
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

pyInformation and Computation 204 (2006) 1718–1739

www.elsevier.com/locate/ic

Natural halting probabilities, partial
randomness, and zeta functions

Cristian S. Calude a,*, Michael A. Stay b

aDepartment of Computer Science, University of Auckland, New Zealand
bDepartment of Mathematics, University of California Riverside, USA

Received 23 February 2006; revised 12 July 2006
Available online 25 September 2006

Abstract

We introduce the zeta number, natural halting probability, and natural complexity of a Turing machine and
we relate them to Chaitin’s Omega number, halting probability, and program-size complexity. A classification
of Turing machines according to their zeta numbers is proposed: divergent, convergent, and tuatara. We prove
the existence of universal convergent and tuatara machines. Various results on (algorithmic) randomness and
partial randomness are proved. For example, we show that the zeta number of a universal tuatara machine is
c.e. and random. A new type of partial randomness, asymptotic randomness, is introduced. Finally we show
that in contrast to classical (algorithmic) randomness—which cannot be naturally characterised in terms of
plain complexity—asymptotic randomness admits such a characterisation.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Halting probability; Omega number; Zeta function; Zeta number; Turing machine; Tuatara machine;
Random real

∗ Corresponding author. Fax: +9 3737 453.
E-mail addresses: cristian@cs.auckland.ac.nz (C.S. Calude), mike@math.ucr.edu (M.A. Stay).

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2006.07.003

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1719

1. Introduction

We introduce the zeta number, natural halting probability, and natural complexity of a Turing
machine and we relate them to Chaitin’s Omega number, halting probability, and program-size
complexity. A classification of Turing machines according to their zeta numbers is proposed: diver-
gent (zeta number is infinite), convergent (zeta number is finite), and tuatara (zeta number is less
than or equal to one). Every self-delimiting Turing machine is tuatara, but the converse is not true.
Also, there exist universal convergent and tuatara machines; there is a tuatara machine universal
for the class of convergent machines.

The zeta number of a universal self-delimiting Turing machines is c.e. and (algorithmically)
random, and for each tuatara machine there effectively exists a self-delimiting Turing machine
whose Chaitin halting probability equals its zeta number; if the tuatara machine is universal, then
the self-delimiting Turing machine can also be taken to be universal.

For each self-delimiting Turing machine there is a tuatara machine whose zeta number is exactly
the Chaitin halting probability of the self-delimiting Turing machine; it is an open problem whether
the tuatara machine can be chosen to be a universal self-delimiting Turing machine in the case when
the original machine is universal.

Let s > 1 be a computable real, T a universal Turing machine, and KT be the plain complexity
induced by T . In analogy with the notion of Chaitin partially random reals we introduce the notion
of a “1/s− K-random real” (a real � = 0.x1 · · · xm · · · such that the prefixes of its binary expansion
are 1/s− K-random, i.e.,KT (x1 · · · xm) � m/s− c, for some c � 0 and allm � 1) as well as the notion
of an “asymptotically random real” (1/t − K-random real, for every computable t > s > 1).

The result due to Chaitin and Martin-Löf showing that there is no infinite sequence whose
prefixes have all maximal K complexity (also true forH complexity) is no longer true for asymptot-
ically random reals (Theorem 40 and Theorem 53). However, 1/s− K-randomness is different from
Chaitin 1/s−randomness (Proposition 38). Every c.e. random number is asymptotically random
(Theorem 48), but the converse implication fails to be true: there exists a self-delimiting Turing
machine whose zeta number is asymptotically random, but not random (Theorem 50).

Various examples illustrate the above notions and results. Some open problems conclude the
paper.

2. Omega and zeta numbers

It is well-known that the Halting Problem, i.e., the problem of deciding whether an arbitrary Tu-
ring machine halts or not on a given input, is Turing uncomputable. The probabilistic version of the
Halting Problem, first studied by Chaitin [7,8], deals with the halting probability, i.e., the probability
that an arbitrary Turing machine halts on a randomly chosen input. Chaitin’s halting probability
was studied intensively by various authors (see [23,20,2,11]). Chaitin’s halting probability is not de-
fined for every Turing machine, hence Chaitin and his followers have worked with a sub-class of
Turing machines which has equal enumeration power as the class of all Turing machines, namely
the self-delimiting Turing machines.

