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Embedding Quantum Universes in Classical Ones
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Do the partial order and ortholattice operations of a quantum logic correspond to
the logical implication and connectives of classical logic? Rephrased, How far
might a classical understanding of quantum mechanics be, in principle, possible?
A celebrated result of Kochen and Specker answers the above question in the
negative. However, this answer is just one among various possible ones, not all
negative. It is our aim to discuss the above question in terms of mappings of quan-
tum worlds into classical ones, more specifically, in terms of embeddings of quan-
tum logics into classical logics; depending upon the type of restrictions imposed on
embeddings, the question may get negative or positive answers.

1. INTRODUCTION

Quantum mechanics is a very successful theory which appears to predict
novel “counterintuitive” phenomena (see Refs. 12 and 50) even almost a
century after its development (cf. Refs. 19, 20, and 42). Yet it can be safely
stated that quantum theory is not understood."'”’ Indeed, it appears that
progress is fostered by abandoning long-held beliefs and concepts rather
than by attempts to derive it from some classical basis (Refs. 4, 13, and 18).

But just how far might a classical understanding of quantum mechanics
be, in principle, possible? We shall attempt an answer to this question in
terms of mappings of quantum worlds into classical ones, more specifically,
in terms of embeddings of quantum logics into classical logics.

One physical motivation for this approach is a result proven for the
first time by Kochen and Specker®® [cf. also Refs. 2, 43, and 52; see
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reviews in Refs. 32 and 48 and a forthcoming monograph'*®] stating the
impossibility to “complete” quantum physics by introducing noncontextual
hidden parameter models. Such a possible “completion’ had been suggested,
though in not very concrete terms, by Einstein, Podolsky, and Rosen
(EPR).®”’ These authors speculated that “clements of physical reality” exist
irrespective of whether they are actually observed. Moreover, EPR conjec-
tured, the quantum formalism can be “completed” or “embedded” into a
larger theoretical framework which would reproduce the quantum theoreti-
cal results but would otherwise be classical and deterministic from an
algebraic and logical point of view.

A proper formalization of the term “element of physical reality”
suggested by EPR can be given in terms of two-valued states or valuations,
which can take on only one of the two values 0 and 1, and which are inter-
pretable as the classical logical truth assignments false and true, respec-
tively. Kochen and Specker’s results'*® state that for quantum systems
representable by Hilbert spaces of dimension higher than two, there does
not exist any such valuation s: L — {0, 1} defined on the set of closed
linear subspaces of the space L (these subspaces are interpretable as quan-
tum mechanical propositions) preserving the lattice operations and the
orthocomplement, even if one restricts the attention to lattice operations
carried out among commuting (orthogonal) elements. As a consequence,
the set of truth assignments on quantum logics is not separating and not
unital. That is, there exist different quantum propositions which cannot be
distinguished by any classical truth assignment.

The Kochen and Specker result, as it is commonly argued (e.g., in
Refs. 35 and 32), is directed against the noncontextual hidden parameter
program envisaged by EPR. Indeed, if one takes into account the entire
Hilbert logic (of dimension higher than two) and if one considers all states
thereon, any truth value assignment to quantum propositions prior to the
actual measurement yields a contradiction. This can be proven by finitistic
means, that is, with a finite number of one-dimensional closed linear sub-
spaces [ generating an infinite set whose intersection with the unit sphere is
dense (cf. Ref. 17)] But, the Kochen—Specker argument continues, it is
always possible to prove the existence of separable valuations or truth
assignments for classical prepositional systems identifiable with Boolean
algebras. Hence, there does not exist any injective morphism from a quan-
tum logic into some Boolean algebra.

Since the previous reviews of the Kochen—Specker theorem by
Peres,****) Redhead,®® Clifton,'® Mermin,** and Svozil and Tkadlec"*®’
concentrated on the nonexistence of classical noncontextual elements of
physical reality, we discuss here some options and aspects of embeddings
in greater detail. Particular emphasis is given to embeddings of quantum
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universes in classical ones which do not necessarily preserve (binary lattice)
operations identifiable with the logical or and and operations. Stated poin-
tedly, if one is willing to abandon the preservation of quite commonly used
logical functions, then it is possible to give a classical meaning to quantum
physical statements, thus giving raise to an “understanding” of quantum
mechanics.

Quantum logic, according to Refs. 5, 21, 23, 28, and 37, identifies logi-
cal entities with Hilbert space entities. In particular, elementary proposi-
tions p, ¢,... are associated with closed linear subspaces of a Hilbert space
through the origin (zero vector); the implication relation < is associated
with the set theoretical subset relation C, and the logical or v , and A ,
and not ' operations are associated with the set theoretic intersection M,
with the linear span @ of subspaces, and with the orthogonal subspace L,
respectively. The trivial logical statement 1, which is always true, is iden-
tified with the entire Hilbert space H, and its complement & with the zero-
dimensional subspace (zero vector). Two propositions p and ¢ are
orthogonal if and only if p<¢'. Two propositions p, g are comeasurable
(commuting) if and only if there exist mutually orthogonal propositions a,
b, ¢ such that p=av b and ¢g= av c. Clearly, orthogonality implies com-
easurability, since if p and ¢ are orthogonal, we may identify a, b, ¢ with
0, p, ¢, respectively. The negation of p<<¢ is denoted p< ¢.

2. VARIETIES OF EMBEDDINGS

One of the questions already raised in Specker’s almost-forgotten first
article'*” concerned an embedding of a quantum logical structure L of
propositions in classical universe represented by a Boolean algebra B.
Thereby, it is taken as a matter of principle that such an embedding should
preserve as much logicoalgebraic structure as possible. An embedding of
this kind can be formalized as a mapping ¢: L — B with the following
properties. * Let p, ¢ L.

(1) [Inmjectivity: Two different quantum logical propositions are
mapped into two different propositions of the Boolean algebra, i.e., if p# ¢,
then o(p)# ¢(q).

(ii) Preservation of the order relation: If p<< q, then ¢o(p)< ¢(q).

(iil)  Preservation of ortholattice operations, i.e., preservation of the

(ortho-)complement: ¢(p')= ¢(p)’;
or operation: ¢(pv q)= ¢(p)Vv ¢(q); and
and operation: ¢(pA ¢q)= o(p)A ¢(q).

4 Specker had a modified notion of embedding in mind; see below.
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As it turns out, we cannot have an embedding from the quantum
universe to the classical universe satisfying all three requirements (i)—(iii).
In particular, a head-on approach requiring (iii) is doomed to failure, since
the nonpreservation of ortholattice operations among noncomeasurable
propositions is quite evident, given the nondistributive structure of quantum
logics.

