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The Library is composed of an ... infinite number of hexagonal galleries ... [it] includes
all verbal structures, all variations permitted by the twenty-five orthographical symbols, but not
a single example of absolute nonsense. ... These phrases, at first glance incoherent, can no
doubt be justified in a cryptographical or allegorical manner; such a justification is verbal and, ex
hypothesi, already figures in the Library. ... The certitude that some shelf in some hexagon
held precious books and that these precious books were inaccessible seemed almost intolerable.
A blasphemous sect suggested that ... all men should juggle letters and symbols until they
constructed, by an improbable gift of chance, these canonical books ... butthe Libraryis ...

useless, incorruptible, secret.
Jorge Luis Borges, “The Library of Babel”

Abstract. Godel’s Incompleteness Theorems have the same scientific status as Einstein’s principle
of relativity, Heisenberg’s uncertainty principle, and Watson and Crick’s double helix model of DNA.
Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-
theoretic approach to randomness and recent developments in quantum computing.
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1. Incompleteness and Uncomputability

Interest in incompleteness dates from early times. Incompleteness was an important
issue for Aristotle, Kant, Gauss, Kronecker, but it didn’t have a fully explicit, pre-
cise meaning before the works of Hilbert and Ackermann, Whitehead and Russell,
Godel and Turing.

In a famous lecture before the International Congress of Mathematicians (Paris,
1900), David Hilbert expressed his conviction of the solvability of every mathem-
atical problem: “Wir miissen wissen. Wir werden wissen.” (We must know. We will
know.). Hilbert highlighted the need to clarify the methods of mathematical reason-
ing, using a formal system of explicit assumptions, or axioms. Hilbert’s vision was
the culmination of 2,000 years of mathematics going back to Euclidean geometry.
He stipulated that such a formal axiomatic system should be both ‘consistent’ (free
of contradictions) and ‘complete’ (in that it represents all the truth).

In their monumental Principia Mathematica (1925-1927), Whitehead and Rus-
sell developed the first coherent and precise formal system aimed at describing the
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whole of mathematics. Although Principia Mathematica held great promise for
Hilbert’s demand, it fell short of actually proving its completeness.

After proving the completeness of the system of predicate logic in his doctoral
dissertation (1929), Godel continued the investigation of the completeness prob-
lem for more comprehensive formal systems, especially systems encompassing all
known methods of mathematical proof. In 1931 (see Feferman et al., 1990) Godel
proved his famous First Incompleteness Theorem, which in modern terms reads:

any computably enumerable, consistent formal axiomatic system containing
elementary arithmetic is incomplete, that is, there exist true, but unprovable
(within the system) statements.

The system is computably enumerable if its ‘theorems’ can be listed by a Turing
machine. Informally, the set of axioms and deduction rules generates all ‘theor-
ems’; for example, we cannot take as axioms all true statements about natural
numbers as this set is not computably enumerable. The condition that the system
contains elementary arithmetic is also essential. For example, Euclidean geometry,
which makes statements only about points, circles and lines in general, does not
satisfy this condition, hence it might be complete; and, indeed, it is complete
as Tarski has proved. The flat nature of Euclidean geometry plays no role here,
non-Euclidean geometries are also complete.

This result together with the Second Incompleteness Theorem (which states that
the consistency of the axioms cannot be proved within the system) ended a hundred
years of attempts to establish axioms that would put mathematics on an axiomatic
basis. Godel’s Incompleteness Theorem does not destroy the fundamental idea of
formalism, but suggests that (a) mathematics will be described by many formal
systems as opposed to a universal one, and (b) a more sophisticated and compre-
hensive form of formal system than that envisaged by Hilbert is required (see also
Post, 1965).

