(C) there exists a string 7’ € dom(U) such that U(n') = C(n) and |7'| < |n| + k.
A prefix-universal machine U is a special universal machine defined by the following
property: for every self-delimiting Turing machine C there exists a string w (depending
only on U and C) such that for every string = € dom(C) we have U(wn) = C(n). We can
effectively construct prefix-universal machines; there exist universal machines that are not
prefix-universal. All quantifiers in the definition of universality and prefix-universality are
effective.

2. Motivation

Consider the binary alphabet X = {0,1}. The computable prefix code S = {1"0 : n > 0}
codes every integer n > 0 with a string of n 4 1 bits. A better solution is given by the
computable prefix code S = {1!°¢"0string,(n) : n > 0}, which codes every integer n > 0
with a string of 2logn + 1 bits. An even better solution is a computable prefix code T
that codes every integer n = 0 with a string of length logn + 2lognlogn 4+ 1 bits. In
Levenstein (1968), two prefix codes for the natural numbers are introduced and shown to:

1 have an asymptotically minimal redundancy; and

2 be computable by a Turing machine with a minimal delay.

We may ask: is there a best way of representing integers with computable prefix codes,
or, more generally, with c.e. prefix codes? There are various ways to define optimality;

here we will focus on set-theoretic maximality, information-theoretic (rate/capacity) and
computable one-to-one translations (embedability).

cristian
Highlight

On universal computably enumerable prefix codes 3

3. Properties of universal c.e. prefix codes

In this section we define and characterise universal c.e. prefix codes. We start with a
theorem that characterises universal c.e. prefix codes. Then we give a non-computability
result, and the final subsection is devoted to some consequences.

3.1. A characterisation theorem
Here we prove the following equivalences.

Theorem 1. Let V' = X be a c.e. prefix code. Then, the following statements are equivalent:

1 There exists a universal machine U such that V' = dom(U).

2 For every partial computable one-one function g : IN — X" having a prefix-free
range, there exist a partial computable one—one function f : IN — X* and a constant
k € IN such that:

(a) f(dom(f)) = V.
(b) dom(g) = dom(f) and |f(n)| < |g(n)| + k, for every n € dom(g).

3 For every computable one—one function g : IN — X~ having a prefix-free range, there
exist a computable one—one function f : IN — X" and a constant k € IN such that:

(@) f(IN) = V.
(b) |f(n)| < |g(n)| + k, for every n € IN.

4 For every c.e. prefix code D < X there exist a partial computable one—one function
@ : X" — X" and a constant k € IN such that:

(a) D = dom(¢), (D) = V.
(b) |o(u)| < |u| + k, for every u € dom(p).

Proof. For the implication 1 = 2 we assume that U is a universal machine and
V = dom(U). Assume also that g is a partial computable one—one function from positive
integers to strings having a prefix-free range. Define C(g(n)) = g(n), for every n € dom(g).

Clearly, C is a machine, so by virtue of the universality of U there exists a constant
k € IN such that for every n € dom(g) there exists a string x, € dom(U) < V such that
U(x,) = C(g(n)) = g(n) and |x,| < |g(n)|+k. Now, using the constant k from above, define

f(n) == pypw(w| < [g(m)] +k A UW) = g(n), (1)

where w is the first string satisfying the condition taken with respect to some computable
enumeration p of dom(U). Clearly, f is partial computable. According to the choice
of the constant k, f(n) is defined whenever g(n) is defined, and, moreover, in this case
U(f(n)) = g(n), and [f(n)| < |g(n)| + k, for all n € dom(g). Thus, dom(f) = dom(g) and
f(dom(f)) = dom(U) = V.

For the implication 2 = 3 we just observe that f is total because g is total and
dom(g) = dom(f).

If D is finite, the implication 3 = 4 is trivial, just take as images of the strings w € D
the first |D| strings in V.