2.1. Injective Lattice Morphisms

Here we review the rather evident fact that there does not exist an
injective lattice morphism from any nondistributive lattice into a Boolean
algebra. We illustrate this obvious fact with an example that we need to
refer to later on in this paper; the propositional structure encountered in the
quantum mechanics of spin-state measurements of a spin one-half particle
along two directions (mod =), that is, the modular, orthocomplemented
lattice MO, drawn in Fig. 1 (where p_ = (p,) and g_ = (¢.)").

Clearly, MO, is a nondistributive lattice, since for instance,

P-A(g-Vv qgs)=p-Al=p_
whereas
(p-~Nqg-)v(p-Angq:)=0v 0=0
Hence,
P-AN(q=-V q+)F(pP-ANqg-)V (p- A g+)

In fact, MO, is the smallest orthocomplemented nondistributive lattice.

1=0

0=1

Fig. 1. Hasse diagram of the “Chinese lantern” form of
MO,.
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The requirement (iii) that the embedding ¢ preserves all ortholattice
operations (even for noncomeasurable and nonorthogonal propositions)
would mean that @(p-)A (@(¢-)V @(q+))# (e(p-)A @(q-))Vv (e(p-)
A @(g+)). That is, the argument implies that the distributive law is not
satisfied in the range of ¢. But since the range of ¢ is a subset of a Boolean
algebra and for any Boolean algebra the distributive law is satisfied, this
yields a contradiction.

Could we still hope for a reasonable kind of embedding of a quantum
universe in a classical one by weakening our requirements, most notably
(ii1)? In the next three sections we give different answers to this question.
In the first section we restrict the set of propositions among which we wish
to preserve the three operations complement’, or v/ , and and A . We will
see that the Kochen—Specker result gives a very strong negative answer
even when the restriction is considerable. In the second section we analyze
what happens if we try to preserve not all operations but just the comple-
ment. Here we obtain a positive answer. In the third section we discuss a
different embedding which preserves the order relation but no ortholattice
operation.

2.2. Injective Order Morphisms Preserving Ortholattice Operations
Among Orthogonal Propositions

Let us follow Zierler and Schlessinger®® and Kochen and Specker*®
and weaken (iii) by requiring that the ortholattice operations need only
be preserved among orthogonal propositions. As shown by Kochen and
Specker,*® this is equivalent to the requirement of separability by the set
of valuations or two-valued probability measures or truth assignments
on L. As a matter of fact, Kochen and Specker®® proved nonseparability,
but also much more—the nonexistence of valuations on Hilbert lattices
associated with Hilbert spaces of dimension at least three. For related
arguments and conjectures, based upon a theorem by Gleason,""" see
Refs. 2 and 52.

Rather than rephrasing the Kochen and Specker argument'*® concern-
ing the nonexistence of valuations in three-dimensional Hilbert logics in its
original form or in terms of fewer subspaces (cf. Refs. 32 and 35), or of
Greechie diagrams, which represent orthogonality very nicely (cf. Refs. 46
and 48), we give two geometric arguments which are derived from proof
methods for Gleason’s theorem (see Refs. 7, 24 and 36).

Let L be the lattice of closed linear subspaces of the three-dimensional
real Hilbert space R°>. A two-valued probability measure or valuation on L is
a map v: L — {0, 1} which maps the zero-dimensional subspace containing
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only the origin (0,0, 0) to 0, the full space R® to 1, and which is additive
on orthogonal subspaces. This means that for two orthogonal subspaces
s1, 82 €L, the sum of the values v(s;) and v(s,) is equal to the value of the
linear span of s, and s,. Hence, if s,,s,, 53 €L are a tripod of pairwise
orthogonal one-dimensional subspaces, then

v(sy) + v(sy) + v(s3) = V([R3)= 1

The valuation v must map one of these subspaces to 1 and the other two
to 0. We show that there is no such map. In fact, we show that there is no
map v which is defined on all one-dimensional subspaces of R* and maps
exactly one subspace out of each tripod of pairwise orthogonal one-dimen-
sional subspaces to 1 and the other two to 0.

In the following two geometric proofs we often identify a given one-
dimensional subspace of R* with one of its two intersection points with the
unit sphere

S§*={xeR’||x] =1}

In the statements “A point (on the unit sphere) has value 0 (or value 1)”
and “Two points (on the unit sphere) are orthogonal,” we always mean the
corresponding one-dimensional subspaces. Note also that the intersection
of a two-dimensional subspace with the unit sphere is a great circle.

To start the first proof, let us assume that a function v satisfying the
above condition exists. Let us consider an arbitrary tripod of orthogonal
points and let us fix the point with value 1. By a rotation we can assume
that it is the north pole with the coordinates (0, 0, 1). Then, by the con-
dition above, all points on the equator {(x, y,z) €S”|z=0} must have
value 0 since they are orthogonal to the north pole.

Let ¢=(q.,¢,,q.) be a point in the northern hemisphere, but not
equal to the north pole, that is, 0< ¢.< 1. Let C(g) be the unique great
circle which contains ¢ and the points * (g,, —q., 0)/\Vg:+ qi in the
equator, which are orthogonal to ¢. Obviously, ¢ is the northernmost point
on C(g). To see this, rotate the sphere around the z-axis so that ¢ comes
to lie in the { y= 0}-plane (see Fig. 2). Then the two points in the equator
orthogonal to ¢ are just the points + (0, 1, 0), and C(gq) is the intersection
of the plane through ¢ and (0, 1, 0) with the unit sphere, hence

Clq)={peR’| (3 peR) &’ + p*=land p= ag+ (0, 1,0)}

This shows that ¢ has the largest z-coordinate among all points in C(g).
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A

north pole (0,0,1)

between C(gq)
and the equator

Fig. 2. The great circle C(g).

Assume that g has value 0. We claim that then all points on C(g) must
have value 0. , since g has value 0 and the orthogonal point
(9,, — 4%, 0)/ q>+ qi on the equator also has value 0, the one-dimen-
sional subspace orthogonal to both of them must have value 1. But this
subspace is orthogonal to all points on C(g). Hence all points on C(gq)
must have value 0.

Now we can apply the same argument to any point § on C(g) (by the
last consideration § must have value 0) and derive that all points on C(q)
have value 0. The great circle C(g) divides the northern hemisphere into
two regions, one containing the north pole and the other consisting of the
points below C(g) or “lying between C(g) and the equator” (see Fig. 2).
The circles C(§) with § eC(q) certainly cover the region between C(g) and
the equator.” Hence any point in this region must have value 0.

But the circles C(4§) cover also a part of the other region. In fact, we
can iterate this process. We say that a point p in the northern hemisphere
can be reached from a point ¢ in the northern hemisphere, if there is a finite
sequence of points ¢= qo, ¢1,» 4u—1, ¢»= p in the northern hemisphere
such that ¢; eC(q,;— ;) for i= 1,.., n. Our analysis above shows that if ¢ has
value 0 and p can be reached from ¢, then also p has value 0.