Anticipating resistance to his conclusions Godel wrote his papers very carefully.
Speculating on his extreme caution, Feferman et al. (1984) stated that Godel “could
have been more centrally involved in the development of the fundamental concepts
of modern logic — truth and computability — than he was”. Godel took pains to
convince various people of the validity of his assertions and results, but he avoided
any public debate and considered his results to have been accepted by those whose
opinion mattered to him. P. Finsler, E. Post and E. Zermelo were concerned with
priority issues, while C. Perelman, M. Barzin, J. Kuczynski asserted that Godel
had in fact discovered another antinomy; see Dawson (1997). Unlike the others,
Post expressed “the greatest admiration” for Godel’s work, conceding that “after
all it is not ideas but the execution of ideas that constitute[s] ... greatness”.
Godel’s result provoked Hilbert’s anger, but he apparently accepted its correctness
(cf. Dawson, 1997). Hilbert never cited Godel’s work.

The reactions of two great philosophers are also of interest. Wittgenstein’s neg-
ative comments (dated 1938 and posthumously published in “Remarks on the found-
ations of mathematics” in Wittgenstein (1964)) are now generally considered an
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embarrassment in the work of a great philosopher. Russell realized the importance
of Godel’s work, but expressed his ongoing puzzlement in a rather ambiguous way
in a letter dated 1 April 1963 (addressed to L. Henkin; see Dawson, 1997): Are we
to think that 2 + 2 is not 4, but 4.001? Following the same source, Godel remarked
(in a letter addressed to A. Robinson) that “Russell evidently misinterprets my
result; however he does so in a very interesting manner ... ”

In the long run Godel’s interpretations of incompleteness prevailed: the In-
completeness Theorems neither rejected the notion of formal system (quite the
opposite) nor caused despair over the imposed limitations; they just re-affirmed the
creative power of human reason. In Post’s celebrated words: “mathematical proof
is [an] essentially creative [activity].”

In 1936 Turing (1936/1937) showed the undecidability of the Halting Problem,
the question of whether a given computer program will eventually halt:

no mechanical procedure (therefore no formal axiomatic theory) can solve the
Halting Problem.

These two results have very deep connections. To understand them we need to
examine a very delicate notion: randomness.

2. Randomness

What is randomness? Are there random events in nature? Are there laws of ran-
domness? Even today, these questions stir controversy.

I am convinced that the vast majority of my readers, and in fact the vast ma-
Jjority of scientists and even nonscientists, are convinced that they know what
‘random’ is. A toss of a coin is random, so is a mutation, and so is the emission
of an alpha particle. ... Simple, isn’t it? said Kac (1983).

Well, no! Kac knew very well that randomness, the very stuff of life, could
be called many things, but not simple. The fact that maintaining perfect order is
difficult surprises no one, but it may come as something of a “revelation” that per-
fect disorder is beyond reach. People, even experts, perform poorly when dealing
with randomness. The “gambler fallacy” is a classical example: the common belief
that after a sequence of losses in a game of chance there will probably follow a
sequence of gains is false. Various explanations have been suggested: according to
one of them, the human cognitive and psychological constitution, trained over the
years to look for patterns and trends (even where there are none) is “blind” when it
comes to randomness.

Randomness is a most troubling concept — it is hard not only to attain but also
to define or even to imagine in spite of the fact that there have been heroic efforts
to understand randomness (cf. Efron cited in Kolata, 1986).

Most books on probability theory do not even attempt to define randomness:
It’s like the concept of a point in geometry books. According to Beltrami (1999):
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The subject of probability begins by assuming that some mechanism of uncer-
tainty is at work giving rise to what is called randomness, but it is not necessary
to distinguish between chance that occurs because of some hidden order that
may exist and chance that is the result of blind lawlessness. This mechanism,
figuratively speaking, churns out a succession of events, each individually un-
predictable, or it conspires to produce an unforeseeable outcome each time a
large ensemble of possibilities is sampled.

Randomness means the absence of order or pattern. In an extreme sense there
is no such notion as “true randomness”. As an illustration note that any sequence
(the simplest mathematical infinite object) has some kind of order, regularity. For
example, van der Waerden (1927) proved that in all binary sequences at least one
of the two symbols must occur in arithmetical progressions of every length. Many
other patterns common to all sequences have been subsequently discovered.

