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If you can look into the seeds of time,

And say which grain will grow, and which will not,

Speak then to me.

W. Shakespeare, Macbeth, I, 3.

Is there any hope for quantum computing to challenge the Turing barrier, i.e., to solve

an undecidable problem, to compute an uncomputable function? According to

Feynman’s ’82 argument, the answer is negative. This paper re-opens the case: we

will discuss solutions to a few simple problems which suggest that quantum com-

puting is theoretically capable of computing uncomputable functions. Turing

proved that there is no ‘‘halting (Turing) machine’’ capable of distinguishing between

halting and non-halting programs (undecidability of the Halting Problem). Halting

programs can be recognized by simply running them; the main difficulty is to detect

non-halting programs. In this paper a mathematical quantum ‘‘device’’ (with sensi-

tivity ") is constructed to solve the Halting Problem. The ‘‘device’’ works on a
randomly chosen test-vector for T units of time. If the ‘‘device’’ produces a click, then

the program halts. If it does not produce a click, then either the program does not halt

or the test-vector has been chosen from an undistinguishable set of vectors F ";T. The

last case is not dangerous as our main result proves: the Wiener measure of F ";T
constructively tends to zero when T tends to infinity. The ‘‘device’’, working in time

T, appropriately computed, will determine with a pre-established precision whether an

arbitrary program halts or not. Building the ‘‘halting machine’’ is mathematically

possible. To construct our ‘‘device’’ we use the quadratic form of an iterated map

(encoding the whole data in an infinite superposition) acting on randomly chosen

vectors viewed as special trajectories of two Markov processes working in two dif-
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ferent scales of time. The evolution is described by an unbounded, exponentially

growing semigroup; finally a single measurement produces the result.

KEY WORDS: heating problem; Markov processes; Wiener measured.

PACS: 03.67.Lx.

1. INTRODUCTION

For over fifty years the Turing machine model of computation has defined
what it means to ‘‘compute’’ something; the foundations of the modern
theory of computing are based on it. Computers are reading text, recog-
nizing speech, and robots are driving themselves across Mars. Yet this
exponential race will not produce solutions to many intractable and unde-
cidable problems. Is there any alternative? Indeed, quantum computing
offers one such alternative (see Ref. 7, 10, 11, 23, 35). To date, quantum
computing has been very successful in ‘‘beating’’ Turing machines in the
race of solving intractable problems, with Shor and Grover algorithms
achieving the most impressive successes; the progress in quantum hardware
is also impressive. Is there any hope for quantum computing to challenge the
Turing barrier, i.e., to solve an undecidable problem, to compute an
uncomputable function? According to Feynman’s argument (see Ref. 20, a
paper reproduced also in Ref. 25, regarding the possibility of simulating a
quantum system on a (probabilistic) Turing machine4) the answer is nega-
tive.

This paper re-opens the case:5 We will discuss solutions to a few simple
problems which suggest that quantum computing is theoretically capable of
computing uncomputable functions. The main features of our quantum
‘‘device’’ are: a special type of continuity, the choice of test-vectors from a
special class of trajectories of two Markov processes working in two different
scales of time and realized as elements of an infinitely-dimensional Hilbert
space (infinite superposition), the ability to work with ‘‘truly random’’ test-
vectors in an evolution described by an exponentially growing semigroup and
the possibility to obtain the result from a single measurement.

In deciding the halting/non-halting status of a non-halting machine,
our ‘‘device’’ is capable to ‘‘announce’’ (with a positive probability) the non-
halting status in a finite amount of time, well before the ‘‘real’’ machine
reaches it (in an infinite amount of time). Hence, the challenge was to design
a procedure that detects and measures this tiny, but non-zero probability.

4
Working with probabilistic Turing machines instead of Turing machines makes no difference

in terms of computational capability: see Ref. 17.
5
See Refs. 8, 10, 16, 27 for related ideas and results.
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In what follows a quantum solution is a solution designed to work on a
quantum computer. The discussion is mathematical and no engineering
claims will be made; in particular, when speaking about various quantum
devices which will be constructed, we will use quotes to emphasize the
mathematical nature of our constructs.

2. THE MERCHANT’S PROBLEM

One possible way to state the famous Merchant’s Problem is as follows:

A merchant learns than one of his five stacks of � ¼ 1 gram coins
contains only false coins, � ¼ 0:001 grams heavier than normal ones.
Can he find the odd stack by a single ‘‘weighting’’?

The well-known solution of this problem is the following: We take one coin
from the first stack, two coins from the second stack, . . . , five coins from the
last stack.

Then by measuring the weight of the combination of coins described
above we obtain the number Q ¼ 15þ � � n grams (1 � n � 5), which tells
us that the nth stack contains false coins.

The above solution is, in spirit, ‘‘quantum’’. It consists of the fol-
lowing steps: (a) preparation, in which a single object encoding the answer
of the problem is created in a special format, (b) measurement, in which
a measurement is performed on the object, (c) classical calculation, in
which the measurement data produced are processed and the desired final
result is obtained.

In our case, the selection of coins from various stacks as presented
in Fig. 1 is the object (a) prepared for measurement (b); finally, the calcu-
lation n ¼ ðQ� 15Þ � 1000 gives the number of the stack containing false
coins.

