
COMPUTING A GLIMPSE

OF RANDOMNESS

Cristian S. Calude

(joint work with M.J. Dinneen

and C.-K. Shu)

University of Auckland

1

Chaitin Omega Numbers are halting probabilities of

universal self-delimiting Turing machines. They have

been described as numbers which “can be known of, but

not known, through human reason.” The talk will review

the main properties of Omega Numbers and will describe

the main steps (mathematical and programming) leading

to the computation of 64 exact bits of a (natural) Omega

Number:

2

Reals like α = π, e,
√

2, log2 3,
√

5 (in fact all “natural”

constants) are computable because there is a computable

function f : N → {0, 1} such that

α =
∞∑

i=1

f(i)2−i.

This is equivalent to say that the left Dedekind cut

{q ∈ Q | q < α} is computable.

Most numbers are not computable. Specker (1949) gave

the first example of a real α which is not computable, a

real for which the set {q ∈ Q | q < α} is computably

enumerable but not computable. Such a number is called

computable enumerable (c.e.).

3

We fix with a universal self-delimiting Turing machine

(TM) U working on Σ = {0, 1}, i.e. a universal TM

whose domain {x ∈ Σ∗ | U(x) halts} is prefix-free.

Denote by string(i) the ith binary string. The real

cU =
∑

U(string(i)) halts

2−i

is c.e. and not computable because the Halting problem

is undecidable.

To know which programs of less than N bits halt we

need to know 2N+1 − 1 bits of cU . Can we do it better?

4

Knowing the first N bits of the Chaitin’s Omega real

ΩU =
∑

U(x) halts

2−|x|

we can decide which program of less than N bits halts.

ΩU is c.e. and not only non-computable, but

algorithmically random.

Randomness means that ΩU passes all c.e. statistical

tests of randomness. For example, every binary N bit

string appears in the binary expansion of ΩU with the

probability 2−N .

Chaitin (1975), Calude, Hertling, Khoussainov, Wang

(1998) and Slaman (1998) The set of ΩU coincides with

the set of c.e. random reals.

5

Omega “can be known of, but not known,

through human reason”

(Chaitin, 1975) Assume that ZFC is arithmetically

sound. Then ZFC can determine the value of only

finitely many bits of ΩU .

(Calude, 2000) For very c.e. random real we can

effectively construct a self-delimiting machine U such

that ZFC, if arithmetically sound, cannot determine

more than the initial block of 1’s of the binary expansion

of ΩU .

(Solovay, 1999) We can effectively construct a

self-delimiting machine U so that ZFC, if arithmetically

sound, cannot determine any bit of the ΩU .

6

Is it important to “know” ΩU?

[a natural Omega] embodies an enormous

amount of wisdom in a very small space ...

inasmuch as its first few thousands digits, which

could be written on a small piece of paper,

contain the answers to more mathematical

questions than could be written down in the

entire universe. (C. Bennett)

This number is so random that no program can

ever be written to print out even one of its

digits. (Tony Hoare)

Yet...

7

Computing a few exact bits of

a “natural” ΩU

We have worked with the universal machine constructed

in 1987 by Chaitin using register machine programs. A

register machine has a finite number of registers, each of

which may contain an arbitrarily large non-negative

integer. The list of instructions is given below:

L: GOTO L2

L: JUMP R L2

L: GOBACK R

L: EQ R1 R2 L2

L: NEQ R1 R2 L2

L: RIGHT R

L: LEFT R1 R2

L: SET R1 R2

L: HALT

L: OUT R

L: DUMP

8

A register machine program consists of a finite list of

labeled instructions from the above list, with the

restriction that the HALT instruction appears only once,

as the last instruction of the list. The data (a binary

string) follows immediately the HALT instruction. The

use of undefined variables is a run-time error. A program

not reading the whole data or attempting to read past

the last data-bit results in a run-time error. Because of

the position of the HALT instruction and the specific way

data is read, register machine programs are

self-delimiting.

A Java version interpreter for register machine programs

has implemented the universal machine. This interpreter

has been used to test the Halting Problem for all register

machine programs of at most 84 bits long.

9

To minimize the number of programs of a given length

that need to be simulated, we have used “canonical

programs” which are register machine programs in which

(1) labels appear in increasing numerical order starting

with 0,

(2) new register names appear in increasing

lexicographical order starting from ‘a’,

(3) there are no leading or trailing spaces,

(4) operands are separated by a single space,

(5) there is no space after labels or operators,

(6) instructions are separated by a single space.

For every register machine program there is a unique

canonical program which is equivalent to it. If x is a

program and y is its canonical program, then |y| ≤ |x|.

