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Abstract

In this paper we prove Chaitin’s “heuristic principlétie theorems of a finitely-specified theory
cannot be significantly more complex than the theory itf@ifan appropriate measure of complexity.
We show that the measure is invariant under the change of the Gddel numbering. For this measure,
the theorems of a finitely-specified, sound, consistent theory strong enough to formalize arithmetic
which is arithmetically sound (like Zermelo—Fraenkel set theory with choice or Peano Arithmetic)
have bounded complexity, hence every sentence of the theory which is significantly more complex
than the theory is unprovable. Previous results showing that incompleteness is not accidental, but
ubiquitous are here reinforced in probabilistic terms: the probability that a true sentence ofdength
is provable in the theory tends to zero whetends to infinity, while the probability that a sentence
of lengthn is true is strictly positive.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Godel's Incompleteness Theorem states that every finitely-specified, sound, theory
which is strong enough to include arithmetic cannot be both consistent and complete.
Godel's original proof as well as most subsequent proofs are based on the following idea:
a theory which is finitely-specified, sound, consistent and strong enough can express sen-
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tences about provability within the theory, which, themselves, are not provable by the
theory, but can be shown to be true using a proof by contradiction. A true and unprov-
able sentence is called independent. This type of proof of incompleteness does not answer
the questions of whether independence is a widespread phenomenon nor which kinds of
sentences can be expected to be independent.

Chaitin [14] presented a complexity-theoretic proof of Godel's Incompleteness Theo-
rem which shows that high complexity is a reason of the unprovability of infinitely many
(true) sentences. This result suggested to him the following “heuristic principle,” a kind
of information-preservation principlé¢he theorems of a finitely specified theory cannot be
significantly more complex than the theory itsd@lhis approach would address the sec-
ond of the questions above, that is, highly complex sentences are independent, and, as a
consequence, would indicate that independence is pervasive. A formal confirmation of the
pervasiveness of independence has been obtained in [9] via a topological analysis; a quan-
titative result is still missing.

In this paper we prove that a formal version of the “heuristic principle” is indeed cor-
rect for an appropriate measure of complexity; the measure is invariant under the change
of the Gédel numbering. For this measusgthe theorems of a finitely-specified, sound,
consistent theory which is strong enough to include arithmetic have bounded complexity,
hence every sentence of the theory which is significantly more complex than the theory is
unprovable. Previous results showing that incompleteness is not accidental, but ubiquitous
are here reinforced in probabilistic terms: the probability that a true sentence of length
is provable in the theory tends to zero whetends to infinity, while the probability that a
sentence of length is true is strictly positive.

The paper is organized as follows. In Sections 2 and 3 we present the background, the
notation and main results needed for our proofs. In Section 4 we discuss some general
complexity-theoretic results which will be used to prove the main result (Theorem 4.6). In
Section 5 we prove that incompleteness is widespread in probabilistic terms. In Section 6
we use the new complexity measure to prove Chaitin’s information-theoretic incomplete-
ness result for the Omega Number. We finish with a few general comments in Section 7.
The bibliography includes a selection of relevant papers and books, but is by no means
complete.

2. Background

Godel's Incompleteness Theorem, announced on 7 October 1930 in Kénigsberg at the
First International Conference on the Philosophy of Mathemat&s landmark of the
twentieth century mathematics see ([31,32,34] for the original paper, [10,35,43,48] for
other proofs and more related mathematical facts, [5,7,13,27,28,35,36,38,46,47,51] for
more mathematical, historical and philosophical details). It saysrtlatinitely-specified,
sound, consistent theory strong enough to formalize arithmetic, there are true, but unprov-
able sentencesso such a theory i;icomplete A true and unprovable sentence is called

1 Hilbert, von Neumann, Carnap, Heyting presented reports; the conference was a part of the German Mathe-
matical Congress.
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independentThe first condition states that axioms can be algorithmically listed; consis-
tency means free of contradictions; soundness means that any proved sentence is true.