Fig. 1. Coin selection.
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3. THE MERCHANT’S PROBLEM: TWO FINITE VARIANTS

Consider now the case when we have five stacks of coins, but a few
(maybe none) may contain false coins. This means, all five stacks contain
true coins, or only one stack contains false coins, or two stacks contain false
coins, etc. Can we, again with only one single ‘‘weighting’’, find all stacks
containing false coins? A possible solution is to choose 1, 2, 4, 8, 16 coins
from each stack, and use the uniqueness of base two representation.

The difference between the above solutions is only in the specific way
we chose the sample, i.e., in coding. Further on, note that the above solu-
tions work only if we have enough coins in each stack. For example, if each of
the five stacks contains only four coins, then neither of the above solutions
works. In such a case is it still possible to have a solution operating with just
one measurement?

In the simplest case we haveN stacks of coins and we know that at most
one stack may contain false coins. We are allowed to take just one coin from
each stack and we want to see whether all coins are true or there is a stack of
false coins (and which). Can we solve this problem with just one ‘‘weighting’’?

Assume that a true coin has � ¼ 1 grams and a false coin has �þ �
grams (0 < � < 1). Consider as quantum space the space HN ¼ R

N, a real
Hilbert space of dimension N. The elements of RN are vectors
x ¼ ðx1; x2; . . . ; xNÞ. The scalar product of x and y is defined by
hx; yi ¼

PN
i¼1 xiyi. The norm of the vector x is defined by k x k¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi
p

.
Let 0 < n < N, and consider �n 
 Rn. A set X 
 RN is called cylindrical if
X ¼ �n � RN�n. Let us denote by �k the Lebesgue measure in Rk. If
�n 
 Rn is measurable, then the cylinder X ¼ �n � RN�n is measurable and
�NðXÞ ¼ �nð�nÞ. For more on Hilbert spaces see Ref. 1, 24; for specific
relations with quantum physics see Ref. 12.

Next we consider the standard basis ðeiÞi¼1;N and the projections
Pi : RN ! RN, PiðxÞ ¼ ð0; 0; . . . ; xi; 0; . . . ; 0Þ. Denote by qi the weight of a
coin in the ith stack; if the ith stack contains true coins, then qi ¼ � ¼ 1,
otherwise, qi ¼ �þ � ¼ 1þ �.

Consider the operator Q ¼
PN

i¼1 qiQi.
6 For every vector x 2 RN,

QðxÞ ¼ ðq1Q1; . . . ; qNQNÞðxÞ ¼ ðq1x1; . . . ; qNxNÞ

The tth (t > 1) iteration of the operatorQ can be used to distinguish the case
in which all coins are true from the case in which one stack contains false
coins: we construct the quadratic form hQtðxÞ; xi and consider its dynam-
ics.7 In case all coins are true hQtðxÞ; xi ¼ k x k2, for all x 2 RN; if there are

6
As suggested by Ref. 26, different operators can be considered, e.g., QðxÞ ¼

PN
i 2
ðqi��ÞPi.

7
To speed-up the computation one can accelerate the iterations of Q, for example by

considering the quadratic form hQ2t
ðxÞ;xi instead of hQt

ðxÞ;xi.
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false coins in some stack, for some x 2 RN, hQtðxÞ; xi > k x k2, and the value
increases with every new iteration.

Now we can introduce a ‘‘weighted Lebesgue measure’’ with proper
non-negative continuous density �. For example, this can be achieved with
the density equal to the Gaussian distribution

�ðxÞ ¼
1

	N=2
e�
PN

s¼1
jxsj

2

a function which will be used in what follows.
We can interpret the measure generated by the density as the prob-

ability distribution corresponding to the standard Normal ðN; 0; 12 IÞ. Hence
the probability of the event fx j x1 2 �g is the integral Probð�Þ ¼Ð
��RN�1 �dm: Then, because of the continuity of the density, we deduce that
the probability of any ‘‘low-dimensional event’’ is equal to zero. In parti-
cular, the event fx j xs ¼ 0g has probability zero, that is, with probability
one all components of a randomly chosen normalized vector x are non-zero.

We are now ready to consider our problem. We will assume that time
is discrete, t ¼ 1; 2; . . .. The procedure will be probabilistic: it will indicate a
method to decide, with a probability as close to one as we want, whether
there exist any false coins.

Fix a computable real � 2 ð0; 1Þ as probability threshold. Assume that
both � and � are computable reals. Choose a ‘‘test’’ vector x 2 RN. Assume
that we have a quantum ‘‘device’’8 which measures the quadratic form and
clicks at time T on x when

hQTðxÞ; xi > ð1þ "Þ k x k2 ð1Þ

In this case we say that the quantum ‘‘device’’ has sensitivity ". In what
follows we will assume that " > 0 is a positive computable real.

Two cases may appear. If for some T > 0, hQTðxÞ; xi > ð1þ "Þ k x k2;
then the ‘‘device’’ has clicked and we know for sure that there exist false
coins in the system. However, it is possible that at some time T > 0 the
‘‘device’’ hasn’t (yet?) clicked because hQTðxÞ; xi � ð1þ "Þ k x k2 : This may
happen because either all coins are true, i.e., hQtðxÞ; xi ¼ k x k2, for all t > 0,
or because at time T the growth of hQTðxÞ; xi hasn’t yet reached the
threshold ð1þ "Þ k x k2. In the first case the ‘‘device’’ will never click, so at
each stage t the test-vector x produces ‘‘true’’ information; we can call x a
‘‘true’’ vector. In the second case, the test-vector x is ‘‘lying’’ at time T as we
do have false coins in the system, but they were not detected at time T; we
say that x produces ‘‘false’’ information at time T.