The following geometric lemma due to Piron*® (see also Ref. 7 or 24)
is a consequence of the fact that the curve C(g) is tangent to the horizontal
plane through the point ¢:

If g and p are points in the northern hemisphere with p.< q.,
then p can be reached from q.

® This is shown formally in the proof of the geometric lemma below.
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This result is proved in Appendix A. We conclude that, if a point ¢ in the
northern hemisphere has value 0, then every point p in the northern
hemisphere with p. < ¢g. must have value 0 as well.

Consider the tripod (1,0,0), (0,1/\2, 1/\Z2-) (0, —1 /\ZZ-, 1/\[2-).
Since (1, 0, 0) (on the equator) has value 0, one of the two other points has
value 0 and one has value 1. By the geometric lemma and our above con-
siderations, this implies that all points p in the northern hemjsphere with
p-< 1/A\/2 must have value 0 and all points p with p.>]/\/2 must have
value 1. But now we can choose any point p’ with 1/\/2<p.<1 as our
new north pole and deduce that the valuation must have the same form
with respect to this pole. This is clearly impossible. Hence, we have proved
our assertion that there is no mapping on the set of all one-dimensional
subspaces of R® which maps one space out of each tripod of pairwise
orthogonal one-dimensional subspaces to 1 and the other two to 0.

In the following we give a second topological and geometric proof for
this fact. In this proof we do not use the geometric lemma above.

Fix an arbitrary point on the unit sphere with value 0. The great circle
consisting of points orthogonal to this point splits into two disjoint sets,
the set of points with value 1, and the set of points orthogonal to these
points. They have value 0. If one of these two sets were open, then the
other had to be open as well. But this is impossible since the circle is con-
nected and cannot be the union of two disjoint open sets. Hence the circle
must contain a point p with value 1 and a sequence of points ¢(n),
n=1,2,.. with value 0 converging to p. By a rotation we can assume that
p is the north pole and the circle lies in the { y = 0}-plane. Furthermore, we
can assume that all points ¢, have the same sign in the x-coordinate.
Otherwise, choose an infinite subsequence of the sequence ¢(n) with this
property. In fact, by a rotation we can assume that all points ¢(n) have
positive x-coordinate [i.e., all points ¢(n), n= 1, 2,... lie as the point ¢ in
Fig. 2 and approach the north pole as n tends to infinity]. All points on the
equator have value 0. By the first step in the proof of the geometric lemma
in the appendix, all points in the northern hemisphere which lie between
C(g(n)) [ the great circle through ¢(n) and £ (0, 1, 0)] and the equator can
be reached from ¢(n). Hence, as we have seen in the first proof, v(g(n))= 0
implies that all these points must have value 0. Since ¢(n) approaches the
north pole, the union of the regions between C(¢(n)) and the equator is
equal to the open right half {g €S*|¢.> 0, ¢.> 0} of the northern hemi-
sphere. Hence all points in this set have value 0. Let ¢ be a point in the left
half {q €S*|¢.>0,q,.< 0} of the nor emisphere. It forms a tripod
together with the point (¢,, — ¢, 0)/ q>+ qi in the equator and the point
(= qxr =4y (g3 qDIg)N (= qx. — 4y, (g3 + ¢3)/g.)l in the right half.
Since these two points have value 0, the point ¢ must have value 1. Hence
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all points in the left half of the northern hemisphere must have value 1. But
this leads to a contradiction because there are tripods with two points in
the lgft half,_for example the tripod (=3, 1/V2,3), (=3, —1/\V2,3%),
(1/V2,0, 1/\[2-). This ends the second proof for the fact that there is no
two-valued probability measure on the lattice of subspaces of the three-
dimensional Euclidean space which preserves the ortholattice operations at
least for orthogonal elements.

2.3. Injective Morphisms Preserving Order as Well as or and and operations

We have seen that we cannot hope to preserve the ortholattice opera-
tions, not even when we restrict ourselves to operations among orthogonal
propositions.

An even stronger weakening of condition (iii) would be to require
preservation of ortholattice operations merely among the center C, ie.,
among those propositions which are comeasurable (commuting) with all
other propositions. It is not difficult to prove that in the case of complete
Hilbert lattices (and not mere subalgebras thereof), the center consists of
just the least lower and the greatest upper bound C= {0, 1} and thus is
isomorphic to the two-element Boolean algebra 2= {0, 1}. As it turns out,
the requirement is trivially fulfilled and its implications are quite trivial as
well.

Another weakening of (iii) is to restrict oneself to particular physical
states and study the embeddability of quantum logics under these con-
straints (see Ref. 1).

In the following sections we analyze a completely different option: Is
it possible to embed quantum logic in a Boolean algebra when one does
not demand preservation of all ortholattice operations?

One method of embedding an arbitrary partially ordered set in a con-
crete orthomodular lattice which in turn can be embedded into a Boolean
algebra has been used by Kalmbach® and extended by Hardin''® and
Mayet and Navara.®". In these Kalmbach embeddings, as they may be
called, the meets and joins are preserved but, not the complement.

The Kalmbach embedding of some bounded lattice L into a concrete
orthomodular lattice K(L) may be thought of as the pasting of Boolean
algebras corresponding to all maximal chains of L./'¥

First, let us consider linear chains 0=ay—a;,—>a,— --- >1=a,,.
Such chains generate Boolean algebras 2"~ ! in the following way: from the
first nonzero element @, on to the greatest element 1, form A4,=a,A
(a,— ), where (a,_ )" is the complement of @, , relative to 1; i.e., (a,_ )" =
l1—a,_,. A, is then an atom of the Boolean algebra generated by the
bounded chain 0=ay—a; >a,— ... > 1.
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Take, for example, a three-element chain 0= ay— {a}=a, > {a,b}=
1= a, as depicted in Fig. 3a. In this case,

Ai=a,n (a))=a A 1= {a} A {a, b} = {a)}

Ar=arA (@) = 1A (a))'= {a, b} A {b} = {b}

This construction results in a four-element Boolean Kalmbach lattice
K(L)=2? with the two atoms {a} and {b} given in Fig. 3b.

)
=1 () {abedi=1
KA,

{a,b,c,d}
{a,b,c}
=
a} by =
0
L

i J)

&) h
{

Fig. 3. Examples of Kalmbach embeddings.
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Take, as a second example, a four-element chain 0= a,— {a}=
a;—>{a, b} —>{a, b, c}= 1= a; as depicted in Fig. 3c. In this case,

Ar=a A (a)) =a A 1= {a} A {a, b, c} = {a}
A>s=a> A (ay)'= {a, by A {b, c} = {b}
As=asn (a2) = 1A (a2)'= {a, b, c} A {c} = {c}

This construction results in an eight-element Boolean Kalmbach lattice
K(L)= 2" with the three atoms {a}, {b}, and {c} depicted in Fig. 3d.