According to Hintikka [35, p. 4], with the exception of von Neumann, who immediately
grasped Gddel’s line of thought and its importance, incompleteness passed un-noticed in
Kdnigsberg: even the speaker who summarized the discussion omitted Gddel's result. In
spite of being praised, discussed, used or abused by many authors, the Incompleteness
Theorem seems, even after so many years since its discovery, stranger than most mathe-
matical theorem$.For example, according to Solovay [37, p. 399]: “The feeling was that
Godel's theorem was of interest only to logicians;” in Sniwki's words [37, p. 399], “It
is fashionable to deride Gddel's theorem as artificial, as dependent on a linguistic trick.”

In 1974 Chaitin [14] presented a complexity-theoretic proof of Godel's Incompleteness
Theorem which shows that high complexity is a reason of the unprovability of infinitely
many (true) sentences. This complexity-theoretic approach was discussed by Chaitin [16—
18,20,21,23] and various authors including Davis [24], Tymoczko [50], Boolos and Jeffrey
[3, pp. 288-291], Svozil [49], Li and Vitanyi [40], Barrow [1,2], Calude [4,6], Calude and
Salomaa [11], Casti [12], Delahaye [25]; it was criticized by van Lambalgen [39], Fallis
[30], Raatikainen [45], Hintikka [35].

Chaitin’s proofin [14] is based on program-size complexity (Chaitin comple¥itythe
complexity H (s) of a binary strings is the size, in bits, of the shortest program for a uni-
versal self-delimiting Turing machine to calculateThe complexityH (s) is unbounded.

The proof shows thdor every finitely-specified, sound, consistent theory strong enough to
formalize arithmetic, there exists a positive constéihsuch that no sentence of the form

“ H(x) > m” is provable in the theory unlesa is less thanM. There are infinitely many
true sentences of the fornH'(x) > m” with m > M, and each of them is unprovable in
the theory.

The high H-complexity of the sentencedt(x) > m” with m > M is a source of their
unprovability? Is every true sentencewith H(s) > M unprovable by the theory? Unfor-
tunately, the answer isegativebecause only finitely many sentencebave complexity
H(s) < M in contrast with the fact that the set of all theorems of the theory is infinite.
For example, ZFC (Zermelo—Fraenkel set theory with choice) or Peano Arithmetic triv-
ially prove all sentences of the form*“ 1= 1+ n.” The H-complexity of the sentences
“n+1=1+ n" grows unbounded witl. This fact, noticed and discussed by Chaitin in
[22, Section 6] (reprinted in [21, pp. 55-81] ) as well as by Svozil [49, pp. 123-125], is es-
sential for the critique in [30,45] (cited in [35]); the works [21,22,49] seem to be unknown
to the authors of [30,35,45].

Chaitin’s proof based om{ cannot be directly extended to all unprovable sentences,
hence the problem of whether complexity is a source of incompleteness remained open. In
this note we prove that the “heuristic principle” proposed by Chaitin [21, p. 69], namely
thatthe theorems of a finitely-specified theory cannot be significantly more complex than

2 Thisis quite impressive, as mathematics abounds with baffling results.

3 Fallis [30, p. 264], argued that Gédel's true but unprovable sentéhds likely to have excessived-
complexity. Similarly, if the theory is capable of expressing its own consistency, then the corresponding sentence
is likely to have excessivél-complexity. It would be interesting to have a mathematical confirmation of these
facts.
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the theory itself* is correct if we measure the complexity of a string by the difference
between the program-size complexity and the length of the stringi-oamplexity (The-
orem 4.6). TheH -complexity of the sentencea “+ 1 =1+ n” grows unbounded with,

but the “intuitive complexity” of the sentences %4 1 =1 + n” remains bounded; this in-
tuition is confirmed bys-complexity. Note that a sentence with a laggeomplexity has
also a large -complexity, but the converse is not true. There are finlyely many strings
with boundedH -complexity, butinfinitely many strings with boundegicomplexity.

As a consequence of Theorem 4.6, we prove that the incompleteness phenomenon is
more widespread than previously shown in [14,20,21,31,32] and by the topological analy-
sis of [9]: the probability that a true sentence of lengtts provable in the theory tends
to zero whem tends to infinity, while the probability that a sentence of length true is
strictly positive.