C. S. Calude and L. Staiger 4

Now let D < X™ be an infinite c.e. prefix code and take a computable one—one function
g : IN — D that enumerates D. In view of 3, there exists a constant k and a computable
one—one function f : IN — X~ such that f(IN) = V, and |f(n)| < |g(n)| + k for each n.
Next define the mapping ¢ by ¢(v) = f(g~!(v)). The mapping ¢ is well defined (because
both functions g, f are one—one) and partial computable; moreover, dom(¢p) =2 g(IN) = D
and ¢(v) € V, for all v € D.

For every v € D, we have |o(v)] = |f(g7'(v))| < |g(g™"(v))| + k = |v| + k, because of
condition 3.b, and ¢(D) = V.

Finally, for the implication 4=-1 we consider a universal machine U’ and put D =
dom(U’). In view of 4, there exist a partial computable one—one function ¢ : X* — V,
and a constant k (each depending upon V, D) such that conditions 4.a, 4.b are satisfied.
Define U(u) = U'(¢~(u)).

We have dom(U)=¢(X*) < V, by 4.b, a prefix code. To show that U is a universal
machine, we show that Hy(w) < Hy/(w) + k for each w € X*.

Let w € X*. Then there is a v € dom(U’) such that U'(v) = w and |v| = Hy(w). Since,
by definition, w = U’(v) = U(¢(v)), we have Hy(w) < |o(v)| < |[v] +k = Hy(w) + k. [

For the case V' =dom(U), since U is a universal machine, we can strengthen the
condition 4 in Theorem 1 in the following way.

Corollary 2. For every c.e. prefix code D = X* and every universal machine U there are
a partial computable one—one function ¢ : X* — X" and a constant k € IN such that:

(a) D = dom(¢), ¢(D) = dom(U).
(b) |p(u)] < |u| +k, for all u € D.
(c) U(p(u)) = u, for all u € D.

Proof. Again the case of finite prefix codes is trivial; map v € D to a shortest u € dom(U)
such that U(u) = v.

If D is infinite, consider the implication 1=>2 of the proof of Theorem 1. If we choose
g : IN - X* as a function enumerating exactly the set D and define f : N —» X*
as in Equation (1), we get U(f(n)) = g(n) and |f(n)| < |g(n)| + k. Now, as above, let
o(u) := f(g~(n)), and we obtain U(¢(u)) = u and |p(u)| < |u| +k foru=gn) € D. [

Definition 3. We say that a c.e. prefix code is universal if it satisfies one of the equivalent
conditions 1 — 4 in Theorem 1.

As an immediate consequence of Theorem 1.4 or Corollary 2, we obtain the following
lemma.

Lemma 4. Let V = X" be a universal c.e. prefix code. Then for every c.e. prefix code
D < X*, there is a constant k € IN such that for all [€ IN, the inequality |D N X<¥/| <
|V N X<I*K| holds.

On universal computably enumerable prefix codes 5

For domains of prefix-universal machines U, we have the following characterisation, which
is simpler than the one given in Theorem 1.
Fact 5. Let V < X" be a c.e. prefix code. The following statements are equivalent:

1 There exists a prefix-universal machine U such that V' = dom(U).

2 For every c.e. prefix code D = X7, there exists a string w € X~ such that wD = VnwX™.

Proof. The implication 1 = 2 follows from the definition of a prefix-universal machine.
For the converse implication, we consider a universal machine U’ and put D = dom(U’).
As D is a c.e. code, there exists a string w € X~ such that wD =V NwX".

We now define U by the formula:

U'(u) ifo=w-u
Up)=< A ifwiZvandveV
undefined otherwise.

It is clear that U is a universal machine; if U’ is prefix-universal, then so is U.]

3.2. A non-computability result

Although every c.e. prefix code can be in a one-to-one manner effectively embedded into
any universal c.e. prefix code, it turns out that no universal c.e. prefix code is contained
in a computable prefix code. To this end, we consider the language-theoretic density of
(prefix) codes.