10

Here is a canonical program:

0:!a 1:^b 4 2:!c 3:?11 4:=a 0 8 5:&c 110 6

:(c 101 7:@b 8:&c 101 9:(c 113 10:@b 11:%10

or in a more “understandable” form:

0:! a // read the first data bit into

// register a

1:^ b 4 // jump to a subroutine at line 4

2:! c // on return from the subroutine

//call c is written out

3:? 11 // go to the halting instruction

4:= a 0 8 // the right most 7 bits are

// compared with 127; if they

// are equal, then go to label 8

11

5:& c ‘n’ // else, continue here and

6:(c ‘e’ // store the character string ‘ne’

// in register c

7:@ b // go back to the instruction with

//label 2 stored in register b

8:& c ‘e’ // store the character string ‘eq’

// in register c

9:(c ‘q’

10:@ b

11:% // the halting instruction

10 // the input data

12

1. Start by generating all programs of 7 bits and test

which of them stops. All strings of length 7 which can be

extended to programs are considered prefixes for possible

halting programs of length 14 or longer; they will simply

be called prefixes. In general, all strings of length n

which can be extended to programs are prefixes for

possible halting programs of length n + 7 or longer.

Compressed prefixes are prefixes of compressed

(canonical) programs.

2. Testing the Halting Problem for programs of length

n ∈ {7, 14, 21, . . . , 84} was done by running all candidates

(that is, programs of length n which are extensions of

prefixes of length n− 7) for up to 100 instructions, and

proving that any generated program which does not halt

after running 100 instructions never halts. For example,

(uncompressed) programs that match the regular

expression "0:\^ a 5.* 5:\? 0" never halt on any input.

13

Statistics of Halting Programs

P + D L = program plus data length,

HP = number of halting programs

P + D L # HP P + D L # HP

7 1 49 1012

14 1 56 4382

21 3 63 19164

28 8 70 99785

35 50 77 515279

42 311 84 2559837

14

Computing all halting programs of up to 84 bits for U

seems to give the exact values of the first 84 bits of ΩU .

False! Indeed, given the first N bits of ΩU one can solve

the Halting Problem for programs of length at most N ,

but the converse implication is false because longer

halting programs can conspire to modify values of “very

early” bits of ΩU .

So, to be able to compute the exact values of the first N

bits of ΩU we need to be able to prove that longer

programs do not affect “too much” the first N bits of

ΩU .

15

Due to the special form of programs, the “tail”

contribution to the value of

ΩU =
∞∑

n=0

∑

{|w|=n, U(w)halts}

2−|w|

is bounded from above by the sum of the following two

convergent series:

∞∑

m=0

∞∑

n=k

#{x | prefix x not containing HALT, |x| = k}
︸ ︷︷ ︸

x

· 48
n−k

︸ ︷︷ ︸

y

· 1
︸︷︷︸

HALT

· 2
m

︸︷︷︸

u

·128
−(n+m+1)

,

and

∞∑

m=1

#{x | prefix x containing HALT, |x| = k}
︸ ︷︷ ︸

x

· 2m

︸︷︷︸

u

·128−(m+k).

16

Plugging in the data obtained from simulating the

programs we get:

∞∑

m=0

∞∑

n=13

402906842 · 48n−13 · 2m · 128−(n+m+1)

+

∞∑

m=1

1748380 · 2m · 128−(m+13)

= 402906842 · 64

128 · 4813
·

∞∑

n=13

(
48

128

)n

+1748380 · 1

63 · 12813

< 2−68,

that is, the first 68 bits of Ω84
U “may be” correct by our

method.

17

Actually we do not have 68 correct bits, but only 64

because adding a 1 to the 68th bit may cause an

overflow up to the 65th bit:

Ω84
U = 0.0000001000000100000110001000011010

001111110010111011101000010000011110

In conclusion,

Calude, Dinneen, Shu (December 2001) The first 64 bits

of ΩU are:

00000010000001000001100010000110

10001111110010111011101000010000

18

Conclusions

This is the first attempt to compute some initial exacts

bits of a random real. The method, which combines

programming with mathematical proofs, can be

improved in many respects.

In contrast with the computation of π, for which you can

compute as many digits as you want (provided you have

enough time and money) this method is essentially

non-scalable: only finitely digits can be computed.

Knowing the N digits of ΩU allows you to solve the

Halting Problem for programs of up to N bits but the

converse is not true. However, with an oracle for the

Halting Problem you can get as many digits as you want

from ΩU .

19

We have solved the Halting Problem for programs of at

most 84 bits, but we have obtained only 64 exact initial

bits. This (and any other) method will fail when the first

program corresponding to an unsolved problem is

generated (e.g. a program for Goldbach’s conjecture)

Our ΩU starts with 0, still there is no contradiction

between Solovay’s result and our computation. Each

computably enumerable real α = ΩU for infinitely many

U . Among them, we have Solovay “bad” machines for

which ZFC cannot determine any digit. Fortunately,

each computably enumerable real α can be defined as

the halting probability of a universal machine which is

not a Solovay machine.

The web site

ftp://ftp.cs.auckland.ac.nz/pub/CDMTCS/Omega/

contains all programs used for the computation as well

as all intermediate and final data files (3 giga-bytes in

gzip format).

20

