
Solving SAT with Bilateral Computing

Joshua J. Arulanandham, Cristian S. Calude, Michael J. Dinneen

Department of Computer Science
The University of Auckland

Auckland, New Zealand

hi josh@hotmail.com, {cristian,mjd}@cs.auckland.ac.nz

Abstract

We solve a simple instance of the SAT problem using a natural physical com-
puting system based on fluid mechanics. The natural system functions in a way
that avoids the combinatorial explosion which generally arises from the exponen-
tial number of assignments to be examined. The solution may be viewed as part
of a more general type of natural computation called Bilateral Computing. The
paper will also describe this new computing paradigm and will compare it with
Reversible Computing. Our approach is informal: the emphasis is on motivation,
ideas and implementation rather than a formal description.

1 Introduction

The Satisfiability problem for Boolean formulas, commonly known as the SAT problem,
is one of the classic “hard problems” in computer science. Due to its NP–completeness,
any other hard problem (in NP) can be reduced in polynomial time to SAT. Naturally,
an efficient solution for SAT will translate into an efficient solution for every NP problem.

The SAT problem is defined as follows: Given a Boolean formula with n variables,
determine whether it can be satisfied (the value of the formula made true) by a truth
assignment, i.e., by (at least) one possible assignment of the logical values true or false to
each variable. For instance, with the plus symbol denoting a ‘logical or’ and juxtaposition
(implied multiplication) denoting a ‘logical and’, the formula (a + c + ē)(b̄)(b + c + d +
e)(d̄ + e) is satisfiable, with the assignment: a = false, b = false, c = true, d = false and
e = false. On the other hand, the formula (a)(ā + b)(ā + c̄)(b̄ + c) is not satisfiable, as
there is no possible assignment to a, b and c that can make the formula true. (See [5]
for a detailed coverage of the topic.)

What makes such an “easy question” hard to answer is that often one has to (exhaus-
tively) test all possible 2n truth assignments to the n variables in a formula. Naturally,
the exponential number of the possible assignments leads to a combinatorial explosion
as n gets bigger, and hence the hardness.



.

.

.

Bidirectional flow of information

.

.
.

(b)(a)

Unidirectional flow of information

y y

x1

x2

x
n

x1

x
n

x2

Figure 1: Unilateral and bilateral logic circuits.

We suggest a solution for SAT that uses a natural physical computing system based
on fluid mechanics. The natural system called a “Bilateral Computing System”1 that
we use to solve SAT avoids the combinatorial explosion which generally arises from the
exponential number of assignments to be examined. In this paper we start with an
informal presentation of the notion of Bilateral Computing in Section 2, discuss the
design of “bilateral logic gates” in Section 3 and then proceed to the complete design
of the (bilateral) natural computing system for solving SAT in Section 4. We analyze
the time complexity in Section 5, give a short description of Bilateral Computing in
Section 6, compare Reversible Computing with Bilateral Computing in Section 7 and
summarize our results in Section 8.

2 Bilateral Computing

We will describe in detail the notion of a Bilateral Computing System (BCS) later in
Section 6. Simply put, a BCS is a computing system/circuit that allows a bidirectional
flow of information between its input and output “points” or “pins”2. Figure 1 illustrates
this idea in the context of solving the SAT problem.

Figure 1(a) is the normal unilateral type of a Boolean circuit that can generate an
output based on the inputs x1, . . . , x

n
. Figure 1(b) is a hypothetical, bilateral Boolean

circuit that can process information in both directions, i.e., from the input to the output
and conversely, from the output to the input. For instance, given an 1–signal (true input)
through its output pin y, the circuit would automatically assume a set of values for the
input pins x1, . . . , x

n
that are consistent with the output y = 1. In other words, the

input pins would be “forced” to assume one of those possible combinations of 0’s and 1’s
(if any), that could generate the output y = 1. The kind of action that the circuit would

1See [9, 8, 6, 4, 1, 7] for other variants of Natural Computing.
2We use the word “bilateral” as in electrical circuit theory: circuit elements (e.g. resistors) that can

conduct current equally well in either direction are bilateral — as opposed to those (like diodes, which
are unilateral) that cannot.