3. Prerequisites

We follow the notation in [6]. ByYN = {0, 1, 2, ...} we denote the set of non-negative
integers. Further on, Iggdenotes the bas@ > 2 logarithm and log = [log,(n + 1)];
la] is the “floor” of the reale and[«] is the “ceiling” of «. The cardinality of the set
is denoted by cardi). An alphabet withQ elements will be denoted b¥ ; by X*Q we
denote the set of finite strings (words) &fp, including theemptystring 1. The length of
the stringw € X7, is denoted byw|o.

For QO = 2, we use the special sBt= {0, 1} instead ofX,. We consider the following
bijection between non-negative integers and string8p@— 1, 1— 0, 2+~ 1, 3~ 00,
4+ 01, 5~ 10, 6 11, ... The image of, denotedbin(n), is the binary representation
of the numbemr + 1 without the leading 1. Its length |bin(n)|2 = logn. In general, we
denote bystring, (n) thenth string onX o according to the quasi-lexicographical order. In
particular,bin(n) = string,(n). In this way we get a bijective functiostring, : N — X’&;
Istringy (n)o = [logy (n(Q — 1) +1)].

We assume that the reader is familiar with Turing machines processing strings, com-
putability and program-size complexity (see, for example, [3,4,6,26]). The program set
(domain) of the Turing maching is the setPROGr = {x € X*Q: T halts onx}; when
T halts onx, T (x) is the result of the computation @f on x. A partial functiong from
strings to strings is called partial computable (abbreviated p.c.) if there is a Turing machine
T such that: (aPROG = dom(g), and (b)T (x) = ¢(x), for eachx € PROGr. A com-
putable function is a p.c. functian with dom(¢) = XZ. A set of strings is computable if
its characteristic function is computable. A set of strings is computably enumerable (ab-
breviated c.e.) if it is the program set of a Turing machine.

A self-delimiting Turing machine a Turing maching’ such that its program set is
a prefix-free set of strings. Recall thapeefix-free sebf strings S is a set such that no

4 An “approximation” of this principle supported by Chaitin's proof is that “one cannot prove, from a set of
axioms, a theorem that is of greatércomplexity than the axiomand knowthat one has done it;” see [21, p. 69],
also Theorem 4.7 in Section 4.
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string in S is a proper extension of any other stringS$nIn what follows the ternma-
chinewill refer to either a p.c. function with prefix-free domain or a self-delimiting Turing
machine.

Each prefix-free se§ C X7, satisfies Kraft's inequalityy 72, r; - 0~ <1, wherer; =
cardx € S: |x|p =i}. A stronger result, the Kraft—Chaitin Theorem (see [6, p. 53]), is
essential in algorithmic information theory: Let, no, ... be a computable sequence of
non-negative integers such that

Y o<l 1)

i=1

Then, we can effectively construct a prefix-free sequence of strings, ... such that
foreachi > 1, |wi|lp =n;.

The program-size complexitpf the stringx € X7, (relative to T) is Hg r(x) =
min{y|g: y € X*é, T (y) = x}, where minJ = co. The Invariance Theorem states that
we can effectively construct a machitie= U (calleduniversal) such that for every ma-
chineT there exists a constaat- 0 such that for alk € X’é, Houx)<Hpr(x)+e.In
what follows we will fix U and putHg = Hg v ; in particular,H, denotes the program-size
complexity induced by a universal (binary) machinec 1§ in X*Q, thenx* = min{u € X*é:
Ug(u) = x}, where the minimum is taken according to the quasi-lexicographical order; it
is seen thatH p (x) = |x*|g.

4. Complexity and incompleteness

In this section we introduce th&measure and then prove for it Chaitin’s “heuristic
principle”: the theorems of a finitely-specified theory cannot be significantly more complex
than the theory itself

First we introduce thé-measure. Recall thdf is a fixed universal machine aXip
andHg = Hg u, - In what follows we will work with the functiod o (x) = Hp (x) — |x|g
(note that-4¢ is a “deficiency of randomness” function in the sense of [6, Definition 5.21,
p. 113]). Thes-complexity is “close,” but not equal, to the conditiorféh-complexity, of
a string given its length.