Randomness as pattern-breaking (within a given context) can be viewed in (at
least) four ways:

— Randomness as the output of a “chance” process: patterns are specified by a
set of very small probability.
— Randomness as the result of “mixing”: far-from-equilibrium-states specify the
patterns.
— Randomness as “mimicking chance”: statistical tests specify the patterns.
— Randomness as a measure of incompressibility: low complexity (short) pro-
grams specify the patterns.
In what follows, we will focus on the information-theoretic approach to random-
ness proposed by algorithmic information theory. To this aim we will work with
a fixed alphabet X and a universal self-delimiting Turing machine (for short, uni-
versal Chaitin machine) U processing strings (over X) into strings. Self-delimiting
means that no halting program is a prefix of another. In this context universality
is a stronger property than classical (Turing) universality: not only can the uni-
versal machine simulate every other machine, but the simulation is done in the
most economical way. This means that the program-size complexity induced by
U, Hy(x), defined as the length of the shortest program which on U produces x
(formally, Hy (x) = min{|w| | U(w) = x}) is asymptotical optimal. That is, for
every Chaitin machine C, there is a constant const such that for every string x we
have Hy(x) < Hc(x) + const.

There are various equivalent ways to define the notion of (algorithmic) random
sequence: measure-theoretic definitions (Martin-Lof, 1966a, b; Solovay, 1975),
information-theoretical definitions (Chaitin, 1975; Schnorr), topological definitions
(Hertling and Weihrauch, 1998). For example, an infinite sequence
X = X{X2...X, ... is Chaitin-random if the difference between the complexity
of a prefix of length n and the length itself tends to infinity (formally, lim,,_,
Hy(xi1xy...x,) —n = 00).

A real o is random if its binary expansion is a random (infinite) sequence
(Chaitin, 1975); the choice of base is irrelevant (Calude and Jiirgensen, 1994; Hert-
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ling and Weihrauch, 1998; Staiger, 1999). Random reals share many properties
naturally associated with randomness:

— arandom real has maximum entropy,

— no random real is computable,

— the digits of a random real are ‘generated’ in an unpredictable way,

— global disorder contrasts with local total order (any pattern appears).

3. Information-Theoretic Incompleteness

Is there any relation between randomness and incompleteness? The answer is af-
firmative and one possibility for revealing such relations is to look at a special class
of reals — the computable enumerable reals (see Soare, 1969).

Turing’s argument was based on computable real numbers. A real is comput-
able if there is a computable function for calculating its digits one by one (see
Rice, 1954). There are programs for calculating 7, e, ﬁ, log, 3, all rationals, all
algebraic reals, and in fact all “natural” constants, but it is a bit surprising that
nearly all real numbers are not computable.

A real o is computably enumerable (c.e.) if it is the limit of a computable,
increasing, converging sequence of rationals. In contrast with the case of a com-
putable real, whose digits are given by a computable function, during the process
of approximation of a c.e. real one may never know how close one is to the final
value. Specker (1949) gave the first example of a convergent, computable sequence
of rationals which does not converge computably, hence its limit is a c.e. real which
is not computable.

In 1975 a more modern version of the Halting Problem emerged. Chaitin (1975)
introduced the probability that an arbitrary universal Chaitin machine will eventu-
ally halt:

Qy = Z 2,

U(x) Stops

The number Q2 is a probability because of Kraft’s inequality (which applies
to the set of halting programs of the self-delimiting machine U). Chaitin’s Omega
reals share two apparently irreconcilable properties: ‘algorithmic randomness’ and
‘computable enumerability’. Note also that c.e. and random reals have many other
interesting properties; for example, they are weak truth-table-complete, but not
truth-table-complete (Calude and Nies, 1997).