A self-delimiting Turing machineC is a Turing machine which processes binary strings into binary
strings and has a prefix-free domain; that is, if C(x) halts (is defined) and y is either a proper prefix

Aut
ho

r's

pe
rs

on
al

co

py

1720 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

or a proper extension of x, then C(y) is not defined. The domain of C , dom(C), is the set of strings
on which C halts (is defined).

Definition 1 (Chaitin’s Omega number). The halting probability (Omega number) of a self-delimiting
Turing machine C is

�dom(C) =
∑

p ∈ dom(C)

2−|p |.

The number�dom(C), usually written�C , is a halting probability. Indeed, pick, at random using
the Lebesgue measure on [0, 1], a real � in the unit interval and note that the probability that some
initial prefix of the binary expansion of � lies in the prefix-free set dom(C) is exactly �C .

More formally, let � = {0, 1} and let �∗,�ω be the set of binary strings and infinite binary
sequences, respectively. For A ⊆ �∗,A�ω = {wx | w ∈ A, x ∈ �ω}, the cylinder induced by A, is
the set of sequences having a prefix in A. The sets A�ω are the open sets in the natural topol-
ogy on �ω. Let � denote the usual product measure on �ω given by the uniform distribution
�({0}�ω) = �({1}�ω) = 2−1. For a measurable set C of infinite sequences, �(C) is the probability
that x ∈ C when x is chosen by a random experiment in which an ‘independent toss of a fair coin’
is used to decide whether xn = 1. If A is prefix-free, then �(A�ω) = ∑

w∈A 2−|w| = �A; here |w| is the
length of the string w. We assume everywhere that min ∅ = ∞. For more details see [2,11].

Let � = 0.x1x2 · · · xn · · · ∈ [0, 1] with xi ∈ {0, 1}, and let x1x2 · · · xn · · · be the unending binary ex-
pansion of �. We put �[n] = x1x2 · · · xn. If y = y1y2 · · · yn, then 0.y = ∑n

i=1 yi2
−i .

Definition 2. The Turing machineU is universal for a class � of Turing machines if for every Turing
machine C ∈ � there exists a fixed constant c � 0 (depending upon U and C) such that for every
x ∈ dom(C) there is a string px ∈ dom(U) with |px| � |x| + c and U(px) = C(x). In case U ∈ �, we
simply say that the machine U ∈ � is universal.

A classical result states:

Theorem 3 [7]. We can effectively construct a universal self-delimiting Turing machine.

Definition 4. (a) The plain complexity of the string x ∈ �∗ with respect to a Turing machine M is
KM(x) = min{|w| | w ∈ �∗, M(w) = x}.

(b) The program-size complexity of the string x ∈ �∗ with respect to a self-delimiting Turing
machine C is HC(x) = min{|w| | w ∈ �∗, C(w) = x}.
Definition 5. (a) [22] A real � ∈ (0, 1) is computably enumerable (c.e.) if it is the limit of an increasing
computable sequences of rationals.

(b) ([30,5]) Let ε be a computable real and U a universal self-delimiting Turing machine. A real
� ∈ (0, 1) is Chaitin ε-random if there is a constant c such that for each n � 1, HU(�[n]) � ε · n− c.
We say that � is Chaitin partially random if it is Chaitin ε−random for some computable real
1 > ε > 0.

(c) [7] A real � ∈ (0, 1) is (algorithmically) random if it is 1-random, i.e., there exists c � 0 such
that for all m � 1, HU(�[m]) � m− c.

The following theorem gives a full characterisation of c.e. and random reals:

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1721

Theorem 6 ([4, 14, 2]). A real � ∈ (0 , 1) is c.e. and random iff there exists a universal self-delimiting
Turing machine U such that � = �U.

The definition of Chaitin’s halting probability allows an apparent “ambiguity” as strings with
the same length in the domain of the self-delimiting Turing machine contribute equally towards
the halting probability.1 This motivates us to introduce a slightly different “halting probability” in
which different strings in the domain of the machine have different contributions to the “halting
probability”.

Let N = {1, 2, . . .} and let bin : N → �∗ be the bijection which associates to every n � 1 its binary
expansion without the leading 1,

n n2 bin(n) |bin(n)|
1 1 � 0
2 10 0 1
3 11 1 1
4 100 00 2
...

...
...

...

If A ⊂ �∗, then we define ϒ[A] = {n ∈ N | bin(n) ∈ A}. In other terms, the binary expansion of
n is n2 = 1bin(n).