Lemma 6. If V = X" is a prefix code and |X| = r, then for every [€ IN there is an m € IN
such that |V N X<Hm| < pm,

Proof. Since V = X" satisfies Kraft’s inequality >°,_,, |X|7"/ < 1, it has density

VX
lim ——— =

m—oo ‘X‘m

(cf- Berstel and Perrin (1985)). The proof then follows immediately from this. U]
Universal c.e. prefix codes have the following property.
Theorem 7 (Nies). Every universal c.e. prefix code is Turing complete.

A recursion-theoretic proof — communicated in Nies (2007) — can be found in Nies (to
appear, Section 2.2).

Lemma 6 and the results of the previous section allow us to give an elementary direct
proof of the weaker fact that no universal c.e. code can be computable.

Corollary 8. No universal c.e. prefix code is computable.

Before proceeding to the proof, we will briefly sketch the idea behind it. Under the
assumption that the universal c.e. prefix code V = X" is computable from V, we construct
a computable code D such that for every k € IN there is an I, € IN such that [D N X<k| >
|V N X<Ik+k| This is done by choosing a computable sequence (v)renv Of strings v, € V,

cristian
Highlight

C. S. Calude and L. Staiger 6

|ok| < |vk+1l, and replacing in V' the string v, by a suitably large set of strings vy - X"™.
Then we show that D is computable if V' is computable, and, finally, we argue that V'
cannot be computable in view of Lemma 4.

Proof. Assume the universal c.e. prefix code V' < X* to be computable. We construct a
sequence of finite prefix codes (D;)iev and a sequence of numbers (/;)ien such that:

1 Dy < Dyss.

2 Dk < Xslk.

3 D U (V nX>EFD) is a prefix code.
4 |D N XS] > |V N XSk,

We start with vy := ming, V, that is, v is the minimum of V' = X* with respect to the

quasi-lexicographical ordering’, and put Iy := |vg| + 1 and
Dy :=(V ﬂXglO) \ {Uo} Uy X.

Then it is obvious that conditions 2 and 4 are fulfilled and, since V' is a prefix code,
condition 3 is also fulfilled.

Next, suppose D;_; has already been constructed in such a way that conditions 1 to 4
are fulfilled. We construct D; as follows.

We let v; := ming_(V N X>Ui-1+D) and define the number m; as the smallest number

m € IN such that o
IDiy Ui X" U {w [v € V\ {oi} Al < o] < Joi] +m}| > [V A X<t
The number m; exists because, in view of Lemma 6, we already have
v - X" =" > |V N X Silmt)

for some m € IN.
Observe also that the three sets D;_y, v; - X™ and {v | v € V \ {vi} A |vi| < |v] < |vi] + m}
are pairwise disjoint.
Then we set [; := |v;| +m; and
D; = Di,1Uv,--X’”fU{v | (S V\{Ui}/\|l)i| < |U| Sl,}

It remains to verify that D; fulfils conditions 1 to 4. Conditions 1 and 2 are easy to see,
and condition 4 follows from the definition of the number m;. In order to verify the third
property, observe that

D;U(Vnxty=p, ;U (¥ XD Gy U - XM

where D;_; U (V N X>(-1+D) is, by the induction hypothesis, a prefix code. Assume now
that w C v for some strings w,v € D; U (V N X=0i+D),

The case in which both strings w,v do not belong to v; - X™ is impossible by the
hypothesis. For the case with v € v; - X™, we obtain w C v; or v; C w, contradicting the

T Since V is assumed to be computable, vy and the subsequent v; can be effectively computed.

On universal computably enumerable prefix codes 7

fact that D;_; U (V N X>-1%1) s a prefix code. The case w € v; - X™ yields v; C v, which
also contradicts the hypothesis.