Each Qy depends on the choice of U, so there is not just one Omega (as there
is only one 1), but a class of Omegas. This observation leads to Solovay’s question
(Solovay, 1975): Are there random and computably enumerable real numbers other
than Omegas? The answer is negative, and the proof is constructive, (cf. Calude
et al., 2001; Slaman, personal communication, 14 December 1998; Kucera and
Slaman, 2001):
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Let o € (0, 1). The following conditions are equivalent:

1. The real « is c.e. and random.
2. The real « is the halting probability of some universal Chaitin machine U,
o = QU—

To make the discussion more concrete we will formulate all results relative
to ZFC, Zermelo-Fraenkel set theory with choice; all theorems hold true under
more general conditions. The First Information-theoretic Incompleteness Theorem
(Chaitin, 1975) is:

Let U be a universal Chaitin machine. Then Z F C, if arithmetically sound, can
prove only finitely many statements of the form “Hy(x) > m”.

In fact, there is a constant ¢ > 0 such that Z FC cannot prove the statement
“Hy(x) > m” ifm > Hy(ZFC) + c. So, all true statements “Hy (x) > m” (an
infinite set) are unprovable in Z F C. Recognizing high complexity is a difficult task
even for ZFC. The difficulty depends upon the choice of U: some U’s are worse
than others. Raatikainen (1998) has shown that there exists a universal Chaitin
machine U so that Z FC, if arithmetically sound, can prove no statement of the
form “Hy(x) > n”. It follows that ZFC, if arithmetically sound, can prove no
(obviously, true) statement of the form “Hy (x) > 0”.

Chaitin’s Second Information-theoretic Incompleteness Theorem reads:

Let U be a universal Chaitin machine. If ZFC is arithmetically sound, then
Z FC can determine the value of only finitely many bits of Q.

We can explicitly compute a bound on the number of bits of 2 which ZFC
can determine, but the bound is not computable. For example, Chaitin (1997) has
constructed a universal Chaitin machine Uy, and a theory T such that T can
determine the value of at most HUUSP(T) + 15, 328 bits of Q.

Can we ‘find out’ the (finitely many) bits which Z FC can determine?

For every c.e. and random real « we can construct a universal Chaitin machine
U such that o = Qy and ZFC is able to determine finitely (but as many as we
want) bits of ;. Solovay (2000) went in the opposite direction by showing that:

We can effectively construct a universal Chaitin machine Ugoopay Such that
ZFC, if arithmetically sound, cannot determine any single bit of Q. .

Chaitin’s Second Information-theoretic Incompleteness Theorem holds true for
any universal Chaitin machine while Solovay constructed a specific machine. A
Chaitin machine for which Peano Arithmetic can prove its universality and ZFC
cannot determine more than the initial block of 1’s of the binary expansion of its
halting probability will be called Solovay machine. Which c.e. and random reals
are halting probabilities of Solovay machines? Calude (2002) proved the following
result:

Assume that Z F C is arithmetically sound. Then, every c.e. and random real is
the halting probability of a Solovay machine.
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For example, if « € (3/4,7/8) is c.e. and random, then in the worst case Z FC
can determine its first two bits (11), but no more. Assume that Z F'C is arithmetic-
ally sound. Then, every c.e. and random real o € (0, 1/2) is the halting probability
of a Solovay machine which cannot determine any single bit of «. No c.e. and
random real o € (1/2, 1) has the above property.

A direct consequence of Solovay’s result is the following constructive form of
information-theoretic incompleteness:

There exists a universal Chaitin machine Us,jovqy S0 that ZF C, if arithmetic-
ally sound, cannot prove the true statement “The first bit of Q. 1 0.

In fact, a more general theorem is true:

For every binary string s = s15, ..., we can effectively construct a Solovay
machine Usgiovay such that the binary expansion of Qus,,,,, has the string
0s15; . ..s, as prefix. Hence, the following statements

“The 0" binary digit of the expansion of QUspionay 18 07,
“The 1* binary digit of the expansion of Q. 18 517,
“The 2" binary digit of the expansion of Qg i 527,

“The n'” binary digit of the expansion of Q... i .7,

are true but unprovable in ZFC.