Definition 7 (Zeta number of a Turing machine). The zeta number of the Turing machineM , denoted
	M , is

	M =
∑

n∈ϒ[dom(M)]

1
n

.

The number 	M will be shown to be random in the same sense as�M in caseM is ‘universal’ (for
example, if M is a universal self-delimiting Turing machine, Theorem 13).

One might ask whether there is also some sense in which 	M is a halting probability. For many
Turing machines, 	M is not a probability; for example, a total Turing machineM , i.e., dom(M) = �∗,
has 	M = ∞.

However, for a universal self-delimiting Turing machine M , 	M is a halting probability. Here is
an informal argument. In an alphabet with k symbols, the probability that the k-ary expansion of
n appears is proportional to k−	logk n
−1, while the measure assigned to n in the definition of 	M is
k− logk n. By letting k approach 1 from above, we can eliminate the roughness in the measure due to
the least integer function. Fractional bases k correspond to strings in base �k� with restrictions. For
instance, using the golden ratio
 = 1+√

5
2 ≈ 1.618 as a base, we get the “Fibonaccimal” [16] expan-

sion. Here, numbers are represented by binary strings in which consecutive 1 digits are prohibited.
As k approaches 1, the measure of n approaches 1/n.

1 The “ambiguity” is apparent because from the first n bits of �U we effectively calculate the strings in dom(U) that
determine these digits.

Aut
ho

r's

pe
rs

on
al

co

py

1722 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Definition 8 (Zeta classification of Turing machines). According to the zeta number, Turing machines
can be classified into the following three classes:

• zeta divergent Turing machines: those machines M for which 	M = ∞,
• zeta convergent Turing machines: those machines M for which 	M < ∞,
• tuatara machines2 : those machines M for which 	M � 1.

Proposition 9. Every self-delimiting Turing machine is a tuatara machine. More precisely, for every
self-delimiting Turing machine C , 	C is c.e. and

1 � �C � 	C � �C/2 � 0.

Proof. It is easy to see that 	C is c.e. and

1 � �C �
∑

n∈ϒ[dom(C)]
2−|bin(n)|

=
∑

n∈ϒ[dom(C)]
2−	log2(n)
 �

∑

n∈ϒ[dom(C)]
2− log2(n) = 	C

�
∑

n∈ϒ[dom(C)]
2−	log2(n)
−1 =

∑

n∈ϒ[dom(C)]
2−|bin(n)|−1

= �C/2 � 0. �

We continue with the following result [27]:

Theorem 10. Let U be a universal self-delimiting Turing machine. Then,

lim inf
n→∞

1
n

log(#{p ∈ dom(U) | |p | � n}) = 1.

2 We chose this name to commemorate the fact that the work was done in New Zealand. Tuatara (“peaks on the back”
in Maori) is a reptile (not a lizard) found only in New Zealand. Tuatara is the last remaining member of the ancient group
of reptiles Sphenodontia, the only survivor of a large group of reptiles that roamed the earth at the time of dinosaurs.
Tuatara has not changed its form much in over 225 million years!

Its relatives died out about 60 million years ago. Tuatara has a ‘third eye’; its main role is to soak up ultraviolet rays in
the first few months of life. See more in [31].

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1723

Proof. IfM is a one-to-one (as a partial function), self-delimiting Turing machine, then in view of the
universality of U we have: #{q ∈ dom(M) | |q| � n− c} � #{p ∈ dom(U) | |p | � n}. To obtain the
formula in the statement of the theorem we can chooseM such that dom(M) = Ł, the Lukasiewicz
language defined by the equation Ł = 0 ∪ 1 · Ł2 (see [15]); so, for every odd n we have

#{q ∈ dom(M) | |q| � n} =
n∑

odd i

1
2i + 1

(
2i + 1
i

)
=

n∑

odd i

Ci,

where Ci is the ith Catalan number (see [15]). �
Fact 11. The domain of a universal self-delimiting Turing machine U cannot be a set of strings such
that every element has a length that is an integer power of two.

Proof. The result follows from Theorem 10: otherwise, lim infn→∞ 1
n log(#{p ∈ dom(U) | |p | �

n}) � 1/2. �
Corollary 12. For every universal self-delimiting Turing machine U , 1 > �U > 	U > �U/2 > 0 .

