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Abstract

Are there ‘biologically computing agents’ capable to compute Turing uncomputable functions? It is perhaps tempting to
dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we
contend that the answer is nottheoretically negative. Our results will be formulated in the language of membrane computing
(P systems). Some mathematical results presented here are interesting in themselves. In contrast with most speed-up methods
which are based on non-determinism, our results rest upon some universality results proved for deterministic P systems. These
results will be used for building “accelerated P systems”. In contrast with the case of Turing machines, acceleration is a part of
the hardware (not a quality of the environment) and it is realised either bydecreasing the size of “reactors” or by speeding-up
the communication channels. Consequently, two acceleration postulates of biological inspiration are introduced; each of them
poses specific questions to biology. Finally, in a more speculative part of the paper, we will deal with Turing non-computability
activity of the brain and possible forms of (extraterrestrial) intelligence.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

For more than 50 years the Turing machine model of
computation has defined what it means to “compute”
something; the foundations of the modern theory of
computing are based on it.

Furthermore, as it has been noted by various au-
thors (see, for example,Calude and Casti (1998)),
the (silicon) computer, whose capacity for handling
information has been growing at a rate 10 million
times faster than information handling did in our ner-
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vous system during the more than 600 million years
of evolution, seems to be the only important com-
modity ever to become exponentially better as it gets
cheaper. However, this exponential race is essentially
“Turing-bounded”, it cannot produce feasible solu-
tions to many intractable problems and, more impor-
tantly for our investigations here, it cannot solve Tur-
ing unsolvable problems.

Hypercomputation or super-Turing computation is
a “computation” that transcends the limit imposed by
Turing’s model. For a recent perspective one can con-
sult the special issues of the journalMinds and Ma-
chines, (Copeland, 2002); see alsoOrd (2002)for a
lucid analysis,hypercomputation websitefor a com-
prehensive bibliography and the section ‘Computation
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and Turing machines’ inTeuscher (2003)(especially
the critical paper byDavis (2004)).

Are these studies just mere idle speculations, pure
theoretical abstractions studied for their own sake,
with little or no regard to the ‘real world’? We dare to
answer this rhetorical question in the negative. First,
according toCasti (2003), “If science really is essen-
tially the carrying out of a calculation, then the lim-
its of science are necessarily extended whenever we
extend our computational capabilities”. Promises are
very high: if materialised, science will reach points
that have never been seen before. But, what about the
case of failure? Even in this case the gain will be
also immense (and, arguably, scientifically more in-
teresting), as negative results will reveal newlimits,
with far-reaching implications in mathematics, com-
puter science, physics, biology, and philosophy.

To date, all suggestions to transcend the Turing bar-
rier are, as far as we know, either purely mathemat-
ical, or based on (quantum or relativistic) physics –
some details can be found below – and no serious at-
tempt has been made to propose a ‘biological comput-
ing agent’ having super-Turing capability. This is one
of the aims of this paper.

We will formulate our problems and solutions in
the language ofmembrane computing, a branch of
molecular computing (initiated inPăun (2000)) whose
goal is to abstract computing models from the struc-
ture and functioning of the living cell; seePăun and
Rozenberg (2002)for an introduction andPăun (2002),
Calude and P̆aun (2001)for more comprehensive pre-
sentations. The basic idea is to find classes of mem-
brane systems (P systems) which (1) allow determin-
istic characterisations of Turing computability, and
(2) “support” in a natural wayacceleration postulates
with a direct biological inspiration1.

The paper is organised as follows. In the next sec-
tion we will present the motivation, the models and
results in an informal way. The third section is devoted
to the main results and complete proofs. The fourth
section speculates on some implications of our results.
We conclude the paper with some provisional conclu-

1 We will systematically avoid saying that one model or another,
one feature or another from a given model is more or less “realistic”
from a biological point of view, but rather we will try to get
inspired from biology, or to have our speculationsmotivated by
biology.

sions and open problems. Readers less interested in
all technical details may skipSections 3.1 and 3.4.

2. Problems and solutions: an informal discussion

There are various computing models whose ca-
pabilities go beyond Turing’s, that is, they have
super-Turing power: they exploit time accelera-
tion ((Russell, 1936; Blake, 1926; Weyl, 1927; Ste-
wart, 1991; Copeland, 1998; Svozil, 1998)), physics
((Etesi and Németi, 2002; Calude and Pavlov, 2002;
Kieu, 2001, 2002; Adamyan et al., 2004)use quan-
tum theory,Etesi and Németi (2002), Wiedermann
and Leeuwen (2002)use relativity theory), neural
networks(Siegelmann, 1995, 2003)and many other
methods (seeOrd (2002)for an overview), butthere
are no biological models. SeeCasti (1997), Calude
and Casti (1998), Chown (2002), Teuscher and Sipper
(2002), Copeland (2002), Delahaye (2003)for more
general discussions.

2.1. Acceleration

In all approaches, the main problem isto carry on
an infinite computation in a finite amount of time. The
general scenario is suggested inFig. 1: we have two
scales of time, anexternal, global one, of the “user”
of the accelerated device (the black box in the figure),
and theinternal, local time of the device. The problem
is formulated in global time, at some momentt, and
introduced into the accelerated device, which is able
to perform an ‘inner’ infinite computation in a finite
number,T , of external time units, when the “user”
gets the answer to the problem.

The idea came fromRussell (1936), Blake (1926),
Weyl (1927)who observed that a process that performs
its first step in one unit of (global) time, the second

Fig. 1. The interplay between local and global time used for
solving the Halting Problem by means of an accelerated device.
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step in 1/2 unit of (global) time, and, in general, each
subsequent step in half the (global) time of the step be-
fore, is able to complete an infinity of steps in just two
global units of time since 1+ (1/2)+ (1/4)+ . . . = 2.
A universal Turing machine working in this kind of
accelerated manner is capable of deciding the Halt-
ing Problem (i.e., the problem whether an arbitrary
Turing machine halts on an arbitrary input), the most
(in)famous Turing undecidable problem, in the way
suggested inFig. 1: at some (global) timet one intro-
duces (the code of) any particular Turing machineM
and an inputn into the accelerated universal Turing
machine (AccUT), and in two (global) time units we
have the answer, yes or no, whetherM(n) halts or not
(here,T = 2).

We note that acceleration does not conflict with
the Turing model of computation as the mathematical
definition of a Turing machine does not specify how
long does it take to perform an individual step. Even
more,Svozil (1998)has shown that no known physical
law forbids such an acceleration2 (a quantum analysis
of the phenomenon reveals some type of uncertainty
which, in a sense, diminishes the value of the model,
seeSvozil (1998)). We also mention that time accelera-
tion is qualitatively different from ‘time travel’, which
is an ingredient not allowing super-Turing capabili-
ties, cf. Calude et al. (2000). An accelerated Turing
machine is simply a classical Turing machine (a piece
of classical hardware) working in an environment al-
lowing acceleration. Whether this is possible or not is
a matter of physics!

We take here a different approach, grounded on sug-
gestions coming from cell and brain biology: acceler-
ation is a part of the hardware (not a quality of the
environment) and it is realised either bydecreasing
the size of “reactors” (thus making possible that re-
actants find each other and react in a shorter time),
or by training, by speeding-up the communication
channels3.

2 Special relativity does not forbid such a scenario as it allows
objects to exceed the speed of light as long as they never slow
down below it.

3 Ultimately, these hypotheses should be validated or not by
biophysics. However, here we place ourselves in an idealized
framework, where, for instance, there is no limit of acceleration,
of decreasing the size, hence we can perform arbitrarily many
steps of acceleration.

2.2. A glimpse to membrane computing

The above two hypotheses can find a natural frame-
work for a formulation and (mathematical) investiga-
tion in terms ofmembrane computing.