To apply Kalmbach’s construction to any bounded lattice, all Boolean
algebras generated by the maximal chains of the lattice are pasted together.
An element common to two or more maximal chains must be common to
the blocks they generate.

Take, as a third example, the Boolean lattice 2> drawn in Fig. 3e.
2% contains two linear chains of length three which are pasted together
horizontally at their smallest and biggest elements. The resulting Kalmbach
lattice K(2%)= MO, is of the “Chinese lantern” type (see Fig. 3f).

Take, as a fourth example, the pentagon drawn in Fig. 3g. It contains
two linear chains: one is of length three, the other is of length 4. The result-
ing Boolean algebras 2° and 2° are again horizontally pasted together at
their extremities 0, 1. The resulting Kalmbach lattice is given in Fig. 3h.

In the fifth example, drawn in Fig. 3i, the lattice has two maximal
chains which share a common element. This element is common to the two
Boolean algebras, hence central in K(L). The construction of the five atoms
proceeds as follows:

Ay={a} A {a,b,c,d} = {a}
A= {a,b,c} A {b,c,d} = {b,c}
As=Bs={a,b,c,d} A {d} = {d}
B, ={b}A {a,b,c,d} = {b}
B,={a,b,c} A {a,c,d} = {a,c}

where the two sets of atoms {4, 4,, As= B3} and {B,, B,, B3 = A3} span
two Boolean algebras 2° pasted together at the extremities and at A;= B;
and A% = B5. The resulting lattice is 2X MO, = L ,, depicted in Fig. 3j.

24. Injective Morphisms Preserving Order and Complementation

In the following, we show that any orthoposet can be embedded in a
Boolean algebra, where, in this case, by an embedding we understand an
injective mapping preserving the order relation and the orthocomplementation.
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A slightly stronger version of this fact using more topological notions
has already been shown by Katrnoska.’*® Zierler and Schlessinger con-
structed embeddings with more properties for orthomodular orthoposets
(Ref. 52, Theorem 2.1) and mentioned another slightly stronger version of
the result above without explicit proof (Ref. 52, Sec. 2, Remark 2).

For completeness’ sake we give the precise definition of an orthoposet.
An orthoposet (or orthocomplemented poset) (L, <,0,1,") is a set L which
is endowed with a partial ordering < [ie., a subset < of L XL satisfying
(1) p<p, (2)if p< g and g<r, then p<r, and (3) if p< ¢ and g<<p, then
p=gq, for all p, q, r €L ]. Furthermore, L contains distinguished elements 0
and 1 satisfying 0<<p and p< 1, for all p L. Finally, L is endowed with
a function ' (orthocomplementation) from L to L satisfying the conditions
(1) p" = p, (2) if p< g, then ¢'<< p’, and (3) the least upper bound of p and
p exists and is 1, for all p, ¢ L. Note that these conditions imply 0'= 1,
1"= 0, and that the greatest lower bound of p and p' exists and is 0, for all
p eL.

For example, an arbitrary sublattice of the lattice of all closed linear
subspaces of a Hilbert space is an orthoposet, if it contains the subspace
{0} and the full Hilbert space and is closed under the orthogonal comple-
ment operation. Namely, the subspace {0} is the 0 in the orthoposet, the
full Hilbert space is the 1, the set-theoretic inclusion is the ordering <, and
the orthogonal complement operation is the orthocomplementation '.

In the rest of this section we always assume that L is an arbitrary
orthoposet. We construct a Boolean algebra B and an injective mapping
¢: L — B which preserves the order relation and the orthocomplementa-
tion. The construction goes essentially along the same lines as the construc-
tion of Zierler and Schlessinger®* and Katrnoska®” and is similar to the
proof of the Stone representation theorem for Boolean algebras (Ref. 45).
It is interesting to note that for a finite orthoposet the constructed Boolean
algebra will be finite as well.

We call a nonempty subset K of L an ideal if for all p, ¢ L

1. if p €K, then p’ ¢K, and
2. if p<gq and q €K, then p ek

Clearly, if K is an ideal, then 0 eK. An ideal [ is maximal provided
that if K is an ideal and IC K, then K= I.

Let v be the set of all maximal ideals in L, and let B be the power set
of . considered as a Boolean algebra, i.e., B is the Boolean algebra which
consists of all subsets of .#. The order relation in B is the set-theoretic
inclusion, the ortholattice operations complement, or, and and are given by
the set-theoretic complement, union, and intersection, and the elements 0
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and 1 of the Boolean algebra are just the empty set and the full set .7 .
Consider the map

¢o:L—>B
which maps each element p €L to the set

o(p)={les |pel}
of all maximal ideals which do not contain p. We claim that the map ¢
(1) 1is injective,
(ii) preserves the order relation, and

(iii) preserves complementation.

This provides an embedding of quantum logic in classical logic which
preserves the implication relation and the negation.’

The rest of this section consists of the proof of the three claims above.
Let us start with claim (ii). Assume that p, ¢ €L satisfy p<<¢. We have to
show the inclusion

o(p)Colq)

Take a maximal ideal I ep(p). Then p ¢l. If ¢ were contained in /, then by
condition 2 in the definition of an ideal also p had to be contained in 1.
Hence ¢ ¢1, thus proving that I ep(q).

Before we come to claims (iii) and (i), we give another characteriza-
tion of maximal ideals. We start with the following assertion, which will
also be needed later:

If Iis an ideal and r eL with r ¢l and ¥’ 1,
then also the set J= IU {s €L |s<r} is an ideal (1)

Here is the proof: It is clear that J satisfies condition 2 in the definition of
an ideal. To show that it satisfies condition 1 assume to the contrary that
there exists s €J and 5" eJ, for some s eL. Then one of the following condi-
tions must be true: (I) s, 5" €J, (II) s<rand s'<r, (III) s el and s'<r, or
(IV) s<r, s" el. The first case is impossible since 7 is an ideal. The second
case is ruled out by the fact that r# 1 (namely, r= 1 would imply ' = 0,

® Note that for a finite orthoposet L the Boolean algebra B is finite as well. Indeed, if L is
finite, then it has only finitely many subsets, especially only finitely many maximal ideals.
Hence # is finite, and thus also its power set B is finite.
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which would contradict our assumption " ¢I). The third case is impossible
since s'<<r implies r'<s, which, combined with s €I, would imply r' €I,
contrary to our assumption. Finally the fourth case is nothing but a refor-
mulation of the third case with s and s" interchanged. Thus we have proved
that J is an ideal and have proved assertion (1).