The complexity measuredy anddy have similarities agy is defined fromHy by
means of some simple computable functions; for example, they are both uncomputable. But
Hp andé differ in anessentialay: given a positiveV, the set{x € X*Q: Hgp(x) < N}
is finite while, by Corollary 4.3, the séik € X7,: §o(x) < N} is infinite. Note that the
conditional Hp-complexity does not have this property. A sentence with a ldgge
complexity has also a larg8-complexity, but the converse is not true. For example,
the Hyp-complexity of a (true) sentence of the form+1n = n + 1" is about|log, n] plus
a constant, a function which tends to infinityzas> oco; however, theii§ o-complexity is
bounded.

In view of in [6, Theorem 5.4, p. 102], there exists a constant0 such that

‘ rlna>]<V 8o(x) = Ho(stringy (N)) —c, (2)
X o=
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so there are strings of arbitrarily largg-complexity.
The following result is taken from [6, Theorem 5.31, p. 117].

Theorem 4.1. For everyr > 0, the setCqp ; = {x € X*é: 8o(x) > —t} is immune, that is,
the set is infinite and contains no infinite c.e. subset.

Corollary 4.2. For everyr > 0, the setComplex, , = {x € X”é: 8o (x) >t} isimmune.

Proof. As Complex, , C Cg, and every infinite subset of an immune setis immune itself,
we only need to show that Complgy is infinite. To this aim we use formula (2) and the
fact that the functiorfi (string, (NV)) is unbounded. O

Corollary 4.3. For everyr > 0, the sef{x X*é: 8o (x) <1} is infinite.

Proof. The setin the statement is not even c.e. because, by Corollary 4.2, its complement
isimmune. O

The above result suggests that any “reasonable” theory cannot include more than finitely
many theorems with high-complexity. And, indeed, a simple analysis confirms this fact.
A formal language used by a theory capable of speaking about natural numbers includes
variables (a fixed variable and the sigri may be used to generate all variablesy’, x”,
etc.), the constant 0, function symbols for successor, addition and multiplicatien;,
the sign for equality=, logical connectives;, A, v, =, quantifiersy, 3, and parentheses,
(,). They form an alphabeX1s.° The formal language consists of well-formed formulae
which respect strict syntactical rules; for example, each left parenthesis has to be matched
with exactly one right parenthesis. Theorems are then defined by specifying the axioms
and the inference rules. For instance, the systgintroduced by R.M. Robinson (see,
for example, [29]) contains the logical axioms (propositional, substitutiedistribution,
equality axioms) and the following seven axioms:

Ql s(x)=s(") = (x=x),
Q2 =(0=s(x)),

Q3 (—(x =0)) = Ix'(x =s(x")),
Q4 x+0=x,

Q5 x+s(x') =s(x +x),

Q6 x-0=0,

Q7 x-s(x)=(x-x")+x,

and the inference rules of modus ponens and generalization. A proof in the s@stem
is a sequence of well-formed formulae such that each formula is either an axiom, or is
derived from two earlier formulae in the sequence by an inferenceThémremsre well-
formed formulae which have proofs @. As theorems are special well-formed formulae,

5 Of course, we can work with smaller or larger alphabets, depending on specific needs.
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it is clear that each theorem in the systenQ has rather smalH;s-complexity, more
precisely,His(x) is not larger than its length plus a fixed constant. Such a remark suggests
that Chaitin’s “heuristic principle” may be true fégs. However, this property could be a
consequence of some particular way of writing/coding the theorems! To be able to measure
somehow the “intrinsic” complexity of a theorem we need to prove that the property is
invariant with respect to a system of acceptable nagnmesur caseG6del numberings

To make the discussion precise, let us fix a formal IangllageX"é. A Godel number-
ing for L is a computable, one-to-one functignL. — B*, i.e. a system of unique binary
names for the well-formed formulae éf For example, a Godel numbering for the well-
formed formulae of the syste@ can be obtained by coding the elements of the alphabet
X15 with the first 15 binary strings of length four, and then extend this coding according to
the syntax of the language. Various other possibilities can be imagined; see, for example,
[3,29].

As the set of theorems is a c.e. subset of the set of well-formed formulae, we will work
only with computable, one-to-one functiops7 — B* defined on the set of theorems.