The information-theoretic version of incompleteness produces, in a constructive
way, natural examples in which the axiomatic method is completely powerless.
It also shows that incompleteness is pervasive, not accidental (for a different ap-
proach, see Calude et al., 1994). This may change the general view on the axiomatic
method, one of the most powerful tools in mathematics. In Godel’s own words (see
Godel, 1964):

... besides mathematical intuition there exists another (though only probable)
criterion of truth of mathematical axioms, namely their fruitfulness in mathem-
atics, and one may add, possibly also in physics ... The simplest case of an
application of the criterion under discussion arises when some ... axiom has
number-theoretical consequences verifiable by computation up to any given
integer.

Do these results have any impact on mathematics and/or the philosophy of
mathematics? Opinions vary dramatically. H. Weyl described incompleteness in
a pessimistic way, as a constant drain on the enthusiasm of pursuing scientific
research; F. Dyson sees it in an optimistic way, as an insurance policy that science
will go on forever. And, of course, some would argue that the work of the over-
whelming majority of mathematicians and philosophers has been quite unaffected
by the incompleteness results. One thing is certain: incompleteness has captured
the interest of many. Many books and thousands of technical papers discuss it and
its implications and the March 29, 1999 issue of TIME magazine has included
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Godel and Turing in its list of the twenty greatest twenty scientists and thinkers of
the twentieth century.

4. Beyond

In this section we will discuss some recent results which in a way or another
“challenge” the limits discussed above.

4.1. COMPUTING A GLIMPSE OF AN OMEGA

Any attempt to compute the uncomputable or to decide the undecidable is without
doubt challenging, but hardly new (see, for example, Marxen and Buntrock, 1990;
Stewart, 1991; Casti, 1997). What about computing pieces of a concrete Omega
number? First, note that any Omega number is not only uncomputable, but random,
making the computing task even more demanding.

Computing lower bounds for Omega is not difficult: we just generate more and
more halting programs. Are the bits produced by such a procedure exact? Hardly. If
the first bit of the approximation happens to be 1, then sure, it is exact. However, if
the provisional bit given by an approximation is O, then, due to possible overflows,
nothing prevents the first bit of Omega from being either O or 1. This situation
extends to other bits as well. As we have already discussed, only an initial run of
1’s may give exact values for some bits of Omega.

Another (more serious) difficulty preventing the computation of a fragment of
an Omega is the following. Globally, if we can compute all bits of 2, then we
can solve the Halting Problem for every program for U, and conversely, knowing
all halting programs one can compute all bits of 2y. Locally, given the first N
bits of Omega one can decide the halting status of all programs of length at most
N. However, if we can solve for U the Halting Problem for all programs up to N
bits long we might not get an exact value for any bit of Q; (less all values for
the first NV bits). Reason: longer halting programs can contribute to the value of a
“very early” bit of the expansion of €. Using a “hybrid approach”, programming
combined with mathematical proofs, all halting programs of up to 84 bits for a
concrete U have been calculated (Calude et al., 2001). This information has been
used to compute (only) the first 64 exact bits of Qy:

0000001000000100000110001000011010001111110010111011101000010000.

4.2. TURING’S BARRIER REVISITED

Classically, there are two equivalent ways to look at the mathematical notion of
proof: (a) as a finite sequence of sentences strictly obeying some axioms and in-
ference rules, (b) as a specific type of computation. Indeed, from a proof given
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as a sequence of sentences one can easily construct a machine producing that
sequence as the result of some finite computation and, conversely, given a machine
computing a proof we can just print all sentences produced during the computation
and arrange them in a sequence. A proof is an explicit sequence of reasoning steps
that can be inspected at leisure; in theory, if followed with care, such a sequence
either reveals a gap or mistake, or can convince a skeptic of its conclusion, in which
case the theorem is considered proven.