Finally, it is obvious from the above construction that D := |J,.p Di is computable
if only V is computable, and according to Lemma 4, the code V cannot be
universal c.e. U]

3.3. Non-maximality of c.e. prefix codes

In Section 3.1 we have seen that a universal c.e. prefix code V' is large in the sense
that every c.e. prefix code can be one-to-one and computably embedded into V. In this
section we are going to investigate how large universal c.e. prefix codes are if we consider
set-theoretical containment rather than embeddability. To this end, we recall that a prefix
code V < X" is called maximal provided that for every prefix code W < X*, we have
V < W implies W = V.

The following result from Berstel and Perrin (1985) gives an alternative characterisation
of maximal prefix codes.

Lemma 9. A code VV < X* is a maximal prefix code if and only if V is a prefix code and
for every v € X* thereisa w € V such that v T w or w C v.

Next, we note that for c.e. prefix codes, maximality implies computability.
Lemma 10. If V < X" is a c.e. maximal prefix code, then V' is computable.

Proof. In order to decide whether v € X* belongs to V, we enumerate V' as long as a
string w € V with v C w or w C v appears. Then v € V if and only if v = w. U]

With Theorem 8§, we obtain the following corollary.
Corollary 11. No universal c.e. prefix code is (contained in) a maximal prefix code.

It should be noted that the property in Corollary 11 is not typical for universal c.e. prefix
codes, as it can also hold for certain computable prefix codes — we give an example of a
computable prefix code that is not contained in a computable maximal prefix code.

Example 12. Let X ={0,1} and consider a set K <IN that is infinite c.e. but not
computable. Then there is a one-to-one computable function IN — K enumerating
K. Since the graph of f is computable, the prefix code Vi = {0/(")-1-w | w € {0,1}*} =
{0,1}" is also computable, but not maximal.

Assume Vi < V for some computable maximal prefix code V < {0,1}". Observe that,
since V is a prefix code and K is infinite, 0" NV = &. Thus, for every n € IN, V contains
a string of the form 0" - 1 - v.

Therefore, in order to decide whether n € K, one enumerates V' as long as a string of
the form 0" - 1 - v appears and then tests whether f(|jv|) = n. |

If V is a prefix code that satisfies Kraft’s inequality with equality, that is, one for which
> wey ™ =1, then it is maximal; the converse implication is true for finite codes, but
false in general. See Berstel and Perrin (1985) for further details.

cristian
Highlight

cristian
Highlight

cristian
Highlight

C. S. Calude and L. Staiger 8

It should be mentioned that, unlike the case of finite codes, for every function f : IN —
IN with -, r /@ < 1, there is a maximal prefix code V; = {w; | i = 0} = X" such that
[wi| = f(i) (see Staiger (2007)). If f is computable and monotone, then V; is computable
also. (More precisely, if f is monotone, then V' is computable in f.)

On the other hand, it is known from the Kraft-Chaitin Theorem (see Calude (2002),
for example) that for every computable function f : IN — IN with Y r 7/ < 1, there
is a universal c.e. prefix code V; = {w; | i >0} = X~ such that |w;| = f(i).

There is, however, no computable procedure assigning to a (non-monotone) computable
function f : IN — IN with >, r /% < 1 a ce. maximal prefix code V; = {w; | i > 0}
such that |w;| = f(i) for every i = 0.

To show this, we use the following property.

Proposition 13. If V = X~ is ce. (computable), its set of lengths {|w| | w € V} = IN is
also c.e. (computable).

Assuming now that a computable function fx that enumerates {i +2 | i € K}, where
K < IN is c.e. but not computable, yields, in a computable way, a maximal prefix code
Vi, we can, by virtue of Lemma 10 and Proposition 13, compute K, contradicting the
uncomputability of K.

4. Information-theoretic size

In the preceding section we have shown that universal c.e. prefix codes are not maximal
with respect to set inclusion, so they are in some sense not large. This observation is
supported by the fact mentioned in the proof of Lemma 6 that their language-theoretic
density is 0.

Here we derive results on universal c.e. prefix codes that show that they are large in
some information-theoretic respect. To this end, we consider a different quantity, which
measures the amount of information necessary to print a string of length n in a certain
language.