Thes-complexity of a theorem € 7 induced by the Godel numberiggs defined by

8g(u) = Ha(g(w)) — [log; Q1 - lul 0. ®3)

The formula fors ; is essentially the formula defininiy, relativized to the Godel num-
bering g: the factor[log, Q7 has the role of “adjusting” the sizes of the alphab¥is
andB.

The first result confirms the intuition: we prove tffgtis, up to an additive constant,
equal to[log, Q1 - 8¢.

Theorem 4.4. Let 7 C X7, be c.e. ancg:7 — B* be a Godel numbering. Then, there
effectively exists a constantfdepending upoiw/o, Uz, andg) such that for allu € 7 we
have

|5g(u) — [log, Q1 -5Q(u)| <ec. (4)
Proof. First we prove the existence of a constansuch that
8g(u) < [log, Q1 -8¢o(u) +c1. (5)

For each stringu € PROG,, we definen,, = [log, 01 - |w|g, and we note that

Z 2w Z o—[log; 01-lwlo < Z Q*‘W‘Q <1,

wePROGUQ wePROGUQ wePROGUQ

becaus®ROG,, is prefix-free. Using now the Kraft-Chaitin Theorem, we can effectively
construct, for everyw € PROGy, a binary strings,, such thats, |2 = n,, and the set
{sw: w € PROGy,} is c.e. and prefix-free. This allows us to construct the mackine
defined by

C(sy) = g(UQ(w)), for w € PROGy,, .
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As C(sy) = g(Ug(w*)) = g(w) we have

He(g(w)) < [swrl2 = Tlog, Q1 - [w*|g = [log, 01 - Ho (w).

Applying the Invariance Theorem, we get a constant 0 such that

8g(w) = Hz(g(w)) —[log, Q1 - |w|p < [log, Q7 - (HQ(w) —lwlg) +c1
= [log, 07 - 8p(w) +c1,

which proves (5).
Secondly, we prove the existence of a constarguch that

[log, 0180 (u) < dg(u) + ca. (6)

For eachw € PROGy, such thatw|> > log, Q, we putm,, = [|w]|2 - log, 2] > 1 and
note that

Z Q*mw < Z 2*|w‘2 < 1’
wePROC—Uz. wEPROGUZ.
lwl2>l0g, O lwlz2>log, O

hence, in view of the Kraft—Chaitin Theorem, we can effectively construct, for every
PROG, with |w|2 > log, Q, a stringr, € X”é of length|z,,|o = m,, such that the set
{t,: w e PROGy,} is c.e. and prefix-free. In this way we construct the mactirgefined
by D(t,) = u if U2(w) = g(u). This construction is well-defined becausés a Godel
numbering. Itis seen that if2(w) = u and|w(2 > log, O, thenHp (u) < [lw(z2 - log, 21,
so applying the Invariance Theorem we get a constasuch that

[log, 01 Ho(u) < [log, Q1 - Hp(u) +d < Ha(g(w)) +d,

hence there is a constantsuch that (6) becomes true. We have used the facflibgt 01 -
[m - IogQ 2] < m, for all integersn > 0.
Finally, (4) follows from (5) and (6). O

As a consequence, asymptotically, theneasure is independent of the Gddel number-
ing.
Corollary 45. Let7T C XZ be c.e. ang, g’': 7 — B* be two Gédel numberings. Then,

there effectively exists a constanfdepending upoi/,, ¢ andg’) such that for allu € 7
we have

|85 () — 8gr)| < c. (7
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Proof. The relation (7) follows from Theorem 4.4. However, it is instructive to give a short,
direct proof. To this aim consider the machi@edefined forw € B* by C(w) = g(u) if
Uz(w) = g'(u). The definition is correct becauB&ROG C PROGy, andg is computable
and one-to-one. It/2(s) = g’(u), thenC(s) = g(u), so by the Invariance Theorem there
exists a constant; such that for allt € L, 8¢(u) < 84/(u) + c1. Finally, (7) follows by
symmetry. O

Theorem 4.6. Consider a finitely-specified, arithmetically sou(ice. each arithmetical
proven sentence is trijjeconsistent theory strong enough to formalize arithmetic, and de-
note by7 its set of theorems written in the alphab®p. Let g be a Godel numbering
for 7. Then, there exists a constant which depends upobip, U, and 7, such thatZ
contains nax with §g(x) > N.