8
The construction of such a ‘‘device’’ is a difficult problem in nanoelectronics; see, for example,

Ref. 13, 29, 30.
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Hence, the ‘‘true’’ vector has non-zero coordinates corresponding to
stacks of false coins (if any); a vector ‘‘lying’’ at time T may have zero or
small coordinates corresponding to stacks of false coins. For instance, the
null vector produces ‘‘false’’ information at any time. If the system has false
coins and they are located in the jth stack, then each test vector x whose jth
coordinate is 0 produces ‘‘false’’ information at any time. If the system has
false coins and they are located in the jth stack, xj 6¼ 0, but

k x k2 þðð1þ �ÞT � 1Þjxjj
2 � ð1þ "Þ k x k2

then x produces ‘‘false’’ information at time T. If jxjj 6¼ 0, then x produces
‘‘false’’ information only a finite period of time, that is, only for

T � log1þ� 1þ
" k x k2

jxjj
2

 !

after this time the quantum ‘‘device’’ starts clicking.
The major problem is to distinguish between the presence/absence of

false coins in the system. We will show how to compute the time T such that
when presented a randomly chosen test-vector9 x 2 RN n f0g to a quantum
‘‘device’’ with sensitivity " that fails to click in time T, then the system
doesn’t contain false coins with probability larger than 1� �.

Assume first that the system contains false coins in some stack j. Then

lim
t!1

hQtðxÞ; xi

k x k2
¼ 1 ð2Þ

for all x 2 RN such that jxij 6¼ 0, for all 1 � i � N. Indeed, in view of the
hypothesis, there exists j 2 f1; 2; . . . ;Ng such that the weight of any coin in
the jth stack, qj, is �þ � ¼ 1þ �. So, for every t � 1,

hQtðxÞ; xi ¼
XN
i¼1

qti k x k
2¼k x k2 þðð1þ �Þt � 1Þjxjj

2

If jxjj 6¼ 0, for all j 2 f1; 2; . . . ;Ng, then

lim
t!1

hQtðxÞ; xi

k x k2
¼ lim

t!1
1þ
ðð1þ �Þt � 1Þjxjj

2

k x k2
¼ 1

If the system contains only true coins, then for every x 2 RN n f0g;

lim
t!1

hQtðxÞ; xi

k x k2
¼ 1

9
A different approach would be to consider the (constant) test vector

x ¼ ð1=
ffiffiffiffi
N
p

; 1=
ffiffiffiffi
N
p

; . . . ; 1=
ffiffiffiffi
N
p
Þ playing the role of an equal ‘‘superposition’’ of all stacks.

112 Calude and Pavlov



Consider now the indistinguishable set at time t

F ";t ¼ fx 2 R
N j hQtðxÞ; xi � ð1þ "Þ k x k2g

If the system contains only true coins, then F ";t ¼ R
N, for all " > 0; t � 1. If

there is one stack (say, the jth one) containing false coins, then F ";t is a cone
F ";t;j centered at the ‘‘false’’ plane xj ¼ 0:

ðð1þ �Þt � 1Þ jxjj
2 � "k x k2

Next we compute ProbðF ";tÞ in case the system contains false coins. Each set
F ";t ¼ F ";t;j can be decomposed into two disjoint sets as follows (here
M > 0 is a large enough real which will be determined later):

F ";t;j ¼ fx 2 F ";t;j jM �k x kg [ fx 2 F ";t;j jM <k x kg

In view of the inclusion

fx 2 F ";t;j jM �k x kg 
 fx 2 R
N j ðð1þ �Þt � 1Þ jxjj

2 � "M 2g

we deduce that

Probðfx 2 F ";t;j jM �k x kgÞ �
1ffiffiffi
	
p

ððM ffiffi
"
p
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ�Þt�1
p

�ðM
ffiffi
"
p
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ�Þt�1
p e�y

2

dy

�
2M

ffiffiffi
"
p

ffiffiffi
	
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �Þt � 1
p ; ð4Þ

To estimate Probðfx 2 F ";t jM < k x kgÞ we note that the set

CM ¼
[N
i¼1

x 2 RN j jxij >
Mffiffiffiffi
N
p


 �

contains the set fx 2 F ";t jM < k x kg; hence from the estimation

ProbðCMÞ �
2Nffiffiffi
	
p

ð1
M=

ffiffiffi
N
p

e�y
2

dy

we deduce (using the inequality
Ð1
a e�y

2

dy � 1=2a e�a
2

for a > 0) that

Prob x 2 RN jM < k x k; jxjj �
Mffiffiffiffi
N
p


 �� 

�
N

ffiffiffiffi
N
p

M
ffiffiffi
	
p e�ðM

2=NÞ ð5Þ

From (3) and (4) we obtain the inequality:

ProbðF ";tÞ ¼ ProbðF ";t;jÞ �
2M

ffiffiffi
"
p

ffiffiffi
	
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �Þt � 1
p þ

N
ffiffiffiffi
N
p

M
ffiffiffi
	
p e�ðM

2=N Þ ð6Þ

Coins, Quantum Measurements, and Turing’s Barrier 113



Selecting

M ¼ N3=4 �
1þ �Þt � 1

"

� 
1=4

in (5) we get10

ProbðF ";tÞ �
3N 3=4"1=4ffiffiffi

	
p
ðð1þ �Þt � 1Þ1=4

ð7Þ

hence

lim
t!1

ProbðF ";tÞ ¼ 0

The above limit is constructive, that is, from (6) and every computable
� 2 ð0; 1Þ we can construct the computable bound

T� ¼ log1þ�
34N 3"

�4	2
þ 1

� 

ð8Þ

such that assuming that the system contains false coins, if t � T�; then we get

ProbðF ";tÞ � �

Recall that we have a finite system of N stacks in which at most one
stack contains false coins. So, if we assume that there are Nþ 1 equiprob-
able possibilities, then either all coins are true or only the first stack contains
false coins, or only the second stack contains false coins, or only the Nth
stack contains false coins.11 Let us now denote by N the event ‘‘the system
contains no false coins’’ and by Y the event ‘‘the system contains false
coins’’. By PðN Þ (PðYÞ) we denote the a priori probability that the system
contains no false coins (the system contains false coins). In the simplest case
PðYÞ ¼ N=ðNþ 1Þ;PðN Þ ¼ 1� PðYÞ ¼ 1=ðNþ 1Þ. We can use Bayes’ for-
mula to obtain the a posteriori probability that the system contains only true
coins when at time t the quantum ‘‘device’’ didn’t click:

Pnon�clickðN Þ ¼
PðN Þ

PðN Þ þ ð1� PðN ÞÞProbðF ";tÞ
� 1�N � ProbðF ";tÞ

10
Lemma 4 in Ref. 22, p. 325–326, can be used to obtain a similar, but less tight estimation; cf.

Ref. 28.
11
Of course, other distributions can be considered.
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When t!1, Probð�";tÞ goes to 0, so Pnon�clickðN Þ goes to 1. More
precisely, if t � T�; as in (7), then

Pnon�clickðN Þ � 1� �N

In conclusion,

for every computable � 2 ð0; 1Þ we can construct a computable time T�
such that picking up at random a test-vector x 2 RN n fxg and using a
quantum ‘‘device’’ with sensitivity " up to time T� either

� we get a click at some time t � T�, so the system contains false
coins, the jth stacks, where j is the unique coordinate such that
ðQTðxÞÞ=ðð1þ �ÞT � 1Þj > xj, contains false coins;

� we don’t get a click in time T�, so with probability greater than
1� �N all coins are true.

4. THE MERCHANT’S PROBLEM: THE INFINITE VARIANT

Let us assume that we have now a countable number of stacks, all of
them, except at most one, containing true coins only. Can we determine
whether there is a stack containing false coins? It is not difficult to recognize
that the infinite variant of the Merchant’s Problem is equivalent to the
Halting Problem: Decide whether an arbitrary program (Turing machine,
probabilistic Turing machine, Java program, etc.) eventually halts. This
problem is undecidable, i.e., no Turing machine can solve it.12

One of the most important quests of science is to determine those
(natural) processes whose final state may be determined directly, without a
need to exhaustively carry out each step of their evolutions. Usually, this is
done by a ‘‘model’’ that ‘‘simulates’’ the process. The essence of the unde-
cidability of the Halting Problem is the following: If our models are only
Turing machines, then the outcome of the computation performed by a
Turing machine can, in general, be determined only by explicitly carrying
out each step of it. No short-cut is possible. Can we do it better if we enlarge
the class of models? We shall prove that this is indeed the case.

4.1. A Tentative Solution

The first idea would be to follow the solution discussed in Sec. 3, but to
select the random test vector x ¼ ðx0; x1; x3; . . .Þ from the Hilbert space
H ¼ l2 of quadratically summable sequences of probabilistically indepen-

12
Arguably, the most famous undecidable problem. See, for example, Ref. 6.
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dent variables xi, equipped with the Gaussian distribution on all cylindrical
sets with finite-dimensional sections parallel to coordinate planes.

We define

hQTðxÞ; xi ¼
X1
i¼1

qTi jxij
2

The analogue of the indistinguishable set in l2 is

F ";T ¼ fx 2 l2 j hQ
TðxÞ; xi � ð1þ "Þhx; xig

¼ fx 2 l2 hQ
TðxÞ; xi � hx; xi þ h"IðxÞ; xig ð8Þ

so, the measuring ‘‘device’’ is the operator "I. If for a given test-vector x we
have hQTðxÞ; xi � ð1þ "Þ k x k2 (k � k is the l2–norm), then the ‘‘device’’
clicks, which means that there is a false coin in some stack j (represented by
a non-zero component xj of the test-vector x). If the ‘‘device’’ does not click,
then the result of the experiment is not conclusive: either we do not have
false coins in the system, or, we have, but the test vector ‘‘lies’’ since it
belongs to the set F ";T of indistinguishable elements.