Membrane computing is a branch of natural
computing whose aim is to abstract computational
models, ideas, paradigms from the living cell (neu-
rons as particular cases) structure, functioning, and
inter-relationships in tissues, organs, organisms. The
approach is very general, and starts from two (opti-
mistic) observations: (i) there are several biologically
inspired branches of computer science (for example,
genetic algorithms, or more generally, evolutionary
computing) which prove to be unexpectedly efficient,
and the most plausible “explanation” of this efficiency
seems to be the fact that they use – at an abstract,
computational level – operations, tools, processes
which have been used and improved by nature for
billions of years; (ii) the cell is a marvellous tinny
machinery, the smallest living thing, with a complex
structure,an intricate inner activity, and an exquisite
relationship with its environment. In this context, the
challenge is to find in the cell the ingredients/features
which could be useful to computing.

The proposed answer of membrane computing to
this challenge starts from the fundamental fact that
cells are “defined” by a hierarchical structure of
membranes, from external plasma membrane to many
inner vesicles. The main role of biological membranes
is to separate and protect an ‘inside from an outside’,
making possible the communication between the two
regions in certain circumstances only. Membranes are
at the same timeborders and selective channels of
communication. For instance, it is the cell external
membrane which simply gives identity to the cell,
keeps nutrients inside and ejects waste products, pro-
tects the cell against “wrong chemicals” (by closing
the protein channels towards the environment), and
so on. The internal compartmentalisation of a cell,
through the many membranes existing there, is cru-
cial for the cell functioning. ForKauffman (1993),
“the secret of life” is to be found “in the achievement
of collective catalytic closure”, while forHoffmeyer
(1998) “membranes are the primary organisers of
multi-cellular life”. Marcus (2004)synthesises all
these in a slogan: “Life is DNA software+ membrane
hardware.”
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For our aim it is relevant to note that one of the func-
tions of membranes is to separate compartments which
are small enough for the chemicals which swim there
in water solution to find each other in a small enough
time and react. The reactions taking place in a cell
compartment depend on many local conditions (pro-
moters, inhibitors, acidity, temperature, and so on),
but the number of collisions per time unit of reac-
tants (collisions driven by Brownian motion), which
is, roughly speaking, directly proportional to the num-
ber of copies of each reactant present in each volume
unit (hence inversely proportional to the volume) has
a direct influence on the reaction rate. Hence,smaller
(compartments)means faster (reactions).

Let us now pass from single cells to multi-cellular
structures. Two neighbouring cells can “communicate”
either directly, or through the environment. The main
way of carrying the direct transfer of chemicals
between adjacent cells is through common protein
channels; in general, the passage of materials is
made/controlled by proteins embedded in membranes
which let chemicals to pass from a region to an-
other one selectively, depending on size, polarisation,
type, etc. A special type of trans-membrane transport
appears when two, or several, chemicals pass only
together through a protein channel, either in the same
direction (such a process is calledsymport) or in
opposite directions (calledantiport).

Communication among compartments and cells is
crucial for the functioning of cells and multi-cellular

Fig. 2. A cell-like membrane structure.

structures; it makes the difference from a population
of separated agents to asystem. That is why we may
speculate that, at least in certain circumstances,na-
ture is interested in speeding-up the communication
among compartments of the same cell and among dif-
ferent cells. In the special – and rather important –
case when cells are neurons, and communication is
done via synapses, this is no longer just a speculation:
more frequently used sequences of synapses become
faster and more efficient.

These hypotheses are essential for the anatomy and
behaviour of three classes of membrane systems (P
systems) calledcell-like, tissue-like, andneural-like P
systems. We briefly introduce them here, for specify-
ing the framework in which we work in; a more tech-
nical presentation will be given inSection 3.3.

The main ingredients of a cell-like P system are
(1) the hierarchical arrangement ofmembranes, which
delimit compartments (also calledregions), where (2)
multisets of objects evolve according to (3)evolution
rules. The compartments are uniquely associated with
membranes;Fig. 2 introduces the relevant notions re-
lated to a cell-like membrane structure. The objects
and evolution rules are localised, associated with com-
partments. The objects correspond to chemicals and
the rules correspond to the reactions which can take
place in cell compartments. The objects are unstruc-
tured (atomic, in the etymological sense), hence they
are represented by symbols from a given alphabet. In
each compartment, we have a given number of copies
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of each object, hence a multiset (a set with multi-
plicities assigned to its elements). Thus, the evolu-
tion rules are multiset processing rules. The basic type
of rules, modelling the chemical reactions, are of the
form u → v, whereu and v are strings of symbols
representing multisets of objects (the number of oc-
currences of a letter in a string gives the multiplicity
of the respective object in the multiset). These rules
can be classified according to the number of objects
from their “antecedent”u in cooperative rules, those
having at least two objects inu, andnon-cooperative
rules, those withu consisting of a single object. Ap-
plying such a rule means to “consume” the objects
specified byu and to produce the objects specified
by v. The objects fromv can also be associated with
target indications; for instance, an object which ap-
pears inv in the formaout leaves the region where the
rule is applied and becomes an element of the multiset
placed in the surrounding region – which is the envi-
ronment in the case of the skin region; similarly, an
objectain has to enter any one of the immediately in-
ner membranes, non-deterministically chosen. In this
way, compartments communicate to each other, and
the system can send objects (hence signals) outside.
The rules in each compartment are used in the maxi-
mally parallel manner: in each step of a computation,
all objects which can evolve together will evolve. The
objects and rules are non-deterministically chosen (ob-
serving the maximality restriction). In this way, we get
transitions from a configuration of the system to the
another. A sequence of transitions is a computation. A
computation which reaches a configuration where no
rule can be applied is said to be halting.

Basically, such a computing machinery can be used
in two ways: (1) as agenerative device (start from the
initial configuration and collect all outputs – defined
in a suitable manner – associated with all halting com-
putations), and (2) as afunctional device (introduce an
input in a specified membrane and associate with it an
output, in the end of a halting computation). An impor-
tant particular case of the latter possibility is to use a
P system as anaccepting device, computing the char-
acteristic function of a set (introduce an input in the
system and say that the input is accepted/recognised if
the system eventually halts and a special object,yes,
is ejected from the system).

There are many variants of such systems, contain-
ing further features inspired from biology: priorities

among rules, promoters or inhibitors for rules, mem-
brane creation or membrane division rules, etc. Most
of these types of P systems are equal in power to
Turing machines; when possibilities to generate an
exponential workspace in linear time (e.g., by mem-
brane division) are provided, then computationally
hard problems (typically, NP-complete) can be solved
in polynomial (often linear) time.

2.3. Computing by communication

A rather important class of P systems uses only
communication (based on symport/antiport rules) for
computing. A symport rule is of the form(x, in) or
(x,out), with the meaning that the objects specified
by x enter, respectively exit, the region with which
the rule is associated; an antiport rule is of the form
(x,out; y, in), specifying that the objects ofx exit and
those ofy enter the respective membrane.

The symport/antiport rules can be used both for
cell-like and tissue-like systems. In the latter case, the
membranes are not hierarchically arranged – hence in
the nodes of a tree - but they are placed at the same
level, like in a tissue, and establish a communica-
tion graph depending on the available communication
rules.Fig. 3 suggests the shape of a membrane struc-
ture in the case of a tissue-like P system; note that
some cells (always having only one membrane) com-
municate with each other directly, in a one-way or a
two-way manner, while one cell (namely, 4) can com-
municate with the other three only through the envi-
ronment.

Taking into account that synapses are one-way
channels of communication, the systems where the
communication among the cells is one-way (if a celli

Fig. 3. A tissue-like membrane structure.
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sends objects to cellj, then never cellj sends objects
to cell i) are called neural-like.

Restricted (in the number of membranes and/or
the size of multisetsx, y from the symport/antiport
rules) systems of both types, cell-like and tissue-like,
computing only by communication areuniversal, i.e.,
equal in computational power to Turing machines.
From the proofs of such results, one can see that the
same assertion holds for neural-like systems as well4.