Next, we prove the following new characterization of maximal ideals:

An ideal Iis a maximal ideal iff r ¢/ implies v’ e/ (2)

To prove this first assume that for all r L, if r ¢/, then 1" el, and suppose
that I is a proper subset of an ideal K. Then there exists p €K such that
p ¢l. By our hypothesis (for all r €L, r ¢l implies r' €l), we have p' l.
Thus both p €K and p’ eK. This contradicts the fact that K is an ideal.

Conversely, suppose that 7 is a maximal ideal in L and suppose, to the
contrary, that for some r €L,

r el and v el (3)
Of course r# 1, since 1'=0 and 0 /. Let
J=1Tu(r) (4)

where (r) = {s €L | s<r} is the principal ideal of r [ note that (r) is indeed
an ideal]. Then, under assumption (3), using (1) above, we have that J is
an ideal which properly contains /. This contradicts the maximality of /
and ends the proof of the assertion (2).

For claim (iii) we have to show the relation

o(p')=4\o(p)

for all p eL. This can be restated as

Tep(p') iff Ige(p)

for all I es. But this means p' ¢l iff p el, which follows directly from
condition 1 in the definition of an ideal and from assertion (2).

We proceed to claim (i), which states that ¢ is injective, i.e., if p+# ¢,
then ¢(p)# ¢(q). But p# ¢ is equivalent to p< ¢ or ¢ < p. Furthermore, if
we can show that there is a maximal ideal I such that ¢ el and p ¢, then
it follows easily that ¢(p)+# ¢(¢). Indeed, p ¢l means I ep(p) and g €l
means I gp(q). It is therefore enough to prove that

If p< ¢, then there exists a maximal ideal / such that g e/ and p ¢l
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To prove this we note that since p< ¢, we have p# 0. Let
9,,= {KCL |Kis an ideal and p ¢K and ¢ €K}

We have to show that among the elements of 4, , there is a maximal ideal.
Therefore we use Zorn’s lemma. In order to apply it to ., ,, we have to
show that s, , is not empty and that every chain in 4, , has an upper
bound.

The set 4, , is not empty since (¢) €4, ,. Now we are going to show
that every chain in 4, , has an upper bound. This means that, given a sub-
set (chain) ¢ of 4, , with the property

for all J, K €¢ one has JC Kor KCJ

we have to show that there is an element (upper bound) U €4, , with KC U
for all K e#. The union

of all ideals K €% is the required upper bound! It is clear that all K ¢ are
subsets of U, . We have to show that U, is an element of ., ,. Since p ¢gK
for all K ev, we also have p ¢U, . Similarly, since ¢ eK for some (even all)
K ev, we have ¢ €U, . We still have to show that U, is an ideal. Given
two propositions r, s with r<s and s €U, , we conclude that s must be
contained in one of the ideals K €¢. Hence also r eKC U, . Now assume
reU, . Is it possible that the complement r" belongs to U, ? The answer is
negative, since otherwise r €J and r' €K, for some ideals J, K ¢ . But since
# is a chain, we have JC K or KC J, hence r, ' €K in the first case and
r, ' eJ in the second case. Both cases contradict the fact that J and K are
ideals. Hence, U, is an ideal and thus an element of 4, ,. We have proved
that v, , is not empty and that each chain in ¥, , has an upper bound
in.g,,.

Consequently, we can apply Zorn’s lemma to ., , and obtain a maxi-
mal element / in the ordered set v, ,. Thus

p el and q el (5)

It remains to show that 7/ is a maximal ideal in L. Thus suppose, to the
contrary, that 7 is not a maximal ideal in L.

By (2) there exists r L such that both r ¢I and r’ ¢l. Furthermore,
since p# 0, then either p<< r or p< r". Without loss of generality, suppose

p<kr (6)
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It follows, by (1), and since r ¢/ and r’ ¢, that I U (r) is an ideal properly
containing /. But since, by Conditions (5) and (6), ¢ €l and p< r, we have

pelu(r) and qgelu(r)

Thus /v (r) €4,,, and since r ¢l, we deduce that /U (r) properly contains 7,
contradicting the fact that I is a maximal element in 4,,. This ends the
proof of claim (i), the claim that the map ¢ is injective.

We have shown:

Any orthoposet can be embedded into a Boolean algebra where
the embedding preserves the order relation and the complementation

2.5. Injective Order-Preserving Morphisms

In this section we analyze a different embedding suggested by
Malhas.**3%

We consider an orthocomplemented lattice (L, <, 0, 1, '), i.e., a lattice
(L, <,0,1) with 0<<x<1 for all x eL, with orthocomplementation, that
is, with a mapping = L — L satisfying the following three properties:
(a) x"=x, (b) if x< y, then y’<x" and (¢) x.-x'=0 and yv y'= 1. Here
x.y=glb(x, y) and xv y = lub(x, ).

Furthermore, we assume that L is atomic’ and satisfies the following
additional property:

for all x, y eL, x<< y iff for every atoma €L, a<< x impliesa< y (7)

Every atomic Boolean algebra and the lattice of closed subspaces of a
separable Hilbert space satisfy the above conditions.

Consider next a set U® and let W(U) be the smallest set of words over
the alphabet Uu {’, =} which contains U and is closed under negation
[if 4 eW(U), then 4" eW(U)] and implication [if 4, B eW(U), then
A—> B eW(U)]’ The elements of U are called simple propositions and the
elements of W(U) are called (compound) propositions.

A valuation is a mapping

tW(U)—2

" For every x €L\ {0}, there is an atom a €L such that ¢<x. An atom is an element a €L
with the property that if 0< y<<a, then y=0 or y=a.

¥ Not containing the logical symbols U, ', —.

® Define in a natural way AUB=A"—>B, AnB=(A—B), A<>B=(4A—B)n(B— A).
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such that #(A4)+ #(A4') and (4 — B)= 0 iff #(4)=1 and #«(B) = 0. Clearly,
every assignment s: U—2 can be extended to a unique valuation ¢,.

A tautology is a proposition A which is true under every possible
valuation, i.e., #(A) = 1, for every valuation ¢. A set .# C W(U) is consistent
if there is a valuation making true every proposition in .% . Let 4 eW(U)
and . CW(U). We say that A derives from .4 , and write .# = A, in case
t(A)=1 for each valuation ¢ which makes true every proposition in .x
[thatis, #(B)=1, for all B ex ] We define the set of consequences of .# by

Con(x )= {4 eW(U)|KEA}
Finally, a set 4 is a theory if 4 is a fixed-point of the operator Con:
Con(x )= A

It is easy to see that Con is in fact a finitary closure operator, i.e., it satisfies
the following four properties:

¢ A g Con(" )5

e if # C.u , then Con(x )C Con(A ),

e Con(Con(.# ))= Con(x ), and

e Con(x )= U{Xg.// ¥ finite; Con(X).