Assume that the system contains false coins in some stack j. For large
T such that ð1þ �ÞT > 1þ ", the coordinate description of the set F ";T can
be given in the form of a cone centered at the ‘‘false plane’’ xj ¼ 0 in H:

F ";T ¼ x j jxjj
2 �

"

ð1þ �ÞT � 1
k x k2


 �

Consider now the intersection of the indistinguishable set F ";T with the
finite-dimensional subspace H2n ¼ fx j xi ¼ 0; i > 2ng, F ";T;2n ¼ F ";T \H2n.
It is clear that F ";T;2n 
 F ";T;2nþ1: Let " � ðð1þ �Þ

T
� 1Þ�1 be denoted by �2.

Assume for a moment that the Gaussian distribution may be extended by
Lebesgue procedure to a probability measure Prob. Then, we can calculate
the measure of the finite-dimensional section F ";T;N of the indistinguishable
set F ";T (if N ¼ 2n):

ProbðF ";T;NÞ ¼

Ð � ffiffi
n
p

0 d�=ð1þ �2=nÞnÐ1
0 d�=ð1þ �2=nÞn

In view of the Lebesgue dominant convergence theorem
(
ÐA
0 d�=ð1þ �2=nÞn!

ÐA
0 e
��2d�) the limit of ProbðF ";T;NÞ can be estimated as

follows: when n!1, ProbðF ";T;2nÞ ! ð
Ð � ffiffi

n
p

0 e��
2

d�=
Ð1
0 e��

2

d�Þ uniformly in
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�; 0 < � <1, and

Ð � ffiffi
n
p

0 e��
2

d�Ð1
0 e��

2
d�
¼

2ffiffiffi
	
p

ð� ffiffi
n
p

0

e��
2

d� ð9Þ

If the duration of the experiment is fixed (T is constant), but n tends to
infinity, then the measure ProbðF ";T;2nÞ of the finite-dimensional indis-
tinguishable set F ";T;2n tends to 1. Hence, in view of the assumption on
Prob, monotonicity and the inclusion F ";T;2n 
 F ";T we conclude that
ProbðF ";TÞ ¼ 1; for all T, hence limT!1 ProbðF ";TÞ ¼ 1.

On the other hand, F ";T0 
 F ";T, if T 0 > T and
T

T>0 F ";T ¼

limT!1 F ";T ¼ fx j xj ¼ 0g is a cylindrical set with measure 0. This implies
that our assumption about the possibility to construct the Lebesgue exten-
sion of the Gaussian distribution was wrong. This is the mathematical
reason why our ‘‘device’’ will work only ‘‘locally’’, on the observed finite
part of the system, not ‘‘globally,’’ on the whole infinite system.

Assume that we are dealing with a class of systems where the a priori
probability of absence of false coins is PðN Þ. We select at random one of
these systems and perform experiments using our ‘‘device.’’ Then, due to
Bayes’ formula, the a posteriori probability of absence of false coins in the
system subject to the assumption that the ‘‘device’’ did not click in time T is

Pnon�clickðN Þ ¼
PðN Þ

PðN Þ þ ð1� PðN ÞÞProbðF ";TÞ

so if ProbðF ";TÞ ¼ 1, then

Pnon�clickðN Þ ¼ PðN Þ

hence the ‘‘non-click’’ result is not conclusive. Still, formula (10) suggests a
procedure for estimating the a posteriori probability of presence of false
coins in the observed finite part of the system.

Assume that we have observed the first 2n elements of the system.
Further, suppose that the duration of the experiment T and the above
number n satisfy the following condition:

�
ffiffiffi
n
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"n

ð1þ �ÞT � 1

r
! 0 ð10Þ

when n!1. Let �ðnÞ ¼ �
ffiffiffi
n
p
. Then, according to (9) we have:

lim
n!1

ProbðF ";T;2nÞ ¼ lim
n!1

1ffiffiffi
	
p

ð�ðnÞ

0

e�x
2

dx ¼ 0

Coins, Quantum Measurements, and Turing’s Barrier 117



Hence, using again Bayes’s formula, if T!1 and T; n satisfy (10), then

Pnon�clickðN Þ ¼
PðN Þ

PðN Þ þ ð1� PðN ÞÞ 1ffiffi
	
p
Ð �ðnÞ

0 e�x
2
dx
! 1

when n!1.
Because of the revealed ‘‘discontinuity’’ of the Gaussian distribution in

l2,
13 the probability of the high-dimensional sections of the indistinguishable

set (8) is not uniformly small in n, for large T. This is in agreement with the
view that ‘‘only a finite number of subjects may be observed in finite time.’’14

In fact, the problem is related to the mathematical notion of finiteness,
which appears to be ‘‘inadequate to the task of telling us which physical
processes are finite and which are infinite’’ (see Ref. 18).