Proof. We have: 2−	log2(n)
 � 2− log2(n) > 2−	log2(n)
−1, where equality holds only when n is a power
of two, so the strict inequalities hold true because of Proposition 9 and Fact 11. �
Theorem 13. The zeta number 	U of a universal self-delimiting Turing machine U is random.

Proof. We define the machine C as follows: on a string w, C will try to computeU(w) = y , then con-
tinue by enumerating enough elements bin(n1), bin(n2), . . . , bin(nk) ∈ dom(U) such that

∑k
i=1 1/ni >

0.y and outputC(w) = bin(j), where j is the minimum positive integer not in the set {ni | 1 � i � k}.
If the computation U(w) does not halt or the enumeration fails to satisfy the above inequality, then
C(w) is undefined.

First we note that C is a self-delimiting Turing machine as dom(C) ⊂ dom(U). Second, if C(w)
is defined and U(w′) = U(w) with |w′| = HU(U(w)), then C(w) = C(w′), hence

HC(C(w)) � |w′| � HU(U(w)). (1)

Third, because U is universal, HU(x) � HC(x)+ constC , for some constC and all strings x.
Finally,

	U � 0.	U [m+ 1] + 2−m−1. (2)

Given U(w) = 	U [m+ 1] we observe that

HU(C(w)) > m. (3)

Indeed, if C(w) = U(bin(j)), in view of (2), we have

1/j = 2− log2(j) > 2−	log2(j)
−1 � 2−m−1.

Using in order the inequality (3), the universality of U , and (1) we get the following inequalities:

Aut
ho

r's

pe
rs

on
al

co

py

1724 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

m < HU(C(w))

� HC(C(w))+ constC
� HU(U(w))+ constC
= HU(U [m+ 1])+ constC ,

proving that 	U is random. �
It is clear that �M can be defined for every Turing machine, much in the same way as 	M .

Consequently, the zeta classification of Turing machines can be paralleled with:

Definition 14 (Omega classification of Turing machines). According to the Chaitin (Omega) halting
probability, Turing machines can be classified into the following three classes:

• Omega divergent Turing machines: those machines M for which �M = ∞.
• Omega convergent Turing machines: those machines M for which �M < ∞.
• Omega Turing machines: those machines M for which �M � 1.

Every self-delimiting Turing machine is an Omega Turing machine, but the converse implication
is false. A natural question arises: do the zeta and Omega classifications coincide?

Fact 15. (a) For every Turing machine M , 	M < ∞ iff �M < ∞, hence the classes of zeta diver-
gent (convergent) Turing machines coincide. (b) If �M � 1 , then 	M � 1 , but there exists a tuatara
machine T such that �T > 1 , hence the class of Omega Turing machines is strictly included in the
class of tuatara machines.

Proof. The equivalence a) is obvious as well as the fact that for every Turing machineM , 	M � �M .
Finally, let T be the Turing machine defined as follows: T(0i1) = T(10) = 1, for all i � 0. It is easy
to see that �T = 1 + 1/2 > 1 > 	T . �
Theorem 16. For each tuatara machine V there effectively exists a self-delimiting Turing machine C
such that �C = 	V . If V is tuatara universal, then C can be taken to be a universal self-delimiting
Turing machine.

Proof. A real � ∈ [0, 1] is c.e. iff there effectively exists a self-delimiting Turing machine C such that
� = �C (see Theorem 7.51 in [2]). The first part of the theorem now follows because 	V is c.e. (see
Proposition 9).

The second part of the theorem follows from Theorem 6 and Theorem 13. �
We can prove directly Theorem 16. To this aim we need the Kraft–Chaitin Lemma, see [2]:

Lemma 17. Given a computable enumeration of positive integers ni such that
∑
i 2

−ni � 1 , we can
effectively construct a prefix-free set of binary strings {xi} such that |xi| = ni.

We can now present a direct proof of Theorem 16: given a computable enumeration of positive
integers mi, we can write 1/mi as a possibly infinite sum of reciprocals of powers of 2. We can then
lay these out on a grid and enumerate the non-zero elements along each diagonal. For example,
given the enumeration {1, 2, 3, 4, 5, 6, . . .} the grid would be as follows:

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1725

1/2 = 1/2 + 0 + 0 + 0 + · · ·
1/3 = 1/4 + 1/16 + 1/64 + 1/256 + · · ·
1/4 = 1/4 + 0 + 0 + 0 + · · ·
1/5 = 1/8 + 1/16 + 1/128 + 1/256 + · · ·
1/6 = 1/8 + 1/32 + 1/128 + 1/512 + · · ·
. . .