For a language W < X", let its structure generating function (cf. Kuich (1970),
Staiger (1993) and Staiger (2005)) be sgy : [0,00) — [0,00] where soy(t) = >, 120N
X" - t". Then

s(v™) = Zmem el
and sgy(t™* = co means that the function sy (n) := |W N X"| cannot be upper-bounded
by r*".

4.1. The structure generating function of a c.e. prefix code

From Kraft’s inequality, it is known that for any code D = X* and a=1 we have the
bound >, ., r ™ < 1. If 55 is a rational function, in particular, when D is a regular
language, we have sp(; +¢) < oo for some ¢ > 0. This amounts to), ., M < oo for
some o < 1.

cristian
Highlight

cristian
Highlight

cristian
Highlight

On universal computably enumerable prefix codes 9

In this section we are going to show that universal c.e. prefix codes do not have this
behaviour, that is, they satisfy so(r™) = Y .o t*I® = oo for all o, 0 < o0 < 1. We will
also investigate some reasons for and consequences of this behaviour.

We start with a consequence of Theorem 1: a technical result from which we derive a
simplification of the proof of Theorem 3.2.(b) in Tadaki (2002).

Lemma 14. Let D < X* be a c.e. prefix code and o € (0,00), and let U be a universal
machine. If D is finite or o > 1, then there is a constant k such that

—o|w| ok . —o-Hy(w) ok . —o|v|
r <r E r <r E r .
ZwED = weD = vedom(U)

Remark. Note that for infinite D and o < 1 the sum >, ., r~*Hv™) is always infinite.
The more general fact that Y, _, r~*Hv™) diverges for o < 1 and arbitrary infinite c..
W < X was derived in Equation (49) of Tadaki (2002). For the sake of completeness, we
prove it as Lemma 15 below.

Proof of Lemma 14. We use the one—one function ¢ of Corollary 2. In order to verify
the first inequality, observe that the third condition of Corollary 2 implies Hy(w) <
lp(w)| < |w| +k, for w € D. Now the second inequality follows immediately from the fact
that {v | U(v) € D Alv] = H(U(v))} = dom(U). O

Lemma 15. Let W be an arbitrary infinite c.e. subset of X* and 0 < « < 1. Then

g rmr) — o
weW

Proof. Let f : IN — X* be a computable one—one function enumerating W. Then every
string w € W has a unique pre-image n € IN. Hence

—aHy(w) _ —a-Hy(f(n))
ZweW r ZnE]N r)

Now, Hy(f(n)) < log,n+ 2 -log,log,n+ c for n = r, and if n,, depending on o with

0 < a < 1, is large enough, we have 2u-log, log, n < (1 —«) - log, n whenever n = n,. Thus,
we obtain

el 5 o 1

n

and hence the series diverges. |

>

As a corollary to Lemma 15, we obtain Theorem 3.2.(b) of Tadaki (2002).

Theorem 16. For 0 < « < 1 and every universal machine U, the series Y, cjomu) """
diverges.

Our proof of Lemma 15 shows that every infinite c.e. subset W of X" is enumerated
starting with low complex strings. This observation is supported by Kolmogorov’s result
(¢f- Zvonkin and Levin (1970, Theorem 1.3) or Staiger (1993, Theorem 2.9)) that a
string w of length n in every c.e. subset W < X* has a complexity H(w) bounded by
log, |[W N X" + o(n).

The ‘conclusion’ that the complements of c.e. subsets consist of only highly complex
strings is, however, not true. We will use Staiger (1993, Theorem 2.9), which proves a

cristian
Highlight

cristian
Highlight

C. S. Calude and L. Staiger 10

result analogous to the above-mentioned Kolmogorov theorem for complements of c.e.
subsets of X*. We will exploit this construction to show that an analogue of Lemma 15
is also true for a large class of complements of c.e. subsets of X".