4.2. A Brownian Solution

The failure of the tentative approach was caused by the structure of
the stochastic space of test-vectors. A more elaborated approach, developed
in this section, will permit the estimation of the probability of absence of
false coins in the whole infinite sequence by observing the behavior of the
quadratic form of the iterated map

hQtðxÞ; xi ¼
X1
i¼1

qti jxij
2

on randomly chosen test-vectors x viewed as special trajectories of a Markov
process.15

To this aim we drop the assumption of probabilistic independence and
consider a ‘‘device’’ detecting the false coins which is based on continuous
probability measures induced by Markov processes, see Ref. 4. We construct
twoMarkov processes working in two different discrete time scales. To capture
the idea of ‘‘continuity’’ referred to in Secs 1 and 4.1 the construction makes
use of the Green function of the Cauchy problem for the heat equation

@G

@t
¼
1

4

@2G

@x2
; Gðx; y; 0Þ ¼ �ðx� yÞ ð11Þ

13
Lack of countable additivity of its extension.

14
According to Theorem 2 in Ref. 22, p. 345, the Lebesgue extension of the Gaussian measure

in a countably Hilbert space exists if and only if the distribution function is equal to e�hAx;xi,

where A is a Hilbert–Schmidt operator. If the condition is not satisfied, then the Lebesgue

extension of the Gaussian measure still exists, but in a larger Hilbert space, in which the initial

Hilbert space has measure zero.
15
As in the finite case, various other choices of operators can be considered in order to speed-up

the computation.
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which may be interpreted (see, for example, Ref. 21) as a probability-density
of the space-distribution of a Brownian particle on the real axis which begins
diffusion from the initial position y at the initial moment t ¼ 0:

Gðx; t
��y; 0Þ ¼ 1ffiffiffiffiffi

	t
p e�ðjx�yj

2Þ=t ð13Þ

The Green function is a positive analytic function of each variable in the
half-plane 0 < t <1; �1 < x <1. It provides information on the dis-
tribution of the Brownian particle on the whole infinite axis for any positive
time t > 0, which corresponds to diffusion with infinite speed.

We are going to use three spaces. The first is the stochastic space of all
trajectories x of Brownian particles equipped with the Wiener measure W
(See Ref. 32). The measure W is defined on the algebra of all finite-dimen-
sional cylindrical setsCt1;t2;...;tN

�1;�2;...;�N
of trajectories with fixed initial point x0 ¼ 0

and ‘‘gates’’ �l; l ¼ 1; . . . ;N (which are open intervals on the real line):

Ct1;t2;...;tN
�1;�2;...;�N

¼ x j xtl 2 �l; l ¼ 1; 2; . . . ;N
� �

via multiple convolutions of the Green functions Gðxlþ1; tlþ1
��xl; tlÞ corre-

sponding to the steps �lþ1 ¼ tlþ1 � tl:

WNðCt1;t2;...;tN
�1;�2;...;�N

Þ

¼

Ð
. . .
Ð
�N;�N�1;...;�1

dx1dx2...dxN

	N=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N�N�1 ...�1
p e

�ðjxN�xN�1 j
2 Þ=�N . . . e

�ðjx1�x0 j
2 Þ=�1

Ð
. . .
Ð
RN;RN�1;...;R1

dx1dx2...dxN

	N=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N�N�1 ...�1
p e

�ðjxN�xN�1 j
2Þ=�N . . . e

�ðjx1�x0 j
2 Þ=�1

ð13Þ

where RN ¼ RN�1 ¼ � � � ¼ R1 ¼ R. Using the convolution formula, the
denominator of (13) can be reduced to the Green function GðxN; tN j 0; 0Þ,
for any � 2 ðs; tÞ:

Gðx; t j y; sÞ ¼

ð1
�1

Gðx; t j �; �ÞGð�; � j y; sÞ d�

Our ‘‘device’’ (with sensitivity ") will distinguish the values of the
iterated quadratic forms by observing the difference between the non-per-
turbed and perturbed sequences tl; ~ttl. Instead of the Hilbert space l2 we will
work with its intersections with the discrete Sobolev class l 12 of summable
sequences with the square norm

j x j21 ¼
X1
m¼1

jx
m
� x

m�1
j2
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and the discrete Sobolev class ~ll 12 of weighted-summable sequences with the
square norm

k x k21 ¼
X1
m¼1

1� ~��m
~��m

jx
m
� x

m�1
j2

We consider two discrete stochastic processes corresponding to the
equidistant sequence of moments of time tl ¼ l; l ¼ 0; 1; . . . ; �s ¼ 1 and to the
perturbed sequenceofmoments of time ~ttl ¼

Pl
m¼0

~��m; ~��m < 1.Weassume that
~ttl are computable and for large values of m,

P
mð1�

~��mÞ <1, that is

~ttN ¼ N�
XN
m¼1

ð1� ~��mÞ ¼ N 1�

PN
m¼1ð1�

~��mÞ

N

 !
� N

for large N. By natural extension from cylindrical sets we can define the
Wiener measures ~WW andW on these spaces. In what follows we are going to
use the following relation between ~WW and W (see Ref. 32): for every W–
measurable set �,

~WWð�Þ ¼
1Q1

l¼1

ffiffiffiffi
�l
p

ð
�

e�
P1

m¼1
ð1� ~��mÞ= ~��mjxm�xm�1j

2

dW ð14Þ

Further we consider the class of quasi-loops, that is the class of all
trajectories of the perturbed process which begins from ðx0; t0Þ ¼ ð0; 0Þ and
there exists a constant C such that max0<s<t jxsj

2 < Ct. We note that

� every x 2 l12 is a quasi-loop (with C ¼ j x j
2
1),

� due to the reflection principle (see Ref. 32, p. 221), the class of all
quasi-loops has Wiener measure one.