The first three properties can be proved easily. A topological proof for
the fourth property is given in Appendix B.

The main example of a theory can be obtained by taking a set X of
valuations and constructing the set of all propositions true under all valua-
tions in X:

Th(X)= {4 eW(U)|t(4)=1, for all t X}

In fact, every theory is of the above form, that is, for every theory x
there exists a set of valuations X (depending upon % ) such that x = Th(X).
Indeed, take

X, = {: W(U)—2|tvaluation with #(4) =1, for all 4 ex }
and note that
Th(X, )= {BeW(U)|«B)=1,forallteX, }
= {BeW(U)|«B)= 1, for every valuation with #(4) = 1,
forall 4 ex }
= Con(# )= A
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In other words, theories are those sets of propositions which are true
under a certain set of valuations (interpretations ).

Let now 7 be a theory. Two elements p, ¢ €U are 7 -equivalent,
written p= , ¢, in case p<>q €7 . The relation, = , is an equivalence
relation. The equivalence class of p is [p], = {¢g€U|p= , ¢} and the
factor set is denoted by U_ ; for brevity, we sometimes write [ p] instead
of [ p] . The factor set comes with a natural partial order:

[pI<lql if poges

Note that in general, (U~ ,, <) is not a Boolean algebra.'’
In a similar way we can define the = , -equivalence of two propositions:

A= , B if Ao>Besg

Denote by [[A4]], (shortly, [[A4]]) the equivalence class of 4 and note
that for every p €U,

[p1=1[P1INU

The resulting Boolean algebra W(U)- , is the Lindenbaum algebra of 7 .

Fix now an atomic orthocomplemented lattice (L, <, 0, 1, ") satisfying
(7). Let U be a set of cardinality greater or equal to L and fix a surjective
mapping f: U— L. For every atom a €L, let s,: U—2 be the assignment
defined by s,(p)=1 iff a<< f(p). Take

X= {t, |ais an atom of L} "' and Th(X)

Malhas®*-*? has proven that the lattice (U_ ,, <) is orthocomplemented,
and, in fact, isomorphic to L. Here is the argument. First, note that there
exist two elements 0, 1 in U such that f(0)= 0, f(1)= 1. Clearly, 0 ¢7 , but
1 €7 . Indeed, for every atom a, a<< f(1)=1, so s,(1)= 1, as.o.

Second, for every p, g €U,

P—>q €T iff  f(p)< f(q)

If p—q ¢7 , then there exists an atom a €L such that ¢, (p—>¢q)= 0,
so s.(p)=t,(p)=1, s.(q)=t,(q)= 0, which according to the definition
of s,, mean a< f(p), but a< f(q). If f(p)< f(q), then a< f(q), a con-
tradiction. Conversely, if f(p) < (¢), then by (7) there exists an atom a such

' For instance, in case 7 = Con({p}), for some p €U. If U has at least three elements, then
(U= ,, <) does not have a minimum.

' Recall that ¢, is the unique valuation extending s.
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that a< f(p) and a<f(q). So s.(p)=1,(p)=1, s,(0)= 1,(q)=0, ic,
(p—>q) &7 .

As immediate consequences we deduce the validity of the following
three relations: for all p, ¢ €U,

e fp)<flg)iff [p]<Igql,
e f(p)= flq)iff [p]=1q], and
e [0]s[p]l<[l]

Two simple propositions p, ¢ €U are conjugate in case f(p)' = f(q)."
Define now the operation *: U, — U, as follows: [ p]* = [¢] in case ¢
is a conjugate of p. It is not difficult to see that the operation *, is well
defined and actually is an orthocomplementation. It follows that
(U, ,<,,*)is an orthocomplemented lattice.

To finish the argument we show that this lattice is isomorphic with L.
The isomorphism is given by the mapping ¥: U, — L defined by the for-
mula Y([ p])= f(p). This is a well-defined function (because f(p) = f(q) iff
[21=[4¢]), which is bijective (V([ p]1)= ¥([¢]) implies f(p)= f(g), and
surjective because f is onto). If [ p] < [¢], then f(p)< f(q), i.e., V([ p])<
V([ ¢]). Finally, if ¢ is a conjugate of p, then

Y(Lp1*)=Wq])= f(@)= f(p)'= W p])

In particular, there exists a theory whose induced orthoposet is iso-
morphic to the lattice of all closed subspaces of a separable Hilbert space.
How does this relate to the Kochen—Specker theorem? The natural embedding

r:v-,>w-,, rph=I[rll

is order preserving and one-to-ome, but in general it does not preserve
orthocomplementation, i.e., in general, I'([ p]*)# ([ p])". We always have
F([p1*)<TI([p]), but sometimes I"([ p])'<< I'([ p1*). The reason is that
for every pair of conjugate simple propositions p, ¢ one has (p—>q') €7,
but the converse is not true.

By combining the inverse ¥~ ' of the isomorphism ¥ with I, we obtain
an embedding ¢ of L into the Boolean Lindenbaum algebra W(U)_ , .
Thus, the above construction of Malhas gives us another method to embed
any quantum logic in a Boolean logic in case we require that only the order
is preserved."

12 . Lo .
Of course, this relation is symmetrical.

" In Section 2.4 we saw that it is possible to embed quantum logic into a Boolean logic
preserving the order and the complement.
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Next we give a simple example of a Malhas type embedding
@: MO,—2* Consider again the finite quantum logic MO, represented in

Fig. 1. Let us choose

U={A,B,C,D,E,F,G, H}

Since U contains more elements than MO,, we can map U surjectively

onto MO,; e.g.,
f(4)=0
J(B)=p-
J(C)=p-
J(D)=p-
JE)=q-
J(F)=q.
f(G)=1
f(H)=1

For every atom a eMO,, let us introduce the truth assignment
s,: U—2=1{0,1} as defined above [ie., s,(r)=1 iff a<< f(r)] and thus a
valuation on W(U) separating it from the rest of the atoms of MO,. That
is, for instance, associate with p_ MO, the function s,_ as follows:

=1

The truth assignments associated with all the atoms are listed in Table I.

Table I.