As usual, a language W < X" is called sparse if there is a polynomial p(n) such that
[W N X" < p(n) for every n € IN.

Theorem 17. Let W < X* be the complement of c.e. subset of X*, and let W be
non-sparse. Then, for all 0 < o < 1, we have

E rmHuO) = o
weW

Proof. It is shown in the proof of Staiger (1993, Theorem 2.9) that if W = X is the
complement of c.e. subset, then there is a computable partial function p := X* xIN —» X*
such that:

1 |p(m,n)] = n whenever (7,n) € dom(y).
2 For every w € W there is a n, |n| < [log, |W N X™] such that y(m, |w|) = w.

This function p is transformed into a computable prefix (partial) function ¢ as follows:

w(m, n), if v = string,(n) - string,(|7|) - =
o) = for some (7,n) € X* x IN, and
undefined, otherwise.

Clearly, our construction shows that dom(¢) is prefix-free. Moreover, for every w €
W N X" there is a n’ with

7’| <log, |[W N X" +2-log,log, |WNX"|+2 log,n+6
such that ¢(n') = w'. Since log, |W N X"| < n, we get
Hy(w) <log, |WNX"|+4-log.n+c¢

for all w € W N X" where the constant c is suitably chosen. Then

Z r—%HU(w) > ‘W N Xn|l—oc . L e
wewnx” n4“

whenever W N X" #+ .
Next we use the assumption that W is non-sparse. Then, for every o, 0 < « < 1, there
are infinitely many n such that |[W N X"| > n*® where k(«) := [{2]. Thus

§ r—OC‘Hu(W) > poe
weWwnxn

for infinitely many n € IN, hence the series

§ r—oc'HU(w) — § § r—%‘Hu(W)
weWw nelN weWnxn

diverges.]

T Here it is understood that log, o := 0 for o < 1.

On universal computably enumerable prefix codes 11

As a corollary to Lemma 15 and Theorem 17 we obtain the following generalisation of
Theorem 16.

Corollary 18. Let U be a universal prefix machine, let W = X* be computably enumerable
or a non-sparse complement of a computably enumerable language and let D = {n : 7 €
dom(U)AU(rn) € W}. Then > pr > = oo for all o < 1.

4.2. The entropy of c.e. prefix codes

As mentioned above, the convergence of the series sgu(t™) = Y, oyt *1®, for 0 < < 1,
depends on the numbers |W N X”|. The unique value Hy € [0,1] such that >y, r—*™
converges for all « > Hyy is known as the entropy of the language W. It can be calculated
as follows (see Kuich (1970), Staiger (1993) and Staiger (2005)):

. 1 WnX"+1
Hy = lim sup 08 [+).

n—o0 n

(2)

Now Corollary 16 yields the following corollary.
Corollary 19. Let VV = X* be a universal c.e. prefix code. Then Hy = 1.

Moreover, for a universal c.e. prefix code V = X*, the function

frio) = r M

weV
has the following typical plot:
frv(@)
A
o0 7 \
\
I
I
\
\
\
ki !
fr(1)
0 ‘ e >
0 1

We can substitute the upper limit in Corollary 19 by the lower one.
Theorem 20. Let V' = X* be a universal c.e. prefix code. Then, the lower entropy of V
is 1:

1
lim inf ;logr(lVﬁXg’ﬂ +1)=1.

n—oo

cristian
Highlight

cristian
Highlight

C. S. Calude and L. Staiger 12

Proof. Consider a universal prefix machine U such that dom(U) < V, and consider
the one-to-one mapping that maps every string w € X to a shortest m, such that
U(n,) = w. It is known that |r,| < |w| + 2 - log, |w| + ¢ for some ¢ € IN. Consequently,
|dom(U) N X Str+2log nte)| > yn - and the assertion follows. O

The property of Theorem 20 is, however, not only fulfilled by universal c.e. prefix codes.
There are even languages of low complexity, more precisely, simple deterministic context-
free languages (see Autebert et al. (1997) for a definition) that also have a lower entropy
of 1. We will now give an example generalising Theorem 10 of Calude and Stay (2006) to
the case | X| > 2.