We assume that our ‘‘device’’ cannot identify the false coin at time T in
case the test vector x belongs to the indistinguishable set

F ";T ¼

(
x 2 l2 \ l

1
2 j hQ

tðxÞ; xi < k x k2

þ "

 X1
m¼1

1� ~��m
~��m
jx

m
� x

m�1
j2

!)

¼ fx 2 l2 \ l
1
2 j hQ

tðxÞ; xi < k x k2 þ " k x k21g:

If we assume that there exist false coins in the system, say at stack j, then

F ";T ¼ fx 2 l
1
2 j ðð1þ �Þ

T
� 1Þ j xj j

2< " k x k21; for some j g
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Next we will show that the Wiener measure of the indistinguishable set
~WWðF ";TÞ converges constructively to zero when T!1. More precisely, we
are going to prove that

~WWðF ";TÞ �
"

ðð1þ �ÞT � 1� "Þ �
Q1

m¼1
~��m

 !1=2
ð15Þ

We now have:

~WWðF ";TÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ1
l¼1

~��l

q sup
k

ð
quasi�loops

e�ð1þ�Þ
T
�1="jxkj

2

dW

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ1
l¼1

~��l

q sup
k

lim
C!1

lim
N!1

Ð
jxNj<C

ffiffiffi
N
p
Ð1
�1

GðxN;N j �; kÞ e
�ðð1þ�ÞT�1Þ="j�j2Gð�; k j 0; 0Þ dxN d�Ð

jxNj<C
ffiffiffi
N
p GðxM; M j 0; 0Þ dxN

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ1
l¼1

~��l

q sup
k

lim
C!1

lim
N!1

ffiffiffiffiffiffiffi
	N
p

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN� kÞ

p
ÐC ffiffiffi

N
p

�C
ffiffiffi
N
p
Ð1
�1

e�ðj�j
2Þ=k�ðð1þ�ÞT�1Þ="j�j2�ðjxN��j

2Þ=N�k d� dxNÐC ffiffiffi
N
p

�C
ffiffiffi
N
p e�ðjxNj

2Þ=N dxN

The inner integral in the numerator may be explicitly calculated as:

ð1
�1

e� 1=kþðð1þ�ÞT�1Þ="þ1=ðN�kÞð Þ�2 e 2 �xN=ðN�kÞ e�1=ðjN�kjÞjxNj
2

d�

¼
e�1=ðjN�kjÞjxNj

2 ffiffiffi
	
p

ejxNj
2=ðjN�kj2Þ1= 1=kþðð1þ�ÞT�1Þ="þ1=ðN�kÞð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=kþ ðð1þ �ÞT � 1Þ="þ 1=ðN� kÞ
p
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The integrated exponential in the numerator becomes:

e�jxNj
2=ðN�kÞ 1�1=ðN�kÞð1=kþðð1þ�ÞT�1Þ="þ1=ðN�kÞÞð Þ

¼ e�jxNj
2=ðN�kÞ 1�1=ðN=kÞþðð1þ�ÞT�1Þ="ð Þ

¼ e�jxNj
2=ðN�kÞ ejxNj

2=ðN�kÞ 1=ðN=kÞþðð1þ�ÞT�1Þ="ð Þ

¼ e�jxNj
2=ðN�kÞ ejxNj

2=ðN�kÞ "=ðN=kÞ"þð1þ�ÞT�1ð Þ

< e�jxNj
2=ðN�kÞ ejxNj

2=ðN�kÞ "=ðð1þ�ÞT�1Þð Þ

¼ e�jxNj
2=ðN�kÞ 1�"=ðð1þ�ÞT�1Þð Þ

Finally, in view of the relation

lim
C!1

ðC ffiffiffi
N
p

�C
ffiffiffi
N
p

e�ðjxNj
2Þ=N dxNffiffiffiffi
N
p ¼ lim

C!1

ð ffiffiffi
C
p

�
ffiffiffi
C
p
e��

2

d� ¼
ffiffiffi
	
p

we obtain the estimation (15) of the measure of the indistinguishable set

WðF ";TÞ �

ffiffiffi
"
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �ÞT � 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ1

m¼1
~��m

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "=ðð1þ �ÞT � 1ÞÞ

p

¼
"

ðð1þ �ÞT � 1� "Þ �
Q1

m¼1
~��m

 !1=2

For example, if we put

T� ¼ log1þ�
"

�2
Q1

m¼1
~��m
þ 1þ "

 !

then ~WWðF ";TÞ � � provided t > T�. For example, if ~��m ¼ e
�2�m , for all m � 1,

then T� ¼ log1þ�ð"e�
�2 þ 1þ "Þ.

To conclude our analysis, we use Bayes’ formula in (15) to estimate
the probability of absence of false coins in the system when the ‘‘device’’
does not click in time T on randomly chosen test-vectors selected from the
class of quasi-loops. Using the same notation as in the end of Sec. 3, we
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have

Pnon�clickðN Þ > 1�
1� PðN Þ

PðN Þ
�

ffiffiffi
"
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �ÞT � 1� "

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ1
m¼1

~��m

q

5. IS THE BROWNIAN SOLUTION ‘‘QUANTUM’’?

It is now the time to ask ourselves the question: Is the method
‘‘quantum’’ or not? After all, as one referee and Ref. 26 have pointed out,
‘‘continuous evolution in time and space . . . is a common property of
physical systems, classical as well as quantum.’’