Proof. Because of syntactical constraints, there exists a positive corstarth that for
everyx € 7, Hp(x) < |x|g +d, i.e.8p(x) < d (see also the discussion of the syst@m
following Corollary 4.3). Hence in view of Theorem 4.4, there is a constapt d such

that for everyx € 7, 6,(x) < N. O

Every sentence in the language ofl” with §,(x) > N is unprovable in the theory;
every such “true” sentence is thus independent of the theory.

Do we have examples of such sentences? First, Chaitin’s sentences of the form
“Hy(x) > n,” for largen are such examples.

Here is another way to construct true sentences of Bigbmplexity. A formulag(x)
in the language of arithmetic is called if it is of the form (3y)6(x, y), whered contains
only two free variables andy. We write N = ¢(n) to mean thatp(n) is true whem: is
interpreted as a non-negative integer. The Representation Theorem (see [48]) states that a
setR c Nis c.e. iff there (effectively) exists &1 formulag(x) such that for alk € N we
havern € R & N = ¢(n).

For everya € N, the set{n € N: §¢(string, (n)) < a} is c.e., so in view of the Repre-
sentation Theorem there exist2a formulay (depending o, a) such that for every
n € N we haveidg(stringy (n)) < a < N ¢(n). Consequently, the formulgr = —¢
represents the predicatég(string, (n)) > a.” Because of consistency and soundness, by
enumerating the theorems i of the formy (;m) (corresponding to true formulag(m))
we get an enumeration of the qete 7 w(stringél(x)) eT)C{xeT: ég(x)>a}.

Now leta be a non-negative integer. As € 7': w(stringél(x)) € 7}isac.e. subset of
the immune sefx € X*é: 8o (x) > a}, it has to be finite, that is, there exists &he N such

that for everyx € 7 with w(stringél(x)) € 7 we havelx|p < M. We have got Chaitin’s
statement [21, p. 69]:

Theorem 4.7. Every finitely-specified, arithmetically sound, consistent theory strong
enough to formalize arithmetic can prove only, for finitely many of its theorems, that they
have highs-complexity.
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The theory can formalize all sentences of the fafiin:) in a very economical way, i.e.
with small §-complexity, but is incapable of proving more than finitely many instances:
almost all true formulae of the formi (m) are unprovable.

Comments. (a) Theorem 4.6 establishes a limit on thecomplexity of provable sentences
in 7'; the bound depends upon the chosen Godel numbetrifgthis approach, it makes
no sense to measure the power of the theory by its complexity, i.e. through the miimal
such that the theory proves no sentemaeith 5, (x) > N (see also the discussion in [39]).

(b) Theorem 4.6 does not hold true for an arbitrary finitely-specified theory as there are
c.e. sets containing strings of arbitrary ladggeomplexity.

(c) It is possible to have incomplete theories without higtomplexity sentences; for
example, an incomplete theory for propositional tautologies.

5. Isincompleteness widespread?

The first application complements the result of [9] stating that the set of unprovable
sentences is topologically large. We probabilistically show that only a few true sentences
can be proven in a given theory, but the set of true sentences is “large.”

We begin with the following result.

Proposition 5.1. Let N > 0 be a fixed integefl’ C Xz) be c.e. ang;: T — B* be a Godel
numbering. Then,

lim Q7" -cardx € X} |x|g =n, §;(x) <N} =0. (8)

n—oo

Proof. We present here a direct prddin view of Theorem 4.4, there exists a constant
¢ > 0 such that

{xe Xpt Ixlg=n, 8g(x) < Njc{xe Xpt Ixlg =n, [log, 0180 (x) < N +c}.
So, we only need to evaluate the limit

i -n. * - = < =
nleOOQ cardx € X} |x|g =n, sg(x) <M} =0, 9)

whereM = [(N +c¢)/[log, O11.
First, we note that for every we have:{x X’&: [xlp =n, p(x) <M} ={x e X’&:
Ixlo=n,3y e X{(Iylo <n+ M, Ug(y) =x)}, s0
cardx € Xp: |x|g=n, So(x) <M} <cardy e Xp: [yl <n+ M, |UQ(y)|Q =n)

<cardy € Xp): [ylg <n+ M, Ug(y) haltg.