Details about various classes of P systems can be
found in Păun (2002); a comprehensive image of the
domain can be found atP systems website.

Most, if not all, universality results known
in the membrane computing literature deal with
non-deterministic systems. Actually, deterministic
systems, those where from each configuration there
is at most one possible transition, do not make much
sense for systems which work in the generative style
starting from a given initial configuration: they can
generate at most singleton sets of numbers. Because
we want to solve decision problems, in particular
the Turing Halting Problem, we have to deal with
deterministic accepting systems.

2.4. Sources of acceleration

To transgress the Turing barrier we will use two
bio-inspired sources of acceleration.

Specifically, starting from the postulate thatsmaller
is faster, we may imagine that each membrane of a
cell-like P system has its local time, andthe time unit is
strictly smaller from a level of the membrane structure
to the next level below. Namely, the relation between
the time unit t on any leveli to the time unitf(t)
on level i + 1 (hence tof 2(t) on level i + 2, etc.) is
given by a Turing computable functionf such that∑∞
i=1 f

i(t) ≤ T , for a given constantT . Such a system
is called(f, T)-accelerated. For example, we can take
f(t) = t/2, orf(t) = t/q, whereq is a rational number
greater than 1, orf(t) = t1/2 with t > 1. The rate of
change limt→∞(f i(t))/(f i+1(t)) has to be small (as

4 Note that the above notion of “neural-like” P system is differ-
ent from that inPăun (2002), where also states are associated with
the “neurons”, and both the processing of objects and the com-
munication is done in a multiset rewriting style. There is also a
clear and major difference between what we call here “neural-like
systems” and the neural networks from neural computing.

close to 1 as possible). Actually, the rate is 2 iff(t) =
t/2 and 1 iff(t) = t1/2. If f(t) = t1/2, t = 2, then
the ratiof i(t)/f i+1(t) decreases from 1.18 ati = 2,
to 1.04 ati = 4 to reach 1.0001 ati = 12; quite soon
the acceleration becomes extremely small.

Under the above assumption we will show that
we can construct a cell-like P system�, with mul-
tiset rewriting-like rules, which can solve the Halt-
ing Problem. More precisely, we will construct an
(f, T)-accelerated� system which in time 9T + 3
determines whether a register machine (an equivalent
way to present a Turing machine) stops on an arbitrary
input. The P system� works as follows: Given any
register machineM and inputn, the(f, T)-accelerated
recognising P system� (using membrane creation in
order to increase the depth of the membrane structure
– as well as other ingredients, such as membrane dis-
solution), will simulate the computation ofM on n
for at most 9T + 3 units of global time: ifM halts on
n, then� sends to the environment the special object
yes (in global time at most 9T +3), but ifM does not
stop onn, then� sends nothing outside, so in global
time 9T + 3 we know thatM will never stop onn.

The postulatefaster by training/repeating is closer
to the style of accelerated Turing machines: we simply
assume that the stept takes a timef(t), for a function
f as above, and then, with the scenario illustrated in
Fig. 1, we can solve the Halting Problem inT units of
global time. This holds both for tissue-like (two-way
communication) and for neural-like (one-way commu-
nication among cells) P systems.

What is crucial in all these constructions – and not
very common in membrane computing up to now – is
that we need to have auniversal P system of the given
type which is deterministic.5

The class of problems solved by these three types
of accelerated P systems is exactly the classΣ1, the
class of predicates of the form “there existsx such that
R(x, y)”, whereR is a Turing computable predicate.
Is it a big step? Yes, and here are two examples which
justify our answer: (a) such a P system is capable to
decide whether an arbitrary Diophantine equation has

5 For the reader familiar with the current proofs in membrane
computing, this is a strong restriction, because the usual tech-
niques for avoiding “wrong” computations by turning them into
non-halting computations cannot be used any more, hence new
proof techniques must be found.
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or not a solution (i.e., it can solve Hilbert’s Tenth
Problem, a famous Turing undecidable problem), (b)
can establish the consistency of any formal system
(“avoiding” Gödel’s Incompleteness Theorem6). See
more inCalude et al. (2000).

3. Models and technical results

In this part we describe our models (with partially
formal details) and solutions (with all technical de-
tails).

3.1. Overview of methods and results

In our framework, we need P systems which work
in a deterministic manner. A general slogan of par-
allel computing is that “parallelism can simulate
non-determinism” – but this is not always a trivial
matter, for instance, because in general it requests to
use an exponential space, which should be system-
atically explored. Here we do not follow this idea,
but we directly look for ways to construct P systems
which behave deterministically. We have already
noted that usually in membrane computing area one
does not pay (too much) attention to determinism.
Specifically, in most – if not all – proofs dealing with
the computing power of generative P systems one
uses non-deterministic systems. Deterministic sys-
tems appear in several papers on accepting P systems
dealing with complexity matters (seeIbarra (2004, in
press), the corresponding chapter fromPăun (2002)
or the book (Pérez-Jiménez et al., 2002)); some-
times, in this case one also allows a certain degree of
non-determinism, providing the system isconfluent
(after a phase which we do not care about, the com-
putations should converge to a common path, which
always halts).

Here we first address the problem of finding a uni-
versality proof for cell-like P systems, working in the
analysing mode with multisets of symbol-objects, pro-
cessed by rewriting-like rules. Actually, we consider
systems with membrane creation, able to produce new
membranes, from a given list, by rules of the form
a → [v]i, wherea is an object,v is a multiset of ob-

6 A note of caution: the existence/plausibility of any super-Turing
machine affects in no way the validity of Gödel’s Incompleteness
Theorem.

jects, and the newly created membrane has the labeli;
the fact that we know the label is important, because
in this way we know which rules are available in the
region delimited by this new membrane. It is known
(see Theorem 7.3.1 fromPăun (2002)) that generative
P systems using membrane creation and even mem-
brane dissolving features, using only non-cooperative
rules characterise the length sets (Parikh sets, if we
want to work with vectors and we distinguish the ob-
jects in the output) of ET0L languages, hence they are
not universal. The proof inPăun (2002)is, of course,
based on a non-deterministic P system which simulates
any given ET0L system. Universality can be obtained
at the price of using priorities among rules or when
controlling the permeability of membranes (Corollary
7.3.1 fromPăun (2002)), but again non-deterministic
systems are essential. Universality can be also ob-
tained using cooperative rules (Theorem 3.3.3 from
Păun (2002)), even without using membrane creation
rules, but with non-deterministic systems once again.

Our first result in this area combines the two pow-
erful features, cooperating rules and membrane cre-
ation (as well as membrane dissolution), in proving
the universality of deterministic analysing P systems.
Membrane creation can increase the membrane struc-
ture of a given system, adding further and further new
membranes; by definition, these new membranes are
elementary, hence in this way we can increase con-
tinuously the depth of the membrane structure. Then,
we prove the universality of deterministic analysing
P systems of cell-like and tissue-like P systems using
symport/antiport rules; the latter case has as conse-
quence the universality of neural-like systems.

All these universality results are then used for prov-
ing that in the accelerated mode, each of the respective
systems can solve the Halting Problem.

3.2. Turing computability

Classical computability can be presented in a va-
riety of equivalent mathematical formalisms which
include Turing machines, Markov algorithms, partial
recursive (computable) functions, Chomsky type-zero
grammars, register machines, etc. In what follows we
will use Minsky register machines(Minsky, 1967).
Such a device consists of a given number ofreg-
isters each of which can hold an arbitrarily large
non-negative integer number, and aprogram which is
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a sequence of labelled instructions which specify how
the numbers stored in registers can change and which
instruction should follow after any used instruction.
There are three types of instructions:

• l1: (ADD(r), l2) (add 1 to registerr and go to the
instruction with labell2),

• l1: (SUB(r), l2, l3) (if r is non-empty, then subtract
1 from registerr and go to the instruction with label
l2, otherwise go to the instruction with labell3),

• lh: HALT (the halt instruction).