2



z

x y y

z

x

OR gate AND gate
markers

threshold
threshold

Figure 2: Fluid mechanical logic gates.

take, when there is no such possible input assignment to the inputs x1, . . . , x
n

(i.e., the
formula is unsatisfiable) depends on how exactly a BCS is physically realized.

In what follows we will discuss the design of logic gates that behave as BCSs, by
virtue of simple natural laws.

3 Bilateral AND, OR Gates

In this section we describe a design of bilateral logic gates using fluid mechanical systems.
Figure 2 shows fluid mechanical designs for the 2–input AND and OR gates. Each gate
consists of three limbs joined together and a working fluid that can move freely within.
Pistons are fitted to the two limbs (x and y) that represent the inputs of the gate; they
can be pushed in, at will, say by giving a gentle pressure on them or by adding weights.

A “push” on a piston represents an 1–input (logical true); a “no-push” (piston in
raised position) is a 0–input (logical false). (See Figure 2; note that there are “markers”
on the limbs; a “push” input should move the piston past the “marker” to signal an
1–input.) The output is the fluid level in the third limb (z): a raised fluid level above
certain threshold represents 1 and a lower level corresponds to 0. (There is a “marker”
in the limb that denotes the threshold level.) In the OR gate, the threshold (for output
fluid level) is adjusted in such a way that, a “push” on just one of the two inputs would
cause the level go past the threshold. In the AND gate, it is just the opposite: the
threshold is set higher, so as to require both pistons to be pushed simultaneously. Note
that each “push” is a predefined, fixed measure and cannot exceed a certain limit.

Why do we call these gates bilateral? The working fluid can be moved forwards and
backwards, and the input pistons can be moved up and down not just by direct manual
handling, but also indirectly by raising the fluid level in the output limb. Imagine sucking
the fluid level in the output limb up; this would indirectly affect the position of the input
pistons, as well. For instance, raising the fluid level in the output limb is the equivalent of
pushing (both) the input pistons down3. Thus, certain (allowable) input settings of the

3Both input pistons are subjected to the same atmospheric pressure.

3



gate can be indirectly obtained by just maneuvering the output, in the reverse direction
and hence, the gates are bilateral.

x y z = x + y

0 0 0
0 1 1
1 0 1
1 1 1

z x y

0 0 0
1 1 1

(a) (b)

Table 1: Truth table for an individual bilateral OR gate.

x y z = xy

0 0 0
0 1 0
1 0 0
1 1 1

z x y

0 0 0
1 1 1

(a) (b)

Table 2: Truth table for an individual bilateral AND gate.

Tables 1(a) and 1(b), respectively, show Truth tables for the operation of the OR gate
when it is operated independently (and not coupled with other bilateral gates), both in
the normal, forward direction (input → output) and in the reverse direction (output →
input). Tables 2(a) and 2(b) represent truth tables for the operation of the AND gate,
both in forward and reverse directions. Note that these truth tables, which show one
fixed rule by which the output is mapped to an input combination, do not apply when
the gates work as part of a coupled system of bilateral gates. In that case, during the
backward operation, there is no unique, fixed rule by which the output is mapped to
an input combination. For instance, the bilateral OR gate could, by definition, map an
1–output to either one of (1, 1) or (1, 0) or (0, 1) input combinations depending on the
constraints by the other gates of the realized BCS.

The design of a NOT gate is quite straightforward and will be discussed in the next
section.

4 Solving an Instance of SAT

Given the simple Boolean formula (ā + b)(a + b) whose truth table is given in Table 3,
we assemble fluid mechanical gates together to form a BCS, as illustrated in Figure 3.
The OR gates (gates labeled 1 and 2 in Figure 3) realize (ā + b) and (a + b) respectively
and the AND gate (gate 3) combines their outputs.

4



�
�
�

�
�
�

� �
� �
� �
� �

�
�
�

�
�
�

� �� �

�
�
�

	
	
	


 
� �

AND gate

gateOR

3

1

gateOR

(~a + b)(a+b)

b

(a + b)

2

a b

(~a + b)

~a

Seesaw

Bar

Figure 3: An instance of SAT.

a b (ā + b)(a + b)
0 0 0
1 0 0
0 1 1
1 1 1

Table 3: Truth table for (ā + b)(a + b).