This equivalence has stimulated the construction of programs which perform
like artificial mathematicians.! From proving simple theorems of Euclidean geo-
metry to the proof of the four-color theorem, these “theorem provers” have been
very successful. Of course, this has sparked lots of controversies. Artificial math-
ematicians are far less ingenious and subtle than human mathematicians, but they
surpass their human counterparts by being infinitely more patient and diligent.
What about making errors? Are human mathematicians less prone to errors? This
is a difficult question which requires more attention.

If a conventional proof is replaced by a “quantum computational proof” (or a
proof produced as a result of a molecular experiment), then the conversion from a
computation to a sequence of sentences may be impossible, e.g., due to the size of
the computation. For example, a quantum machine could be used to create some
proof that relied on quantum interference among all the computations going on
in superposition. The quantum machine would say “your conjecture is true”, but
there will be no way to exhibit all trajectories followed by the quantum machine
in reaching that conclusion. In other words, the quantum machine has the ability
to check a proof, but it may fail to reveal any “trace” of how it did it. Even worse,
any attempt to watch the inner working of the quantum machine (e.g. by “looking”
at any information concerning the state of the on-going proof) may compromise
forever the proof itself!

These facts may not affect the essence of mathematical objects and construc-
tions (which have an autonomous reality quite independent of the physical reality),
but they seem to have an impact on how we learn/understand mathematics (which
is through the physical world). Indeed, our glimpses of mathematics seem to be
“revealed” through physical objects, i.e. human brains, silicon computers, quantum
Turing machines, etc., hence, according to Deutsch (1985), they have to obey not
only the axioms and the inference rules of the theory, but the laws of physics as
well.

The question of trespassing Turing’s barrier, i.e. the possibility of solving a
Turing undecidable problem, to compute an uncomputable function has been con-
sidered by various authors, (for example, Siegelmann, 1995; Copeland, 1999, 2000).
Is there any hope for quantum (or DNA) computing to challenge the Turing barrier?
According to Feynman’s argument (see Feynman, 1985; a paper reproduced also
in Hey, 1999) any quantum system can be simulated with arbitrary precision by a
(probabilistic) Turing machine, so the answer seems to be negative. However, some
recent tentative approaches promise a positive answer: for quantum approaches 2
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(see Calude et al., 1999, 2000; Etesi and Németi, 2002; Calude and Pavlov, 2002;
Kieu 2001a, b; and for DNA methods, see Calude and Paun, 2001).

Is incompleteness affected? We need more understanding of the quantum world
to be able to answer this question. One step toward a possible answer is to look at
the quantum version of €2, the number £2, invented in 1995 by G. Chaitin, K. Svozil
and A. Zeilinger (see Svozil, 1995; Williams and Clearwater, 2000; see also Kieu,
2001a; Vitanyi, 2001). The number €2, is the probability amplitude with which a
random quantum program halts on a self-delimiting universal quantum machine
(hence, the halting probability of a self-delimiting universal quantum machine? is
|2, 1%). For computing ©,, only the quantum versions of classical bits in the domain
of the quantum machine are allowed as inputs, so from the computability point of
view 2, is an €2, hence all information-theoretic results remain unchanged. The
halting probability of any quantum device capable of solving the Halting Problem
(for classical Turing machines) will be an & number (as introduced in Becher et
al., 2001), a random, but not c.e. real; the “incompleteness” derived from such a
number has not (yet) been studied.

As is pointed out in Calude et al. (2000), all these theoretical proposals for
trespassing Turing’s barrier by a quantum machine may have a fairly low impact on
current computer technology because for all practical purposes the halting compu-
tation has a non-zero, but very small chance of detection. So, when reality seems so
far way from theory, why are we concerned with the latter? According to Landauer
(1987) the answer is:

Because it is at the very core of science. ... Information, numerical or other-
wise, is not an abstraction, but it is inevitably tied to a physical representation.

the handling of information is inevitably tied to the physical universe, its
contents and its laws.