6 Alternatively, one can evaluate the size of the set of strings of a given length having almost madgyaum
complexity.
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Consequently,
n+M
H —n * . _ — i —-n .
nll_)moo o". card{x €Xp! Ixlg=n, $o(x) < M} _nll_)mOO Zl o ".r, (20)
1=

wherer; = cardy € XZ: lylg =i,1 Ug(y) haltg. Using the Stolz—Cesaro Theorem, we
get

n+M m
i —n — oM i - . —_ M 1. i —-m _
Jm 30 =0M. lim 3207 =0"/(0-1): lim 07" 1, =0,
i=1 i=1 (11)

due to Kraft's inequalityy 22, r; - 0~ < 1. So, in view of (9)—(11), we get (8).

Theorem 5.2. Consider a consistent, sound, finitely-specified theory strong enough to for-
malize arithmetic. The probability that a true sentence of lemgthprovable in the theory
tends to zero when tends to infinity, while the probability that a sentence of length

true is strictly positive.

Proof. We fix a consistent, sound, finitely-specified theoryZldie its set of theorems and
let g be a Godel numbering df. For every integer > 1, let7" = {x € T: |x|g =n}.
By Theorem 4.6, there exists a positive integésuch that7 C {x € X*Q: 8,(x) < NJ.
Consequently, for every: 7" C {x € X’é: lx|o =n, 84(x) < N}, soin view of Proposi-
tion 5.1, the probability that a sentence of lengtls provable in the theory tends to zero
whenn tends to infinity.

Next consider the sentences,, =" Hop(x) > m,” wherex is a string over the alphabet
X . For everym > 1 there exists a positive integdf,, such that for every string € XZ
of length|x|g > Ny, hy n iS true.

For each fixedn, |hy m|o = |x|o + ¢, S0 for everyn > 1 andn > N, + ¢ we have:

cardw € X3! |wlg =n, wistrug}- 07" >cardx € X} |xlp=n—c}- 07" > 07",

showing that the probability that a sentence of length true is strictly positive. O

6. Incompletenessand 2y

The second application is to uéo prove Chaitin’s Incompleteness Theorem {2y
[16] (see also the analysis in [6,8,25]). This shows #hiata “natural” complexity. We start
with the following preliminary result.

Lemma6.1. Letxyx2-- - be an infinite binary sequence and Ietbe a strictly increasing
function mapping positive integers to positive integers. If the{&€Bti), xr)): i > 1}
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is c.e., then there exists a constant 0 (which depends upoli and the characteristic
function of the s¢tsuch that for allk > 1 we have

So(x1x2- - xp)) <€ —k. (12)
Proof. To prove (12), fork > 1 we consider the strings:

WIXFLW2XF(2) - WKXF (k) (13)

where eachw; is a string of length¥ (j) — F(j — 1) — 1, F(0) = 0. In this way, we effec-
tively generate all binary strings of leng#(k) in which the bits on the “marked”positions
FQ),..., F(k) are fixed.

Itis clear thath-‘=1 |lw;| = F (k) —k and the mappin@w1, wa, ..., wy) —> wiwz - - - wy
is bijective, hence to generate all strings of the form (13) we only need to generate all
strings of lengthF (k) — k. Hence, we consider the enumeration of all strings of the form
(13)fork =1, 2,.... The lengths of these strings form the sequence

F),FQ),...,FQ),...,F(k),Fk),...,F&),...

2F-1ltimes 2F () —ktimes

which is computable and satisfies the inequality (1} % , 2F ®—* . 2-F®) = 1 Hence,
by the Kraft—Chaitin Theorem, for every stringof length F (k) — k there effectively exists
a stringz,, having the same length assuch that the sdt,, € B*: |lw|2 = F(k) —k, k > 1}

is prefix-free. Indeed, from a string of length F (k) — k, we get a unique decomposition
w = wy - - - Wk, andz,, as above, so we can defif&z,,) = wixp@ywaxrFQ) - - WkXFk); C

is amachine. Clearlgc (wixr@ywaxr@) - - WkXFk)) < |zwl2 — F (k) = —k, forall k > 1.
So by the Invariance Theorem, we get the inequality (12).