Pistons on the input/output sides of each gate are called input pistons and output pis-
tons. There is a seesaw–like structure4 connecting the input pistons of gates 1 and 2,
which take the inputs ā and a; it ensures that the input values (push and no-push) as-
signed to the pistons are complements of each other. Also, observe the bar–like structure
connecting the other two pistons representing the two inputs labeled b; it ensures that
the values assigned to the pistons are the same. Both these structures ensure consistency
in the assignment of values to input variables. Note the long seesaw structures connect-
ing the outputs of the OR gates (gates 1 and 2 in Figure 3) with input pistons of the
AND gate (gate 3); they are the mechanisms that convert the outputs of gates 1 and
2 (indicated by fluid levels) to equivalent push/no-push inputs, which are subsequently
applied to the AND gate. For instance, suppose, the output of gate 1 is 1 — indicated by
a raised fluid level in the output limb (and thus, a raised output piston), the mechanism
will, in turn, produce a push input (1–input) to the AND gate.

4This is an implementation of the bilateral NOT gate.

5



We briefly explain the overall behavior of the setup. It is easy to see that the input
pistons connected to the OR gates (gates 1 and 2) can be set (say, manually) in one of
the two satisfiable input configurations (recall Table 3 for its satisfiable assignments);
and the output of the AND gate will be 1 in such cases, which is indicated by the fluid
level raising above a threshold.

Now, consider the reverse case: suppose, the output of the AND gate (gate 3 of Fig-
ure 3) is assigned 1, i.e. by forcibly raising the fluid level up, say, by means of suction.
This, as a result, would exert a force on the other pistons (through the working fluid),
and would set them all “in motion” and would eventually place the pistons (automat-
ically) in one of the (two) satisfiable configurations. (One of the two satisfiable piston
configurations is shown in Figure 3; if the seesaw structure connecting gates 1 and 2 is
reversed, i.e. a up and ā down, we get the other possible configuration.5) We could thus
make the information flow in the reverse direction.

The above described effect will evolve in a sequence, each event triggering the next:

(a) Fluid–level in output limb of gate 3 — forcibly raised.
(b) Input pistons of gate 3 — pushed down.
(c) Output pistons of gates 1 and 2 — raised.
(d) Input pistons of gates 1 and 2 — some pushed down, some raised (depending on the
constraints).

Now, what if the formula chosen is not satisfiable? What if there is no allowable
input piston configuration leading to an 1–output? In that case, trying to raise the fluid
level in the output limb would push the system to an abnormal state, say, a noticeable
rise in pressure. This should be detected and suitably dealt with, say, by releasing a
safety valve or a cork (which would signal the unsatisfiability of the formula).

To make the device workable, the following assumptions are adopted:

1. The seesaw structure is perfect. It always keeps the pistons on either side in com-
plementary states — one up and one down and never allows them to assume the same
position.
2. The push inputs given to the gates undergo “squashing”. The push inputs to the OR
and AND gates cannot exceed a certain predefined limit and will be duly “squashed” if
they exceed it.
3. The piston is moved slowly. Only then, the process can be treated as adiabatic, when
no heat is gained or lost. (This will simplify the time complexity analysis.)

As the working fluid can be moved forwards and backwards, the system acts as a
BCS. When the fluid level of the output limb (of gate 3) is raised forcibly by suction
or other means, this will exert a force on the other pistons (through the working fluid),
would set them in motion and would eventually place the pistons (automatically) in one
of the (two) satisfiable configurations — the two different possible positions of the seesaw

5Initially, there might be a state of “oscillation”, when pistons move up and down, trying to settle
down in one of the (two) possible configurations; but, eventually they will reach a state of equilibrium

which cannot be one of the non–satisfying configurations, due to the physical arrangement. However,
the device might arrive at a different satisfiable configuration each time we run it, due to slight changes
in the initial condition.

6



structure connecting gates 1 and 2. Note that the suction force (applied at the output
limb) will naturally try to push down as many (input) pistons in every gate, as is allowed
by the built–in constraints in the hardware representing the formula.