Not surprisingly, our approach goes, in a sense, beyond the ‘‘clas-
sical’’ model of quantum computing in which a quantum Turing machine
is the prototype.16 A quantum Turing machine is a straightforward
generalization of a Turing machine, in which the main ingredients are (a)
(entangled) qubits that can be in various superpositions (b) a universal
set of one-qubit and two-qubit unitary gates. It is designed to construct
large, but finite unitary operations that can speed up the classical com-
putation, say, by using quantum finite parallelism. By ‘‘default’’ these
models cannot cope with the task of solving an undecidable problem. The
new ingredients built in our ‘‘device’’ include the use of an infinite
superposition (in an infinite-dimensional Hilbert space) which creates an
‘‘infinite type of quantum parallelism’’ and the ability to work with ‘‘truly
random’’ vectors in an evolution described by an exponentially growing
semigroup.

At this stage the ‘‘device’’ is more mathematical than physical. To
simplify the formalism we have used a real Hilbert space (which is not
typical for quantum problems) because (a) it supports the superposition
principle and (b) has the typical features of quantum computing. The
method is essentially quantum because we code the whole (infinite) data in
an infinite superposition (the Hilbert space), we assume that we have the
ability to generate ‘‘truly random’’ vectors in the Hilbert space and finally
we apply one single measurement (via the quadratic form) to obtain the
result. The method was inspired by and is closer ‘‘in spirit’’ to Benioff and
Feynman early works.ð5;20Þ

16
See, for example, Ref. 10 and 23. A similar remark can be made for the approaches discussed

in Ref. 16, 27.
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An essential question concerns the type of evolution. The evolution we
use is a semigroup, more precisely, an unbounded, exponentially growing
semigroup. The ability of extracting the required (finite) information from
an infinite data in a finite amount of time is given in part by the ‘‘huge’’
growth of this semigroup.17 Clearly, this is not the typical evolution for
‘‘quantum’’ systems; it is not difficult, but tedious (see Ref. 2, 31), to
transform this evolution into an equivalent unitary one.18

6. FINAL COMMENTS

We have discussed a few simple problems and their solutions in the
quest of finding a quantum approach for an undecidable problem. To this
aim we have chosen the infinite variant of the Merchant’s problem which is
equivalent to the Halting Problem, the most well-known undecidable pro-
blem.

Halting programs can be recognized by simply running them; the
main difficulty is to detect non-halting programs. In deciding the halt-
ing/non-halting status of a non-halting machine, our ‘‘device’’ is capable
to ‘‘announce’’ (with a positive probability) the non-halting status in a
finite amount of time, well before the ‘‘real’’ machine reaches it (in an
infinite amount of time). The device detects and measures this tiny, but
non-zero probability. The method (described in Sec. 4.2) uses a quad-
ratic form of an iterated map (encoding the whole data in an infinite
superposition) acting on randomly chosen vectors viewed as special
trajectories of two Markov processes working in two different scales of
time.19

The methods for trespassing Turing’s barrier discussed by both Etesi
and Németið16Þ and Kieu,ð27Þ although drastically different, have been, in
some sense, prefigured by the accelerated Turing machines first imagined by
Hermann Weyl (see, for example, the discussion in Svozilð33Þ). The main task
of their authors is not to describe their methods, but to argue/prove that
they do not contradict any known physical law. If a method would be shown
to not be ‘‘theoretically implementable,’’ then the result would still be

17
Compare with the following paragraph from Ref. 19: ‘‘It bothers me that, according to the

laws as we understand them today, it takes a computing machine an infinite number of

logical operations to figure out what goes on in no matter how tiny a region of space, and

no matter how tiny a region of time. How can all that be going on in that tiny space ? Why

should it take an infinite amount of logic to figure out what a tiny piece of space-time is

going to do?’’
18
This will be the object of a separate paper.

19
Various natural ideas fail to produce exactly the desired result; one of them was discussed in

Sec. 4.1.
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interesting as that would show a new type of computational limit, physical,
not logical.

In our case, the main result is mathematical. We have proved that the
Wiener measure of the indistinguishable set F ";T constructively tends to zero
when T tends to infinity. The ‘‘device,’’ working in time T, appropriately
computed, will determine with a pre-established precision whether an
arbitrary program halts or not. Building the ‘‘halting machine’’ is mathe-
matically possible.

The discrete-time Brownian motion—used in the estimation of the
probability of the indistinguishable set in the last section—can be represented
as a ‘‘sum’’ of independent random variables with Gaussian distributions. It
can be implemented as a ‘‘sum’’ of spins of a cascade of electrons formed by
the shock-induced emission on a special geometrical structure of semi-
conductor elements with special random properties (cf. Ref. 34).

Many problems are still open and much more remains to be done. Is
the method used in this paper ‘‘natural’’? Is it feasible?20 Is it better or can
we get more ‘‘insight’’ about the nature of the Halting Problem if we use
unitary operators?

The results discussed in this paper, as well as Ref. 8, 10, 16, 27, go
beyond the pure mathematical aspects; they might impose the re-examina-
tion of the mind–machine issue (see Ref. 14).
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