Thus, formally, aregister machine is a construct
M = (m,B, l0, lh, P), wherem is the number of regis-
ters,B is the set of instruction labels,l0 is the start la-
bel, lh is the halt label (assigned to instructionHALT),
andP is the set of instructions (the program).

A register machine can be used for recognising (one
also says “accepting”) numbers in the following sense:
we designate one of the registers, say, register 1, as the
input register; we input a numbern in this register, and
let the machine start computing with all other registers
holding 0, from the instruction with labell0; if the
computation halts, that is, it reaches the instruction
with label lh, then n is recognised; otherwise,n is
not recognised. The set of all non-negative integers
recognised by a given register machineM is denoted
by N(M).

A register machine can also compute a function by
designating certain registers as input registers and oth-
ers as output registers. We start with the arguments of
the function in the input registers and, providing that
the machine halts, we get the value of the function
in the output registers; if the computation never halts,
then the function is not defined for the given input. The
partial functions computed in this way coincide with
the Turing computable partial functions (seeMinsky
(1967)). In particular, a set of positive integersA is
Turing computably enumerable if its partial charac-
teristic function(χA(n) = 1, if n ∈ A, andχA(n) =
undefined ifn ∈ A) is Turing partial computable. We
denote byNCE the family of Turing computably enu-
merable sets of numbers.7

7 The notation comes from the fact that these sets of numbers
are the length sets of computably enumerable languages, which are
the languages whose strings are recognised by Turing machines,
or, equivalently, generated by Chomsky type-zero grammars. An
alternative, older notation, wasNRE, coming from recursively
enumerable languages.

In this framework, theHalting Problem is the prob-
lem to decide whether an arbitrary register machineM

halts on an arbitrary positive integern. A fundamental
result due to Turing states that theHalting Problem
is Turing undecidable, that is, there is no fixed Tur-
ing machine (hence neither a fixed register machine)
Mu capable of deciding whether an arbitrary register
machineM halts on an arbitrary positive integern.

The class of predicates which can be written in the
form (∃x)R(x, y), whereR is a Turing computable
predicate, is denoted byΣ1. Many important problems
can be expressed by predicates inΣ1; for example,
the predicate stating that a Diophantine equation, an
equation of the formP(x1, . . . , xn) = 0 (whereP is
a polynomial with integer coefficients) has a solution
or not in positive integers is inΣ1.

3.3. Membrane computing

We introduce here, rather informally, the classes
of membrane systems we will consider in this paper.
With the intuition given inSection 2, such an informal
presentation should be sufficient for understanding the
arguments from the subsequent sections.8

We first introduce the cell-like P systems with
rewriting-like rules, using membrane creation and
membrane dissolution features – as we will need
below.

A cell-like P system (of degreem ≥ 1) is a construct
� = (O,H,µ,w1, . . . ,wm,R1, . . . , Rn), whereO is
a finite alphabet whose elements are calledobjects (ac-
tually, we will use as synonymous the terms “symbol”
and “object”),H = {h1, . . . , hn} is a set of labels for
the possible membranes of�, µ is a membrane struc-
ture of degreem (represented as a string of correctly
matching parentheses, with a membrane with labeli

represented by a pair of parentheses of the form []i),
wi is a string9 overO representing the multiset of ob-
jects present in regioni of µ, for 1 ≤ i ≤ m, andRj is

8 Of course, some familiarity with membrane computing would
be helpful, especially when dealing with technical details in proofs;
we refer the interested reader to the many sources of information in
this respect, starting with the monographs(Calude and P̆aun, 2001;
Păun, 2002), and the comprehensive web page already mentioned
in Section 2.

9 The set of all strings overO, the empty stringλ included, is
denoted byO∗, while the set of non-empty strings is denoted by
O+; by |x| we denote the length of a stringx ∈ O∗.
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the set of rules which act in the region of membrane
j, for 1 ≤ j ≤ n. These rules can be of two forms:

• Multiset processing rules: u→ v or u→ vδ, where
u ∈ O+, v ∈ (O×TAR)∗, for TAR = {here, out, in},
and δ is a special symbol. The use of such a rule
means “consuming” the objects indicated byu, and
introducing the objects specified byv, in the re-
gions indicated by the targets associated with these
objects, in the way already informally presented in
Section 2. If δ is present, then the membrane where
the rule was applied is dissolved. The contents of the
dissolved membrane, objects and inner membranes
alike, are added to the contents of the immediately
upper membrane.

A rule u → v, u → vδ is said to be cooperative
if |u| ≥ 2 and non-cooperative if|u| = 1.

• Membrane creation rules: a → [v]h, with a ∈
O, v ∈ O∗, andh ∈ H . By means of such a rule, an
objecta creates a membrane with labelh, with the
objects specified byv inside. Knowing the label of
the membrane, we also know the rules which can
act in its region, namely, the setRh.

Note that membrane creation rules are non-cooperative,
while the multiset processing rules can be cooper-
ative. In general, the targethere is not mentioned,
while in andout are given as subscripts of the objects
they are associated with. All rules are used in a maxi-
mally parallel way, chosing the objects to evolve and
the rules in a non-deterministic way.

A configuration of the system at a given step is
identified by the membrane structure and the objects
present in each region at that step. If in each configu-
ration of the system we can have at most one choice of
rules to apply, hence either the system halts or the next
configuration is uniquely determined, then the system
is deterministic.

In what follows, we use P systems in theaccepting
mode: we have the system in the form specified above,
and weinput a multisetw to it, placing the objects of
w in the skin region; if the computation started after
introducingw eventually halts, then we say thatw is
accepted, otherwisew is rejected. In particular, we can
havew = ai, for a specified objecta, and then the
numberi is accepted or not by the system. If we want
that the case of accepting an input is also explicitly
announced to the environment, then we may also ask
that a special object yes will be sent out from the

system if and only if the input is accepted (and this
happens only once, at the end of the computation).

The set of non-negative integers accepted in the
above sense by halting computations by a system
� is denoted byN(�), and the family of all such
sets accepted by deterministic systems is denoted
by DNaOP(coo,mcre, diss): coo, mcre, diss indicate
the use of cooperative rules, membrane creation, and
membrane dissolving features10.

The multiset processing rules as above correspond
to reactions which take place in the compartments of
a cell. Of a crucial importance is the possibility to
transfer objects through membranes - thus integrating
the separate “computing agents” from compartments
in a global “computer”.

Actually, one can compute – even at the level
of Turing machines (and beyond in certain circum-
stances, as we will see below) – by communication
only, for instance, by making use of symport and
antiport, well-known in biology (seeAlberts et al.
(2002)). Such rules can be used both in cell-like sys-
tems (with the membranes hierarchically arranged)
and tissue-like systems (with the membranes placed
in the nodes of an arbitrary graph).

A cell-like P system (of degreen ≥ 1) with
symport/antiport is a construct of the form� =
(O,µ,w1, . . . , wm,E,R1, . . . , Rm), whereO is an
alphabet of objects,µ is a membrane structure (of de-
greem, with the membranes injectively labelled with
1,2, . . . , m), wi is the multiset of objects present in
region i, Ri is the set of rules associated with mem-
branei, for 1 ≤ i ≤ m, andE ⊆ O is the set of
objects assumed to be present in the environment in
arbitrarily many copies. The rules are now associated
with membranes, and can be of two forms:

• Symport rules: (x, in) or (x, out), wherex ∈ O+.
By using such a rule, the objects specified byx are
brought in, respectively sent out of the region of the
membrane the rules are associated with.