5 Time Complexity

Given a CNF formula we can (uniformly) realize a general SAT device by having a tree
of k − 1 binary OR gates for each clause of k literals. and then ‘logically and’ together
m clauses with another tree of m− 1 binary AND gates. We can also consider a general
SAT device in which the binary gates (of Figure 3) are replaced with m–ary gates6.
Thus, the clauses of a CNF formula can be represented using OR gates whose outputs
are combined by a single AND gate. Also, corresponding to each variable in the formula,
say a, we assume that there is a generic seesaw structure that connects all a’s onto one
side and all ā’s on the opposite side.

In terms of a physical realization, the response time t (after suction is applied to
the output gate) is the sum of two components: t1, the time taken by the sound wave
(generated by suction) to reach the farthest piston7 and t2, the time taken by the pistons
to react, due to friction. The time t1 depends on λ, the velocity of sound in the fluid
medium and the geometric dimensions of the apparatus. Thus, t1 = λ × d, where d is
the maximum distance the wave has to travel — from the point where suction is applied
to the farthest piston in the apparatus. Therefore, t = λ × d + t2, where λ and t2
are constants and d grows linearly with the number of gates, the physical size of the
individual gates being uniform (for binary case) or unbounded (for m–ary case).

6 Bilateral Computing: Further Remarks

In general, computing mechanisms, both conceptual and physical, are built upon rudi-
mentary operations like addition and multiplication. These mechanisms can quickly
combine data (using such operations) in a bottom–up fashion, rather than the other way
round (say, spontaneously decide “102,390,908 = ? × ?”). In a sense, such mechanisms
suffer from a fundamental asymmetry in the way they compute and process information.
For instance, while we are able to design circuits that can multiply quickly, we have
limited success computing the other way round, i.e. factoring. The same is true with
computing Boolean functions; we have fast digital circuits that combine digital data us-
ing AND, OR operations and yet, no fast circuits that determine, “What values should
the various inputs assume, in order to make the output 1?”. The same conventional
hardware circuit that is used to multiply, cannot be used to factor, say, by making it
work backwards (see Figure 4). But, it may be possible to design circuits with such an

6An m–ary OR gate can be constructed by adjusting the threshold (for output fluid level) in such
a way that, a “push” on just one of the m inputs would cause the level go past the threshold. In the
AND gate, the threshold is set much higher, so as to require all m pistons to be pushed simultaneously.

7The device is inherently parallel, and the sound waves move toward all pistons simultaneously.

7



Bilateral Circuit Element Unilateral Circuit Element

resistor diode

MULTIPLY /
FACTOR

456

987

450072

(456 x 987)

Figure 4: Bilateral computing system.

extraordinary facility. In fact, the fluid mechanical system that we discussed exhibits
such a backward operation facility.

Bilateral Computing is a paradigm that seeks computational structures, both at con-
ceptual and hardware levels, that would allow us to compute in both directions, using
the same underlying mechanism and possibly, with the same computational effort. Such
a mechanism may — in principle — factor, with the same ease as it would multiply — by
simply working backwards8. A BCS can be seen as a black–box that can implement, with
the same underlying computational structure, a bidirectional input–output mapping; it
can facilitate a bidirectional flow of information between its input and output points.
A BCS has no strict distinction between inputs and outputs, but, simply guarantees,
for instance, that the inequality A = B × C is true. A (hypothetical) BCS realizing
A = B × C would act as a multiplier if B and C are instantiated 9, and would output
A; alternatively, it would behave like a factoring device if A is instantiated instead, and
would output one of (possibly many) suitable values for B and C that would make the
equality true10. There is no rigid setup, for instance, like B and C as the designated
inputs and A, as the designated output.

We can mathematically characterize a BCS as follows. Consider a surjective (not
necessarily bijective) function f : X → Y and the set of functions G = {g : Y → X |
f(g(y)) = y, ∀y ∈ Y }. A computing system is said to be bilateral if it can implement
f as well as a g ∈ G, using the same inherent “mechanism” or “structure”. Note that
a BCS chooses one of the possible functions g “on the fly”, i.e. (only) when it is being
run; the particular choice of the function is enforced by the constraints we set-up while
running the system. This choice of the function is not known when the system behavior
is being defined — prior to the actual operation of the system; we can only associate a
set of possible functions that achieve the reverse mapping, while defining its behavior.

8Note that this is different from “going backwards in time”.
9To “instantiate” is to assign values.

10The specific choice made amongst many possible values depends on the physical realization chosen.