P-sP+>q-, 4+ €MO,

Truth Assignments on U Corresponding to Atoms

4 B C D E F G H
s, 0 1 1 0 0 0 1 1
5 0 0 0 10 0 1 1
s, 0 0 0 0 1 0 1 1
5, o 0 0 0 0 1 1 1
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The theory 7 we are thus dealing with is determined by the union of
all the truth assignments; i.e.,

X: {15,1, H ts,1+ H tsq, H tng} and J = Th(X)

The way it was constructed, U splits into six equivalence classes with
respect to the theory 7 ; ie,

Us, ={[AL[BLIDP].[E]L. [F].[G]}

Since [ p] —1[¢] if and only if (p —>¢) €7 , we obtain a partial order on
U_ , induced by T which isomorphically reflects the original quantum
logic MO,. The Boolean Lindenbaum algebra W(U)_ . = 2* is obtained by
forming all the compound propositions of U and imposing a partial order
with respect to 7 . It is represented in Fig. 4. The embedding is given by

@(0)=[[A4]]
e(p-)=[[B]]
e(p+)=[I[D]]
e(q-)=[LE]]
e(q+)=[[F1]

e(1)=[[G]]

It is order preserving but does not preserve operations such as the com-
plement. Although, in this particular example, f(B)=(f(D))" implies
(B—D'") e7 , the converse is not true in general. For example, there is no
s €X for which s(B)= s(E)= 1. Thus, (B—E') €T, but f(B)# (f(E))".
One needs not be afraid of order-preserving embeddings which are no
lattice morphisms, after all. Even automaton logics [ see Refs. 8, 39—41, and
47 (Chap. 11)] can be embedded in this way. Take, again, the lattice MO,
depicted in Fig. 1. A partition (automaton) logic realization is, for instance,

(U3, 42,333, ({23, 11, 350}

with
{1}=p-
{253}Ep+
{2}=¢q-

{153}5 q+
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=[G =[BVDVEVF)

Fig. 4. Hasse diagram of an embedding of the quantum logic MO,
represented by Fig. 1. Concentric circles indicate the embedding.

respectively. If we take {1}, {2}, and {3} as atoms, then the Boolean
algebra 2° generated by all subsets of {1, 2, 3} with the set theoretic inclu-
sion as order relation suggests itself as a candidate for an embedding. The
embedding is quite trivially given by

o(p)=pe2’

The particular example considered above is represented in Fig. 5. It is not
difficult to check that the embedding satisfies requirements (i) and (ii), that
is, it is injective and order preserving.

It is important to realize at this point that, although different automa-
ton partition logical structures may be isomorphic from a logical point of
view (one-to-one translatable elements, order relations, and operations),

1=1{1.2,3}

{1} {1,3}

Fig. 5. Hasse diagram of an embedding of MO, (a) into 2* (b). Concentric circles
indicate points of 2° included in MO,.
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Table II. The Four Valuations s,, s,, 53, and s4
on MO, Take on the Values Listed in the Rows

p- P+ q- q+
K 1 0 1 0
K 1 0 0 1
S3 0 1 1 0
S4 0 1 0 1

they may be very different with respect to their embeddability. Indeed, any
two distinct partition logics correspond to two distinct embeddings.

It should also be pointed out that, in the case of an automaton par-
tition logic and for all finite subalgebras of the Hilbert lattice of two-
dimensional Hilbert space, it is always possible to find an embedding
corresponding to a logically equivalent partition logic which is a lattice
morphism for comeasurable elements [ modified requirement (iii)]. This is
due to the fact that partition logics and MO, have a separating set of
valuations. In the MO, case, this is, for instance

({12}, 13,435, {{1,3},{2,4} }}

Fig. 6. Hasse diagram of an embedding of the partition logic
{{{1,2}, {3,4}}, {{1,3}, {2,4}}} into 2* preserving ortho-
lattice operations among comeasurable propositions. Concen-
tric circles indicate the embedding.
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with
{1,2}=p_
{3,4}=p.
{1,3}=¢q-
{254}5 q+

respectively. This embedding is based upon the set of all valuations listed
in Table II These are exactly the mappings from MO, to 2 preserving the
order relation and the complementation. They correspond to the maximal
ideals considered in Sec. 2.3. In this special case the embedding is just the
embedding obtained by applying the construction of Sec. 2.3, which had
been suggested by Zierler and Schlessinger (Ref. 52, Theorem 2.1). The
embedding is drawn in Fig. 6.

3. SURJECTIVE EXTENSIONS?

The original proposal put forward by EPR'® in the last paragraph of
their paper was some form of completion of quantum mechanics. Clearly,
the first type of candidate for such a completion is the sort of embedding
reviewed above. The physical intuition behind an embedding is that the
“actual physics” is a classical one, but because of some yet unknown
reason, some parts of this “hidden arena” becomes observable while others
remain hidden.

Nevertheless, there exists at least one other alternative to complete
quantum mechanics. This is best described by a surjective map ¢: B— L of
a classical Boolean algebra onto a quantum logic, such that |B|=> |L]|.

Plato’s cage metaphor applies to both approaches, in that observa-
tions are mere shadows of some more fundamental entities.

4. SUMMARY

We have reviewed several options for a classical “understanding” of
quantum mechanics. Particular emphasis has been given to techniques for
embedding quantum universes into classical ones. The term “embedding” is
formalized here as usual. That is, an embedding is a mapping of the entire
set of quantum observables into a (bigger) set of classical observables such
that different quantum observables correspond to different classical ones
(infectivity).
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The term “observables” here is used for quantum propositions, some
of which (the complementary ones) might not be comeasurable (see
Ref. 14). It might therefore be more appropriate to conceive these “observ-
ables” as “potential observables.” After a particular measurement has been
chosen, some of these observables are actually determined and others (the
complementary ones) become “counterfactuals” by quantum mechanical
means [cf. Schrodinger’s catalogue of expectation values (Ref. 42, p. 823)].
For classical observables, there is no distinction between “observables” and
“counterfactuals,” because everything can be measured precisely, at least in
principle.

We should mention also a caveat. The relationship between the states
of a quantum universe and the states of a classical universe into which the
former one is embedded is beyond the scope of this paper.

As might have been suspected, it turns out that, in order to be able to
perform the mapping from the quantum universe into the classical one con-
sistently, important structural elements of the quantum universe have to be
sacrificed.

e Since per definition, the quantum propositional calculus is non-
distributive (nonboolean), a straightforward embedding which preserves all
the logical operations among observables, irrespective of whether or not
they are comeasurable, is impossible. This is due to the quantum mechani-
cal feature of complementarity .

¢ One may restrict the preservation of the logical operations to be valid
only among mutually orthogonal propositions. In this case it turns out
that, again, a consistent embedding is impossible, since no consistent mean-
ing can be given to the classical existence of “counterfactuals.” This is due
to the quantum mechanical feature of contextuality. That is, quantum
observables may appear different, depending on the way in which they were
measured (and inferred).

e In a further step, one may abandon preservation of lattice operations
such as not and the binary and and or operations altogether. One may
merely require the preservation of the implicational structure (order rela-
tion). It turns out that, with these provisos, it is indeed possible to map
quantum universes into classical ones. Stated differently, definite values can
be associated with elements of physical reality, irrespective of whether they
have been measured or not. In this sense, that is, in terms of more “com-
prehensive” classical universes (the hidden parameter models), quantum
mechanics can be “understood.”