Consider now Chaitin’'s Omega Number, the halting probability/ 0of2y = 0.w1w2 - - -,
see [15]. The binary sequenegw, - - - is (algorithmically) random. There are various ways
to characterize randomness (see, for example, [6,18,26]). A particular useful way is the
following complexity-theoretic criterion due to Chaitin: there exists a positive congtant
such that for every > 1,

S2(w1w2 - wy) = — . (14)

The condition (14) is equivalent §p 0 , 2-%2(@1@2@n) < oo, cf. [42].
It is easy to see that the inequality (12) in Lemma 6.1 contradicts (14), so a sequence
Xx1x2- -+ Xy - - - Satisfying the hypothesis of Lemma 6.1 cannot be random.

Theorem 6.2. Consider a consistent, sound, finitely-specified theory strong enough to for-
malize arithmetic. Then, we can effectively compute a congtaatich that the theory
cannot determine more thaw scattered digits of2y = 0.w1wz - - .
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Proof. Assume that the theory can determine infinitely many digits2gf= 0.wwz - - -
Then, we could effectively enumerate an infinite sequence of digi® afthus satisfying
the hypothesis of Lemma 6.1 which would contradict the randomnessgf---. O

7. Conclusions

There are various illuminating proofs of Gddel's Incompleteness Theorem and some
interesting examples of true but unprovable sentences (see, for example, [21,33,44]). Still,
the phenomenon of incompleteness seems, even after almost 75 years since its discov-
ery, strange and to a large extent irrelevant to ‘mainstream mathematics,” whatever this
expression might mean. Somethingnsssingfrom the picture. Of course, the ‘grand
examples’ are missing; for example, no important open problem except Hilbert’s tenth
problem, see [41], was proved to be unprovable. Other questions of interest include the
source of incompleteness and how common the incompleteness phenomenon is. These
two last questions have been investigated in this note.

Chaitin’s complexity-theoretic proof of Gédel’s Incompleteness Theorem [14] shows
that high complexity is a sufficient reason for the unprovability of infinitely many (true)
sentences. This approach suggested that excessive complexity may be a source of in-
completeness, and, in fact, Chaitin (in [21,22]) stated this as a “heuristic principle:”
“the theorems of a finitely-specified theory cannot be significantly more complex than
the theory itself.” By changing the measure of complexity, from program-Kize) to
8(x) = H(x) — |x|, we have proved (Theorem 4.6) that for any finitely-specified, sound,
consistent theory strong enough to formalize arithmetic (like Zermelo—Fraenkel set theory
with choice or Peano Arithmetic) and for any Gédel numbegnaf its well-formed for-
mulae, we can compute a boundsuch that no sentenoewith complexity §, (x) > N
can be proved in the theory; this phenomenon is independent on the choice of the Godel
numbering. For a theory satisfying the hypotheses of Theorem 4.6, the probability that a
true sentence of length is provable in the theory tends to zero whetends to infinity,
while the probability that a sentence of lengtis true is strictly positive. This result rein-
forces the analysis in [9] which shows that the set of independent sentences is topologically
large.

According to Theorem 4.6, sentences expressed by strings with dargemplexity
are unprovable. Is the converse implication true? In other words, given a theory as in the
statement of Theorem 4.6, are there independent sentenadth low §,-complexity?

Even if such sentences do exist, in view of Theorem 5.2, the probability that a true sentence
of lengthn with §,-complexity less than or equal 10 is unprovable in the theory tends to
zero whem tends to infinity.

Other open questions which are interesting to study include:

(a) the complexity of some concrete independent sentences, like the sentence expressing
the consistency of the theory itself,

(b) the problem of finding other (more interesting?) measures of complexity satisfying
Theorem 4.6,
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(c) a stronger version of Theorem 5.2: under the same conditions, the probability that a
sentence of length, expressible in the language of the theory, is provable in the theory
tends to zero when tends to infinity.
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