Example 21. As in Kuich (1970) and Staiger (2005), we consider the Lukasiewicz-language
L, = X* defined by the equation

L, ={l,...,r—1}U0-LI.

By considering Raney sequences (cf. Graham et al. (1989)), it was shown in Kuich (1970)
that for the language W, < {0, 1} defined by the equation W, =1U0- W/, we have

rn _ (}’li")' = 1 e
W00 = G e 1 = (r—1)~n+1< n)

and |W,n{0,1}!| = 0if # 1 (mod r). Moreover, every string w € W, of length |w| = n-r+1
has exactly n occurrences of the letter 0.

The strings of £, can be obtained by substituting the letter 1 by letters from {1,...,r—1}.
Thus

1 n-r
rotl) _ L 1\r—1)+1
IL, N X" (r—l)-n-l—l(n) r—1) .

n-r 1 rr(n—l)-‘rl
()>F e

for n = 3 (from Stanica (2001, Corollary 2.9)), we get

Using the inequality

-1\ 1
erXr--;1+1 > r . . r~n+1’
| | < r) —hotn-gn

which proves that lirln inf { log, [L, N X< = 1.
—0

Using Lemma 4, our Example 21 yields an alternative proof of Theorem 20.

Acknowledgments

We would like to thank A.Nies and the anonymous referee for comments that helped us
improve the presentation of this paper.

cristian
Highlight

On universal computably enumerable prefix codes 13

References

Autebert, J.-M., Berstel, J. and Boasson, L. (1997) Context-free languages and pushdown automata.
In: Rozenberg, G. and Salomaa, A. (eds.) Handbook of Formal Languages, Vol. 1, Springer-Verlag
111-174.

Berstel, J. and Perrin, D. (1985) Theory of Codes, Academic Press.

Calude, C. S. (2002) Information and Randomness: An Algorithmic Perspective, 2nd Edition, Revised
and Extended, Springer-Verlag.

Calude, C. S. and Stay, M. A. (2006) Natural halting probabilities, partial randomness, and zeta
functions. Inform. and Comput. 204 1718-1739.

Chaitin, G. J. (1987) Algorithmic Information Theory (3rd printing 1990), Cambridge University
Press.

Downey, R. and Hirschfeldt, D. (to appear) Algorithmic Randomness and Complexity, Springer-Verlag
(in preparation).

Graham, R. L., Knuth, D. E. and Patashnik, O. (1989) Concrete Mathematics: A Foundation for
Computer Science, Addison-Wesley.

Kuich, W. (1970) On the entropy of context-free languages. Inform. and Control 16 173-200.

Levenstein, V. 1. (1968) The redundancy and delay of decodable coding of natural numbers. Problemy
Kibernet. 20 173-179.

Nies, A. (2007) Personal communication.

Nies, A. (to appear) Computability and Randomness, Oxford University Press (to appear).

Staiger, L. (1993) Kolmogorov complexity and Hausdorff dimension. Inform. and Comput. 103
159-194.

Staiger, L. (2005) The entropy of Lukasiewicz languages. RAIRO—-Theoretical Informatics and
Applications 39 (4) 621-640.

Staiger, L. (2007) On maximal prefix codes. Bull. EATCS 91 205-207.

Stanica, P. (2001) Good lower and upper bounds on binomial coefficients. J. Ineq. in Pure and Appl.
Math. 2 1-5.

Tadaki, K. (2002) A generalization of Chaitin’s halting probability Q and halting self-similar sets.
Hokkaido Math. J. 31 219-253.

Zvonkin, A. K. and Levin, L. A. (1970) Complexity of finite objects and the development of the
concepts of information and randomness by means of the theory of algorithms. Russian Math.
Surveys 25 83—124.

cristian
Highlight

cristian
Highlight