At the moment we can neither say if the nonpreservation of the binary
lattice operations (interpreted as and and or) is too high a price for value
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definiteness nor speculate whether or not the entire program of embedding
quantum universes in classical theories is a progressive or a degenerative
case (compare Ref. 27).

APPENDIX A: PROOF OF THE GEOMETRIC LEMMA

In this appendix we prove the geometric lemma due to Piron*® which
was formulated in Sec. 2.2. First let us restate it. Consider a point ¢ in
the northern hemisphere of the unit sphere S>= {p eR’ ||| p| = 1}. By C(q)
we denote the unique great circle which contains ¢ and the points
*+ (q,, —q.,0)/ g+ qi, in the equator, which are orthogonal to ¢, (cf.
Fig. 2). We say that a point p in the northern hemisphere can be reached
from a point ¢ in the northern hemisphere, if there is a finite sequence of
points ¢= qo, ¢is-» gn—1, ¢,= p in the northern hemisphere such that
q; €C(qg;— ) for i=1,.., n. The lemma states:

If g and p are points in the northern hemisphere with p.< q.,
then p can be reached from q.

For the proof we follow Cooke et al'” and Kalmbach.** We consider the
tangent plane H= {p R’ |p.= 1} of the unit sphere in the north pole and
the projection /& from the northern hemisphere onto this plane which maps
each point ¢2 in the northern hemisphere to the intersection /(q) of the line
through the origin and ¢ with the plane H. This map / is a bijection. The
north pole (0,0,1) is mapped to itself. For each ¢ in the northern
hemisphere (not equal to the north pole), the image #(C(q)) of the great
circle C(g) is the line in H which goes through /4(g) and is orthogonal to
the line through the north pole and through %(g). Note that C(gq) is the
intersection of a plane with S, and 4(C(q)) is the intersection of the same
plane with H (see Fig. 7). The line i4(C(q)) divides H into two half-planes.
The half-plane not containing the north pole is the image of the region in
the northern hemisphere between C(g) and the equator. Furthermore, note
that g.> p. for two points in the northern hemisphere if and only if /(p)
is further away from the north pole than 4(g). We proceed in two steps.

Step 1. First, we show that, if p and ¢ are points in the northern
hemisphere and p lies in the region between C(g) and the equator, then p
can be reached from ¢. In fact, we show that there is a point § on C(g) such
that p lies on C(§). Therefore we consider the images of ¢ and p in the
plane H (see Fig. 8). The point Ai(p) lies in the half-plane bounded by
h(C(g)) not containing the north pole. Among all points 4(q’) on the line
h(C(q)), we set g to be one of the two points such that the line trough the,
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the north pole the image of the
(0,0,1) region between C(q)
@------------ Ie and the equator
h{q)
h{C(q))

Fig. 7. The plane H viewed from above.

north pole and %(qg') and the line through %(q') and h(p) are orthogonal.
Then this last line is the image of C(4), and C(4§) contains the point p.
Hence p can be reached from ¢. Our first claim is proved.

Step 2. Fix a point ¢ in the northern hemisphere. Starting from ¢ we
can wander around the northern hemisphere along great circles of the form
C(p) for points p in the following way: for n=5 we define a sequence
qo, 41, 4, DY setting g, = ¢ and by choosing ¢;. , to be that point on the
great circle C(g;) such that the angle between 4(q,+ ;) and h(g;) is 2x/n. The
image in H of this configuration is a shell where /(gq,) is the point farthest
away from the north pole (see Fig. 9). First, we claim that any point p on
the unit sphere with p.< ¢,. can be reached from ¢. Indeed, such a point

the north pole ~
(0,0,1) .~

Fig. 8. The point p can be reached from g¢.
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h{q1s)

Fig. 9. The shell in the plane H for n= 16.

corresponds to a point A( p) which is farther away from the north pole than
h(q,). There is an index i that A(p) lies in the half-plane bounded by
h(C(q,)) and not, containing the north pole, hence such that p lies in the
region between C(¢;) and the equator. Then, as we have already seen, p can
be reached from ¢; and hence also from g¢. Second, we claim that g,
approaches ¢ as n tends to infinity. This is equivalent to showing that the
distance of h(g,) from (0,0,1) approaches the distance of A(g) from
(0,0,1). Let d; denote the distance of /(g;) from (0,0, 1) for i=0,.., n.
Then d;/d;, , = cos(2n/n) (see Fig. 9). Hence d,= d,-(cos(2n/n))” ". That
d, approaches d, as n tends to infinity follows immediately from the fact
that (cos(2n/n))" approaches 1 as n tends to infinity. For completeness’
sake'* we prove it by proving the equivalent statement that
log((cos(2n/n))") tends to 0 as n tends to infinity. Namely, for small x we
know the formulae cos(x)=1—x*2+ ¢ (x*) and log(1+ x)= x+ 0 (x?).
Hence, for large n,

2
log((cos(2n/n))")= n.log ( 1— 2%+ 0 (n4))

n 4 27 s
n|—=-2=+o0n")|=—-—"+0(mn")
n

This ends the proof of the geometric lemma.

' Actually, this is an exercise in elementary analysis.
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APPENDIX B: PROOF OF A PROPERTY OF THE SET OF
CONSEQUENCES OF A THEORY

In Section 2.5 we introduced the set Con(.x ) of consequences of a set
# of propositions over a set U of simple propositions and the logical con-
nectives negation ' and implication —. We mentioned four properties of
the operator Con. In this appendix we prove the fourth property:

Con(x )= U Con(X)

{XC . , X finite}

The inclusion Con(# )2 \J xcx . x finitey Con(X) follows directly from
the second property of Con, ie., from the monotonicity: if XC.# , then
Con(X)C Con(.x ). For the other inclusion we assume that a proposition
A €Con(x ) is given. We have to show that there exists a finite subset
XC .« such that 4 eCon(X).

In order to do this we consider the set » (W(U)) of all valuations.
This set can be, identified with the power set of U and viewed as a
topological space with the product topology of |U| copies of the discrete
topological space {0, 1}. By Tychonoff’s theorem (see Ref. [33]) » (W(U))
is a compact topological space. For an arbitrary proposition B and valua-
tion 7, the set {t e (W(U))|#«(B)= 0} of valuations ¢ with #(B)=10 is a
compact and open subset of valuations because the value #(B) depends
only on the finitely many simple propositions occurring in B.

Note that our assumption 4 eCon(.x ) is equivalent to the inclusion

{ter (W(U)|(A4)=0}C \J {ter (W(U))|(B)=0}

Bex

Since the set on the left-hand side is compact, there exists a finite subcover
of the open cover on the right-hand side, i.e., there exists a finite set XC &
with

{ter (W(U))|1(A)=0yC \J {rer (W(U))|«(B)= 0}

BeX

This is equivalent to 4 eCon(X).
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