8



For instance, consider the bilateral OR gate discussed in Section 3, X =
{(0, 0), (0, 1), (1, 0), (1, 1)} and Y = {0, 1}. The function f represents the normal forward
operation of the gate: f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1 and f(1, 1) = 1. The reverse
operation of the gate, operated independently (see Table 1(b)) is the function g: Y → X

defined by g(0) = (0, 0), g(1) = (1, 1). Note that f(g(0)) = 0 and f(g(1)) = 1 and hence,
g is a partial inverse of f . Similarly, the bilateral AND gate can be described by another
pair of functions f and g. The BCS displayed in Figure 3 chooses one such g while in
operation.

7 Reversible Computing vs. Bilateral Computing

The goal of Reversible Computing (also known as Conservative Logic; see [2]) is to
conserve energy by making a computing device reversible in principle, i.e. one that can
be made to run backwards in time. The motivation is not to reverse the computational
process, but rather to conserve (energy). In Fredkin’s words [3], “. . . the (reversible)
computer could, in principle, run backwards from the end of the computation back to
the beginning as a form of proof that it is properly designed. There is, however, no
necessity to run the whole computation backwards in order to have the system completely
dissipationless.” Thus the aim is to conserve energy — to avoid heat dissipation — a
physical gain which will matter when the hardware gets shrunk to atomic levels.

On the other hand, the very motivation of Bilateral Computing is to literally operate
the computing device both onwards and backwards: to compute a reverse output–input
mapping, besides the normal input–output mapping. Reversible computing can be re-
garded as a special case of bilateral computing: in cases where a computable inverse
could be defined, a reversible computer can be used in the same spirit as a BCS. Also,
in most cases, the function to be computed is not bijective and making it bijective (and
thereby, reversible) comes with the price of increasing the number of variables (which
affects the space complexity).

8 Conclusions

We have solved a simple instance of the SAT problem using a natural physical computing
system based on fluid mechanics. The described system does not result in the combina-
torial explosion which generally arises from the exponential number of assignments to be
examined. One of the reasons for the efficiency of the system is the following: Consider
the behavior of the individual components (gates) of the system, when they operate as
part of the whole system. During the backward operation, their behavior may be non–
deterministic: there may not exist a unique, fixed rule by which the output is mapped
on to an input. For instance, the bilateral OR gate could map an 1–output to either one
of (1, 1) or (1, 0) or (0, 1) input combinations depending on the constraints set-up during
runtime. In contrast to deterministic devices (as reversible logic gates) whose behavior
is given by a unique, fixed prior to operation rule, the BCS picks, by virtue of natural
laws, a “correct inverse” (which makes the system satisfiable, if possible) on the spur of

9



the moment, while in operation.

9 Acknowledgement

We gratefully acknowledge Professor Boris Pavlov’s interest in our work; he critically
read initial drafts of the paper and made important suggestions, especially regarding the
time complexity.

References

[1] C. S. Calude, G. Păun, Monica Tătărâm. A glimpse into natural computing,
J. Multi–Valued Logic 7 (2001), 1–28.

[2] E. Fredkin, T. Toffoli. Conservative logic, Int’l J. Theoret. Phys. 21 (1982), 219–
253.

[3] E. Fredkin. On the soul, Draft, 1982.

[4] A. J. Jeyasooriyan, R. Soodamani. Natural algorithms: A new paradigm for algo-
rithm development, Proc. 2nd International Conference on Information, Commu-
nications and Signal Processing, CD-ROM, ICICS ’99, 1999.

[5] J. L. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity I, Springer–Verlag,
Berlin, 1988.

[6] G. Rozenberg. The natural computing column, Bulletin of EATCS 66 (1998), 99.

[7] G. Rozenberg. The nature of computation and the computation in nature, Inter-
national Colloquium on Graph Transformation and DNA Computing, Technical
University of Berlin, 14 February 2002.

[8] H. T. Siegelmann, S. Fishman. Analog computation with dynamical systems, Phys-
ica D 120 (1998), 214–235.

[9] T. Toffoli. What are nature’s “natural” ways of computing?, Workshop On Physics
and Computation, PHYSCOMP ’92, IEEE Comp. Soc. Press (1993), 5–9.

10


