Diophantine Representation for $\boldsymbol{\Omega}$

Cristian S. Calude

December 5, 2018

The Ω number, see [2] is one of the most important concepts in Algorithmic Information Theory [1]. Chaitin has presented a first exponential Diophantine representation for a natural Ω number in [2]. His equation was automatically generated from a complex register machine program and is very large, e.g. it has approximately 17,000 unknowns. While it is has been shown that this can be reduced to just three [3], doing so would be a very challenging task.
In [4], Ord and Kieu have shown how to determine the k th bit of Ω by solving k instances of the halting problem. From this they reduce the problem of determining the k th bit of Ω to determining whether a certain Diophantine equation with two parameters, k and N, has solutions for an odd or an even number of values of N. They further construct an exponential Diophantine equation with a parameter k which has an odd number of solutions iff the k th bit of Ω is 1 , and a polynomial of positive integer variables and a parameter k that takes on an odd number of positive values iff the k th bit of Ω is 1 .

The projects seeks to improve the Ord and Kieu constructions and to write a program to automatically generate "smaller" Diophantine representations for Ω.

References

[1] C. Calude. Information and Randomness - An Algorithmic Perspective. Springer, Berlin, second edition, 2002.
[2] G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press, Cambridge, 1987.
[3] Y. V. Matiyasevich. Hilbert's Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.
[4] T. Ord and T. D. Kieu. On the existence of a new family of diophantine equations for Ω. Fundamenta Informaticae, 56, 3(273-284), 2003.