• Antiport rules: (x,out; y, in), for x, y ∈ O+. Apply-
ing such a rule for membraneimeans to send out of
the membrane the objects specified byx and bring

10 The notationDNaOP comes from Deterministic P systems
working with Objects represented by symbols (in the literature
there also are investigated P systems working with string-objects),
Accepting sets of Numbers.
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in (from the adjacent external region, which can be
the environment in the case of the skin membrane)
the objects specified byy.

Starting from the initial configuration – with an in-
put which has to be introduced in the skin region – we
pass from a configuration to another one by using the
rules in the maximally parallel manner. If the choice
of rules to apply is unique in each step, then we speak
of a deterministic system. The input is accepted if and
only if the computation stops.

We denote byDNaOPm(syms, antit1,t2) the fam-
ily of sets of numbers accepted by deterministic
cell-like P systems with at mostm membranes (note
that we do not have here membrane creation or
dissolving), with symport rules(x, in), (x, out) hav-
ing |x| ≤ s and antiport rules(x,out; y, in) having
(|x|, |y|) ≤ (t1, t2).

Computing by communication can only be per-
formed also with the membranes placed in the nodes
of an arbitrary graph – and this corresponds both
to inter-cellular communication, much investigated
in biology (see, e.g.,Loewenstein (1999)), and to
communication in networks of neurons.

A tissue-like P system (of degreem ≥ 1) is a con-
struct� = (O,w1, . . . , wm,E,R), where all com-
ponents are as above, andR is a finite set of rules of
the following forms:

• Symport rules: (i, x, j), for x ∈ O+, and 1≤ i, j ≤
m, i �= j, with at most one ofi, j being 0. By using
such a rule, the multiset of objects specified byx is
moved from regioni to regionj, where 0 identifies
the environment.

• Antiport rules: (i, x/y, j), for x, y ∈ O+ and 1≤
i, j ≤ m, i �= j, possibly withj = 0. Using such
a rule means that the objects ofx are sent from
regioni to regionj, at the same time with sending
the objects ofy from regionj to regioni; again, 0
identifies the environment.

The use of rules (maximally parallel) and the defini-
tion of computations follow the same pattern as for
cell-like systems. This time, the input to be recog-
nised by the system is introduced in a specified mem-
brane – for instance in that with label 1. We denote by
DNaOtPm(syms, antit1,t2) the family of sets of num-
bers recognised by deterministic tissue-like P systems
with at mostm membranes, using symport and an-

tiport rules with the size of the involved multisets at
mosts and(t1, t2), respectively.

In systems as above, two cells can communicate in
a two-way manner, either through antiport rules, or
through complementary symport rules. In an attempt
to get closer to the neural case, where the commu-
nication is, in general, one-way, through the axon of
a neuron to the dendrites of another neuron, we can
distinguish a restricted class of tissue-like P systems,
which we will call hereneural-like P systems, where
the communication between any two cells (we also
call them “neurons”) is one-way: for any two cellsi, j,
we always either send objects fromi to j (hence only
rules of the form(i, x, j) are available), or only from
j to i (only rules(j, x, i) are present). The communi-
cation with the environment remains unrestricted. The
corresponding family of sets of non-negative integers
accepted – in the deterministic case - is denoted by
DNaOnPm(syms, antit1,t2), with the obvious meaning
of the parameters involved.

All the above classes of systems, cell-like,
tissue-like, and neural-like, working in the genera-
tive mode are known to be universal. In most cases,
systems with a rather low number of membranes
and rules of a restricted type suffice. However, most
if not all the proofs of such results (all those from
Păun (2002)at least) are based on non-deterministic
systems. Choices are not only allowed but also es-
sentially used in proofs: the correct simulation of a
grammar or of a register machine is guessed during a
computation of the P system aimed to simulate that
grammar or register machine, and “wrong” guesses
are turned to non-halting computations.

For our purpose here, such a “computation” is
of no use, hence deterministic characterisations of
NCE are looked for. Fortunately, and somewhat sur-
prising, such resultscan be proved for all classes
of systems introduced above – each time with
some price to pay in the complexity of the sys-
tem.

3.4. The price of determinism

The results below are both of interest for membrane
computing in general (proving universality for deter-
ministic P systems of various types), but also essential
for the results proved inSection 3.5, the main goal of
our investigation.
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Theorem 1. NCE = DNaOP(coo,mcre, diss).

Proof. Let us consider a (deterministic) register ma-
chineM = (m,B, l0, lh, P) as specified inSection
3.2. For each registeri we consider a distinct symbol
ai,1 ≤ i ≤ m; let U be the set of all these symbols.
We construct the (recognising) cell-like P system

� = (O, {1,2}, [] 1, l0c, R1, R2),

with

O = U ∪ {l, l′, l′′, l̄, l̂|l ∈ B} ∪ {c, d},

and the following sets of rules:

R1 = {c → [c]2}
∪{α→ αin|α ∈ B ∪ U}
∪{l′ → d, l̄ → d|l ∈ B − {lh}},

R2 = {l1 → l2ar| for l1 : (ADD(r), l2) ∈ P}
∪{l1 → l′1l′′1,
l′1ar → l̄2,

l̄2 → l2δ,

l′′1 → l̂3,

l̂3 → l̄3,

l̄3 → l3δ| for l1 : (SUB(r), l2, l3) ∈ P}.

Let us assume that we introducen copies of the ob-
jecta1 in the system� (which corresponds to starting
the work of the register machineM with the num-
ber n in the first register). The system� simulates
the work of the register machine when analysing the
input n.

In the initial configuration we have the multiset
l0can1 in the unique membrane, that with label 1. As-
sume that we are at a time where we have in this mem-
brane an arbitrary multiset of objects fromU, as well
as the objectc and an objectl1 ∈ B.

No rule can be applied, except forc → [c]2, which
creates a membrane with label 2 (and with the object
c inside). In the next step, all objects from the skin
membrane are introduced in the inner membrane. Here
we perform the simulation of rules fromP .

The ADD-instructions of the forml1 : (ADD(r), l2)
are directly simulated by the rulesl1 → l2ar present
in R2.

If l1 is the label of a SUB-instruction, then we pro-
ceed as follows. In the first step,l1 is replaced by
l′1 and l′′2. In the next step,l′1 performs the sub-
traction, providing that at least one copy ofar is
present (in this waȳl2 is introduced), andl′′3 passes
to l̂3; no other object is changed. In the following
step, if l̄2 exists, then it dissolves the membrane with
label 2, and introducesl2; simultaneously,̂l3 is re-
placed byl̄3. If the dissolution takes place, the ob-
ject l̄3 arrives in the skin region, where it is replaced
by the dummy objectd. The instruction fromP was
correctly simulated for the case when the registerr

was not zero. If this was not the case, then the rule
l′1ar → l̄2 cannot be used, andl′1 waits in membrane
2 until it is dissolved by the rulēl3 → l3δ (in the
fourth step). Arrived in the skin region, the objectl′1
is replaced by the dummy objectd, hence also the
case when the register was empty is correctly simu-
lated.

In both cases,c was released in the skin region,
hence the rulec → [c]2 can be applied again.

We continue in this way, simulating the instruc-
tions ofM. If the register machine eventually halts (it
reaches the labellh), then also the computation in�
halts and conversely. Consequently,N(M) = N(�).
As the system� is deterministic (for each labell1 ∈
B there is exactly one instructionl1 : (. . . ) in P), the
proof is complete. �
It is worth noting that the P system from the previous
proof has always only two membranes (each mem-
brane creation is followed by a membrane dissolu-
tion) – hence it is of no interest to consider differ-
ent clocks in different levels of its membrane struc-
ture (see the beginning ofSection 3.5). Moreover,
the membrane creation can be avoided, by making
use in a larger extent of the power of cooperative
rules. However, we will essentially use the idea of
this proof in the proof ofTheorem 5below, where the
acceleration is obtained by increasing the number of
membranes.