5. Digression: Is the Universe Lawless?

The hypothesis that the “Universe is lawful” is supported by our daily observations:
the rhythm of day and night, the pattern of planetary motion, the regular ticking of
clocks. It is a simple matter of reflection to point out some limits to this type of
argument: the vagaries of weather, the devastation of earthquakes, or the fall of
meteorites — all seem to be fortuitous. How can the same physical process, for
example the spin of a roulette wheel, obey both the laws of chance and the laws of
physics?

Perhaps a different hypothesis can better explain this type of behaviour. As our
direct information refers to finite experiments, it is not out of the question to dis-
cover local rules, functioning on large, but finite scales, even if the global behaviour
of the process is, or appears to be, random. The fact that the first billion digits of a
random sequence are perfectly lawful, by being for instance exactly the first digits
of the decimal expansion of 7, does not change in any way the global property
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of randomness. But, to “see” this global randomness we have to go beyond the
finite; we have to access the infinite! The hypothesis stating that the “Universe is
lawless”, motivated by a crude model of the Universe based on the Omega number
developed in Calude and Salomaa (1994) , was discussed in Calude and Meyerstein
(1999): it tries to explain our partial, incomplete and provisional understanding of
the Universe in a different way. But, of course, the adjectives “partial, incomplete
and provisional” apply to the model itself!
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Notes

10ther types of “reasoning” such as medical diagnosis or legal inference have been successfully
modeled and implemented; see, for example, the British National Act which has been encoded in
first-order logic and a machine has been used to uncover its potential logical inconsistencies.

2The solution proposed in Calude and Pavlov (2002) (see also Chown, 2002) is based on the “con-
tinuity” of quantum programs. Because of continuity, in deciding the halting/non-halting status of
a non-halting machine, the quantum program “announces” (with a non-empty probability) the non-
halting decision well before reaching it; hence, the challenge is to design a procedure that detects and
measures this tiny, but non-empty signal. This was indeed achieved by exploiting some properties of
the Brownian motion.

3Things are more complicated as the halt bit of the quantum machine might enter a superposition
state and remain there while other parts of the output state describing the quantum machine continue
to change. To settle the matter one has to perform a measurement.

Bibliographical Comments

The list of references is by no means comprehensive and should be used in conjunc-
tion with bibliographies appearing in the cited works. One of the best presentations
of Godel’s Incompleteness Theorem is Nagel and Newman (1986). The founders
of algorithmic information theory are Solomonoff (1964), Kolmogorov (1965) and
Chaitin (1966). Chaitin’s monographs Chaitin (1992, 1999) deal with information-
theoretic incompleteness. More on these issues can be found in Rozenberg and
Salomaa (1994), Barrow (1998, 2000, 1995) Beltrami (1999), Zwirn (2000); for
critical discussions see van Lambalgen (1989), Raatikainen (1998). Algorithmic
information theory is presented in Chaitin (1990, 1997, 1999, 2000), Uspensky
et al. (1990), Calude (2002), Li et al. (1997). For other interesting discussions
on randomness see Kac (1983), Kolata (1986), Dembski (1998), Beltrami (1999),
Hayes (2001), Svozil (1993), Denker et al. (1998). Easy to understand present-
ations include Bennett et al. (1979), Chaitin (1982, 2001), Casti (2000), Calude
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et al. (1999), Calude (2000), Chown (2001, 2002), Rucker (1982). Recent literat-
ure inspired by Godel’s incompleteness include Auburn (2001), Doxiadis (2000).
Godel’s life is discussed in Kleene (1976), Kreisel (1980), Dawson (1997), Wang
(1996), Casti et al. (2000). The literature on quantum computing is growing at full
speed: some book references are Gruska (1999), Williams et al. (2000), Calude et
al. (2001).
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