Theorem 2. NCE = DNaOP1(sym0, anti2,2).

Proof. Consider again a register machineM =
(m,B, l0, lh, P), a distinct symbolai for each register
i = 1,2, . . . , m, letU the set of all these symbols, and
construct the (recognising) symport/antiportcell-like



186 C.S. Calude, G. Păun / BioSystems 77 (2004) 175–194

P system

� = (O, [] 1, l0,O,R1),

O = U ∪ {l, l′, l′′, l̄, l̂|l ∈ B},
R1 = {(l1,out; l2ar, in)| for l1 : (ADD(r), l2) ∈ P}

∪{(l1, out; l′1l′′1, in),
(l′1ar, out; l̄2, in),
(l′′1, out; l̂1, in),
(l̄2l̂1, out; l2, in),
(l′1l̂1, out; l3, in)| for l1 : (SUB(r), l2, l3) ∈ P}.

After introducing n copies of the objecta1 in the
unique membrane, the system starts simulating the
computation of the register machine starting with the
numbern in the first register.

TheADD instructions correspond directly to antiport
rules fromR1, while the simulation of an instruction
l1 : (SUB(r), l2, l3) is simulated as follows. The avail-
able objectl1 is sent out, in exchange withl′1, l′′1.
The first object can leave the system together with a
copy of ar (if such a copy exists, a case when the
use of the rule(l′1ar, out; l̄2, in) is mandatory), oth-
erwise it waits unchanged. The latter object exits and
l̂1 enters the system. In the next step, ifl̄2 is present
(hence a unit was subtracted from registerr), then l̄2

Fig. 4. The system from the proof of Theorem 3.

exits together witĥl1, introducingl2 (and completing
the simulation); if̄l2 is not present, thenl′1 is present,
and it leaves the system in the next step together with
l̂1, while l3 is brought in instead. This completes the
simulation of the case when registerr was empty.�
The previous result directly implies the equality
NCE = DNaOtP1(sym0, anti2,2). However, in the
case of tissue-like systems, the complexity of the
antiport rules can be decreased: only rules of the
types (i, a/b, j), (i, a/bc, j) are used, wherea, b, c
are single objects (but we will also use symport
rules).

Theorem 3. NCE = DNaOtP3(sym2, anti1,2).

Proof. For a register machineM = (m,B, l0, lh, P)

and an alphabetU = {ai|1 ≤ i ≤ m}, we construct the
tissue-like P system� whose components are picto-
rially given in Fig. 4; with the experience of the pre-
vious proofs and the information from this figure, the
reader can easily see which are the elements of�. We
only examine here in some detail the work of the sys-
tem when simulating a subtraction instruction ofM.

Take an instructionl1 : (SUB(r), l2, l3). Both in the
case when a copy ofar is present in cell 1 and when the
registerr is empty, the simulation is completed in five
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Table 1
Simulating aSUB-instruction in the system from the proof of
Theorem 3

Step Registerr non-empty Registerr empty

1 (1, l1/l′1l′′1,0) (1, l1/l′1l′′1,0)
2 (1, l′1ar,3), (1, l′′1/l′′′1,0) (1, l′′1/l′′′1,0)
3 (3, l′1/l2c,0) (1, l′1l′′′1,2)
4 (3, l2c,1) (2, l′′′1/l3,0)
5 (1, l′′′1c,0) (2, l3,1)

steps. The rules used in these steps are marked inFig. 4
with with Arabic and Roman numbers, respectively,
placed in superscripts of the form〈. . . 〉.

Table 1indicates the rules used in each step for the
two cases – registerr non-empty or empty.

It should be noted that if registerr is empty, then
l′1 waits in cell 1 until step (iii), when it goes together
with l′′′1 to cell 2, wherel3 is brought from the envi-
ronment, and then sent to cell 1. If the register is not
empty, then a copy ofar is moved in cell 3, together
with l′1; in this way,l′′′1 has to wait until step 5 and it
will be moved out of the system with the help ofc. In
turn, c was brought from cell 3 together withl2, after
having l′1 here. The reader can complete the missing
details of the proof that� stops if and only ifM stops
when analysingn (no rule is provided for processing
the objectlh in �). �

Let us note that in the previous proof the univer-
sality is obtained by using three cells, working de-
terministically, with both symport and antiport rules,
and communicating (among them and with the envi-
ronment) in a two-way manner. We have mentioned
all these details in order to stress the differences be-
tween this P system and a neural-like P system, as
defined inSection 3.3, where the communication be-
tween “neurons” is one-way.

However, the communication between any two cells
from the previous construction is performed by means
of symport rules, and, as one can observe fromFig. 4,
in each step one communicates in only one direction.
In general (see Theorem 6.2.1 fromPăun (2002)), the
two-way communication realised by symport rules can
be easily replaced with one-way communication, pro-
viding some intermediate “buffer-cell”, as suggested
in Fig. 5. A small problem appears in our case, be-
cause we also use antiport rules, for communicat-

Fig. 5. Making the communication one-way.

ing with the environment: the communication through
buffers takes two steps, hence we have to resynchro-
nise the work of the system. This can be done by
replacing each rule of the form(i, x/y,0) with two
rules, (i, x/〈y〉,0), (i, 〈y〉/y,0), where 〈y〉 is a new
symbol, associated withy. Therefore, universality is
obtained also for deterministic neural-like P systems
(with seven neurons).

Corollary 4. NCE = DNaOnP7(sym2, anti1,2).
An interesting question in this area is related to the

size of the symport/antiport rules. Rather unexpect-
edly, it was recently proven (seeBernardini and Ghe-
orghe (2003)) that cell-like P systems with minimal
symport and antiport rules (always only one object be-
ing moved in any direction) are already universal. The
current result in this respect says that five membranes
suffice (seeBernardini and P̆aun (2004)), but the proof
is based on a non-deterministic construction. It would
be nice to have a similar result also for the determin-
istic case – for cell-like or tissue-like P systems.

3.5. Accelerated P systems

In general, it is of no interest (from the compu-
tational capacity point of view) to consider different
time units for different membranes in a cell-like sys-
tem with a bounded number of membranes (provided
that the time units of regions are expressed as ratio-
nal divisions of a unique, external time unit). Indeed,
consider the smallest common multiple of all denomi-
nators of fractions expressing the local time units, de-
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note it byr, and take as time unit for all membranes
τ = 1/r; for all membranes whose former time units
were multiples ofτ, introduce synchronising rules of
the forma → a1, a1 → a2, . . . , ak−2 → ak−1, fol-
lowed by rulesak−1 → v corresponding to initial rules
a→ v. In this way, an equivalent system is obtained,
with a global clock as in standard P systems.

This argument does not work for systems which
can get configurations with arbitrarily many mem-
branes (with arbitrarily many local clocks). Actually,
the existence of arbitrarily many local clocks, with the
time units decreasing “sufficiently fast” when enter-
ing deeper in the membrane structure, is sufficient to
reach a computing power beyond Turing computabil-
ity. (Remember that our starting hypothesis was that
“smaller compartments, faster reactions”, hence the
compartmentalization is crucial. Although this bare as-
sumption is biologically supported/inspired, we infer
from it consequences of a mathematical idealized na-
ture which we do not claim to be confirmed by the cell
biology: the acceleration can be arbitrary, for instance,
as a consequence of having compartments which are
arbitrarily small.)

Specifically, in what follows we work with
(f, T)-accelerated systems, where we assume that the
time unit is strictly smaller from a level of the mem-
brane structure to the next level below, namely, the
relation between the time unitt on any leveli to the
time unitf(t) on level i + 1 (hence tof 2(t) on level
i + 2, etc.) is given by a Turing computable function
f such that

∑∞
i=1 f

i(t) ≤ T , for a given constantT .

Theorem 5. Given any register machine M, there is
an (f, T)-accelerated recognising cell-like P system�,
with cooperating rules, using membrane creation and
membrane dissolution features, which stops in time at
most 9T + 3 for any input; � with input n sends to
the environment a special object yes if M halts on n,
and sends nothing outside ifM does not stop on n.

Proof. The idea of the proof is to take the system con-
structed in the proof of TheoremrefT1 and to grow its
membrane structure in such a way that the simulation
of each further instruction of the starting register ma-
chine is done deeper and deeper – hence faster and
faster – in the membrane structure. If the computation
eventually halts, then the special objectyes is sent
out, if not, the system will work forever, but this is not

relevant outside it, where no more than 9T + 3 exter-
nal time units can pass until knowing that the object
yes has been produced or not.

Technically, the construction is the following.
Take a functionf and a constantT as above, and
start again from a (deterministic) register machine
M = (m,B, l0, lh, P). Consider the alphabetU =
{ai|1 ≤ i ≤ m}, and construct the (recognising)
(f, T)-accelerated P system

� = (O, {1,2}, [] 1, l0c, R1, R2),

with

O = U ∪ {l, l′, l′′, l̄, l̂|l ∈ B} ∪ {c, c′, d,yes},
and the following sets of rules:

R1 = {c → [c′]1,
c′ → [c]2}
∪{α→ αin|α ∈ B ∪ U}
∪{l′ → d, l̄ → d|l ∈ B − {lh}}
∪{lh → yesout,yes → yesout},

R2 = {l1 → l2arδ| for l1 : (ADD(r), l2) ∈ P}
∪{l1 → l′1l′′1,
l′1ar → l̄2,

l̄2 → l2δ,

l′′1 → l̂3,

l̂3 → l̄3,

l̄3 → l3δ| for l1 : (SUB(r), l2, l3) ∈ P}.
Like in the proof ofTheorem 1, the simulation of the
instructions ofP is performed in membrane 2, which
is created inside membrane 1 by means of the rule
c′ → [c]2 from R1. After simulating any instruction
from P , membrane 2 is dissolved, andc is released in
the enclosing membrane 1. By means of the rulec →
[c′]1, c creates first one further membrane 1 (where all
objects come in the next step), and then a new mem-
brane 2 is created (where the next instruction ofM is
simulated). In this way, the membrane structure grows
with one level (one membrane 1) for each instruction
simulated.

From the proof ofTheorem 1, it is clear that the
system� will introduce the labellh, when starting
from a multisetl0can1, if and only if M halts when
starting with the numbern in the first register.
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Now, if M halts, hence the labellh is introduced in
� – this always happens when dissolving membrane
2, hence in the central membrane 1 – then the special
objectyes is immediately introduced. This object will
travel step by step from the deepest existing membrane
1 until exiting the system.

Therefore, we get the objectyes in the environment
if and only if the register machine halts (when starting
with n in the first register).

What is the maximal number of steps the system can
perform at any give level of the membrane structure? It
is obvious that the largest number of steps in the same
membrane (without dissolving and creating new mem-
branes) is done when simulating SUB-instructions,
namely, when the corresponding register is empty.
Thus, let us examine such a case. We are in a mem-
brane 1, on leveli of the membrane structure, with a
multisetl1cw, wherew ∈ U∗. Fromc, we create a new
membrane 1 (leveli+1). In the next step, we both in-
troduce all objects in this new membrane (hence two
steps are performed at leveli) and we create a mem-
brane 2 (on leveli + 2). In the next step, all objects
are introduced in the central membrane 2 (hence this
is the second step at leveli + 1). Now, we perform
four steps in membrane 2, ending with its dissolution.
In this way, we return to leveli + 1, and we repeat
the procedure. This means that we perform two steps
here, then two steps in the lower level, four steps one
level below (i+ 3) and we return to leveli+ 2, where
we again perform two steps. In total, eight steps per-
formed at leveli + 2. After that, we never return to
level i+ 2 for simulating instructions ofM – but we
will return here for one step when sending the object
yes out (if this is the case). Consequently, the max-
imal number of steps we can perform at any level of
the system is 9, with the observation that at the first
level we perform two steps in the beginning and one
when sending the objectyes out. Because these steps
are of length 1 (the skin has the same clock as the

Fig. 6. Counting the steps in Theorem 5.

environment), this means that the maximal time the
system� works is 9T + 3 external units.

In Fig. 6we illustrate the above analysis of the num-
ber of steps performed at each level of the membrane
structure; each “constellation” (with “stars”�,�, ∗)
corresponds to the simulation of a SUB-instruction, in
the worst case, when the respective register is empty.
The notation indicates the creation of a new mem-
brane 1 (cr1), of a new membrane 2 (cr2), the move-
ment of objects in the respective membranes (mv1,
mv2, respectively), and the simulation of the instruc-
tion fromP , ended with the dissolution of membrane
2 (δ). The statement of the theorem is completely
proved. �
Results as above can also be obtained as consequences
of Theorems 2 and 3, and Corollary 4, in a direct way,
by assuming that the time needed by theith transition
of a computation isf(i), for a functionf such that
the system is(f, T)-accelerated; in such a case, we
get the answer to the Halting Problem inT units of
global time, just following the scenario fromFig. 1.
Therefore, we can state:

Theorem 6. Given any register machine M, there is
an (f, T)-accelerated recognising P system � of any
of the types (i) cell-like with symport/antiport rules,
(ii) tissue-like, (iii) neural-like which stops in at most
T units of global time for any input; � with input n
sends to the environment a special object yes if M
halts on n, and sends nothing outside if M does not
stop on n.

Accelerated P systems of any of the four types ap-
pearing inTheorems 5 and 6can recognise all Turing
computable sets of numbers (just takef(i) = 1 for all
i, hence the “zero-accelerated accelerated systems”)
and strictly more. How much can we go beyond Tur-
ing barrier?
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Theorem 7. Accelerated P systems of any of the
classes mentioned in Theorems 5 and 6 recognise
exactly the classΣ1.

Proof. One implication follows from the fact that the
Halting Problem is Turing complete. For the other im-
plication, if� is an(f, T)-accelerated P system, then
we define the predicateR�(n, t) to be true if after run-
ning � for time t on n we getyes. Clearly,R� is
Turing computable andn is recognised by� if and
only if there is a timet ≤ T such that� produces
yes, i.e., (∃t)(R�(n, t)). �

4. Intelligence, consciousness and Turing
non-computability

In this speculative short section we will discuss two
possible applications of our results to the understand-
ing of intelligence, in the human brain and nearby
Universe.

In classical biophysics, cognitive processes are
modelled as neural networks (seeKhanna (1990));
this successful approach delivered implementations
of learning and memory and fuelled optimism that a
sufficient complex artificial neuronal network may, at
least theoretically, reproduce the essence of the brain
behaviour accounting for intelligence and conscious-
ness. There is ample support (related to semantics,
binding, neuronal correlation of consciousness, to
name just a few problems) that this line of modelling
may ultimately prove insufficient. More importantly,
Penrose(Penrose, 1989, 1994)has argued that human
understanding (at least of some mathematical facts)
must involve aTuring non-computational element.
The non-computational feature is part of conscious
thinking and may be evidenced in the difference and
transition between pre-conscious and conscious pro-
cessing. As a consequence, it was claimed that, by
trespassing the Turing barrier, the human mind has a
special ability to comprehend unassailable mathemat-
ical truths. We agree with this line of arguments.11

The view that the ephemeral nature of conscious-
ness evokes a quantum process has evolved into
the theory of objective reduction (OR) (seePenrose

11 There are still problems with some arguments involving Gödel
Incompleteness Theorem (see also the discussion inPenrose
(1990)).

(1989, 1994), Hameroff and Penrose (1966)) which
holds that quantum coherence and wave function
self-collapse are essential for consciousness. Are
there quantum computations in the brain? Hameroff
and Penrose(Hameroff and Penrose, 1966)strongly
favour a positive answer; proteins are quantum bits
and cytoskeletal microtubules are assemblies of en-
tangled quantum bits proteins.

Other structures within each of the brain’s neu-
rons might also participate. Among them,neural mem-
brane proteins (seeMarshall (1989)). We contend that
some of these membranes may, under certain condi-
tions, act in an accelerated way, thus triggering Tur-
ing uncomputable computations. Chances that such a
spontaneous acceleration occurs may be rather high
due to, among other factors, the human brain having
about 1018 tubulins. The fact that accelerated P sys-
tems recognise exactly the class ofΣ1 sets which have
a special “finitary” nature (seeCalude et al. (2000))
might also reinforce our hypothesis. At this stage we
have just advanced this hypothesis; we are planning
to devote a detailed analysis of this phenomenon in a
different paper.

Finally, is it possible to imagine a plausi-
ble/consistent ‘biological scenario’ to scan the Uni-
verse for possible forms of intelligence? It seems that
a better candidate to send is a ChaitinΩ number12,
which (seeBennett and Gardner (1979))

embodies an enormous amount of wisdom in a very
small space. . . inasmuch as its first few thousands
digits, which could be written on a small piece of
paper, contain the answers to more mathematical
questions than could be written down in the entire
universe.

In Chaitin (1975)Chaitin introduced the number
Ω representing the probability that a randomly cho-
sen program will halt. In order to make this idea pre-
cise, one can modify the definition of the register
machine programs in such a way that the programs
areself-delimiting binary strings.13. This allows us to

12 It seems that current projects have used the digits ofπ.
13 This can be done, for example as inChaitin (1987), by intro-

ducing input instructions, representing the input positive integer in
binary and appending it immediately after theHALT instruction.
A program not reading the whole data or attempting to read past
the last data-bit results in a run-time error, so fails to halt.
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choose a random program by flipping an unbiased coin
to generate each bit, stopping when we reach a valid
(self-delimited) program. Formally, a ChaitinΩ num-
ber is defined by

Ω =
∑

phalts

2−|p|, (1)

where|p| is the length in bits of the register machine
programp.

The numberΩ has some important properties: (a)
in contrast withπ, which looks (algorithmically) ran-
dom, but it is not,Ω is random, in particular,Ω is
unpredictable and Turing uncomputable, (b) there ex-
ists a Turing machine approximating it, (c) knowing
the firstn bits of the binary (infinite) expansion ofΩ
allows us to solve the Halting Problem for all register
machine programs of no more thann bits in length.14

For largen, this includes a huge amount of informa-
tion, in particular, answers to most important mathe-
matical problems, solved (e.g., Fermat Last Theorem)
or unsolved (Riemann Hypothesis15). For more details
seeCalude (2002), Calude et al. (2000). Consequently,
it is obvious thatΩ includes vastly more information
thanπ, or for this matter, any Turing computable num-
ber.

Next we will show a method of enumerating the bits
ofΩ based on aΣ1 predicate. To this aim we construct,
following Ord and Kieu (2003), a programQ(k,N)
that takes two positive integers,k andN, as input and
halts if and only ifN ·2−k < Ω. To write this program
we construct first the successive approximations ofΩ,

Ωi =
∑

p halts in less thani steps|p|≤i

2−p, (2)

and check at each stage whetherN ·2−k < Ωi, halting
if this is true and continuing otherwise. Since{Ωi}
approachesΩ from below, ifN · 2−k < Ω, then there
is somei for which N · 2−k < Ωi, andQ halts as
required. On the other hand, ifN ·2−k > Ω, then there
is no suchi andQ will not halt. Hence,Q is in Σ1
becauseΩi is Turing computable:

14 Information is maximally compressed inΩ: with only n bits
one can code the halting/non-halting status of 2n programs.
15 A crude estimation shows that to solve the Riemann Hypothe-

sis, one of the Millennium 1 million dollars problem, is equivalent
to decide whether a register machine program of less than 10,000
bits in length does or does not halt.

Q(k,N) = 1 if and only if(∃i)(N · 2−k < Ωi). (3)

Finally, to determine the firstk bits ofΩ, we determine
the greatest value ofN for whichN ·2−k < Ω. For this
N we haveN · 2−k < Ω < (N + 1) · 2−k and thus the
binary representation ofN expressed as ak digit binary
number (with leading zeros if necessary) gives exactly
the firstk digits of the binary expansion ofΩ. So, the
whole process reduces to the computation of aΣ1 set
and a classical Turing computation, a task within the
power of an accelerated P system (see Theorems 5 and
7).

The main problem is to transmit the bits ofΩ.
As pointed inChown (2003), physics is not particu-
larly useful as the intensity of emitted radiation falls
with an inverse-square law (the intensity of radiation
emitted by a relativistically receding source falls as
the fourth power of the Lorentz factor), so the signal
is fading extremely fast. We suggest the following
‘bio-scenario’ for sending bits ofΩ: a neuron-like
type of accelerated P system, self-replicating, which
at each unit of (local) timet computes and emits (as
the result of an accelerated computation) the firstt

digits of Ω and produces an exact replica of itself
(which continues the computation in an accelerated
mode at timet + 1). In this way the space is invaded
with more and more self-replicating bio-systems
each of which emits some bits ofΩ, the sign of our
‘intelligence’. Why do we need acceleration? Sim-
ply because with a Turing computation the above
scenario will produce only finitely different many
copies of the system (seeCalude (2002)): at some
moment the process will stop producing new bits.
An accelerated computation will guarantee, by The-
orem 5, that the process produces more and more
powerful copies, each being capable of emitting more
and more digits ofΩ. Again, we hope to discuss the
above facts in a more technical way in a forthcoming
paper.

5. Final remarks

In this paper we have proposed, for the first time in
the literature on molecular computing, bio-computing
models theoretically capable of trespassing the Turing
barrier. Specifically, we have constructed four mod-
els expressed in the language of membrane comput-
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ing, a recent and vivid branch of natural computing,
cell-like P systems with multiset rewriting-like rules,
cell-like P systems with symport/antiport, tissue-like
P systems, and neural-like P systems. Each model ex-
ploits some type of “time acceleration” inspired from
biology and thus can solve the Halting Problem in a
bounded, known (external) time.

The mathematical results on which these acceler-
ation results are based are interesting in themselves
for the membrane computing area. They suggest
several further research topics. Can these results
be improved in the number of membranes, the size
of rules, the number of ingredients used? Can we
find “deterministic variants” for other universality
results from membrane computing? Is there any
case when non-determinism is necessary (are deter-
ministic systems of a given type strictly less pow-
erful than the non-restricted systems)? The study
of measures of non-determinism is also important.
All these problems are both mathematically and bi-
ologically appealing. Other problems interest the
main goal of this paper. One is to find other ways
to increase the power of a P system (not necessar-
ily Turing universal) so that Turing non-computable
functions can be computed. A suggestion can come
from the so-called “computing by carving”(Păun,
1999): removing arbitrarily many numbers/strings
from a computable set/language amounts at passing
to the complement of that set/language, an opera-
tion known not to preserve Turing enumerability.
Has this procedure any biological interpretation/
analogy?

More technically, what about accelerating the rules
of a system individually, not through its transitions:
the first time when used, any rule needs one time unit
for being applied, but in the next step it is applied in a
shorter time, and so on, that is, each rule needs a time
which depends on its “experience”. This leads to an
intricate de-synchronisation (slow rules can keep busy
objects for time intervals during which faster rules
are applied more times – and gets still faster in this
way).

Finally, we briefly explored some implications of
our results in the quest of understanding intelligence,
in the human brain, and our Universe. These ideas, par-
ticularly those related to the relevance of neuron-like
P systems to the behaviour of the brain, need further
investigations.
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