The diagonal enumeration, taking diagonals from lower left to upper right, would be
{1/2, 1/4, 1/4, 1/16, 1/8, 1/64, 1/8, 1/16, 1/256, . . .}. Since this enumeration is also computable, we can
apply Lemma 17 to get a c.e. prefix-free set S .

Let {mi} be an enumeration of dom(W) and derive S as above. Define dom(V)=S, hence 	W = �V .
�

We have seen that every self-delimiting Turing machine is a tuatara machine (Proposition 9), but
the converse is not true (Fact 15, b)). Another example follows.

Example 18. Given a self-delimiting Turing machine C we construct a new machine�C (which we
call a product machine), such that

dom(�C) = {p1p2 · · · pn | bin−1(p1) � bin−1(p2) � . . . � bin−1(pn),

pi ∈ dom(C), 1 � i � n},
and

�C(p1p2 · · · pn) = C(p1)C(p2) · · ·C(pn).

Clearly, �C is not self-delimiting, but

0 < ��C =
∏

p∈dom(C)

1
1 − 2−|p | � 1.

Comment. The zeta number can be easily extended to Turing machines working on an arbitrary
finite alphabet: we simply replace the computable bijection bin with the quasi-lexicographical enu-
meration of strings over the given alphabet (see more in [2]). Because the strings in the domain of the
Turing machine do not use any of the new symbols, the new bijection maps them to a much smaller
subset of the natural numbers, and every binary Turing machine becomes convergent/tuatara when
thought of in the class of, say, ternary/quaternary machines.

Next we answer in the affirmative the following question: is every Omega number also a zeta
number? To answer, we need two simple lemmata.

Lemma 19. If M ,M ′ � 2 are integers, and q > 0 is a rational such that 1/M � q < 1/(M − 1) and
1/M ′ � q− 1/M < 1/(M ′ − 1), then M < M ′.

Lemma 20. Fix an integer N � 2 . Then, every rational can be effectively written as a finite sum of
distinct unit fractions whose denominators are all greater than or equal to N.

Aut
ho

r's

pe
rs

on
al

co

py

1726 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Proof. LetHi,j = 1
i + 1

i+1 + · · · + 1
j
, for i � j. Fix the rationalq. As for every i � 1, limj→∞Hi,j = ∞,

given N � 2 we can effectively find an integer k � 0 (depending on N) such that

HN , N+k � q < HN , N+k+1.

Put q′ = q− HN ,N+k and note that

0 � q′ < 1
N + k + 1

. (4)

We apply now the greedy algorithm for representing q′ as an Egyptian fraction (i.e., as sum of dis-
tinct unit fractions, see [12]) and we show that the denominators of all unit fractions will be larger
or equal to N . First we get an integer M ′ � 2 such that

1
M ′ � q′ < 1

M ′ − 1
, (5)

and we note that in view of (4) and (5) we have M ′ > N + k + 1. We continue with the greedy
algorithm

1
M ′′ � q′ − 1

M ′ <
1

M ′′ − 1
, (6)

and we apply Lemma 19 to (5) and (6) to deduce that M ′′ > M ′. The algorithm eventually stops
because the greedy algorithm always stops over the rationals as the numerator decreases at each
step (it must eventually reach 1, at which point what remains is a unit fraction, and the algorithm
terminates). �
Theorem 21. For each self-delimiting Turing machine C there effectively exists a tuatara machine V
such that 	V = �C.

Proof. We start with the expansion of �C = ∑
i�1 2−|xi|, where x1, x2, . . . is a c.e. enumeration of

dom(C) and we use Lemma 20 to produce a c.e. enumeration of non-negative distinct integers
n1, n2, . . . from the representations as sum of distinct unit fractions of the terms 2−|x1|, 2−|x2|, . . ., and
finally we define V(bin(ni)) = bin(ni). �

Actually, we can describe a more precise simulation of a self-delimiting Turing machine with a
tuatara machine. Let HW(p) be the Hamming weight of the string p , i.e., the number of 1 bits in p .

Theorem 22. Given a self-delimiting Turing machine C we can effectively construct a tuatara machine
V such that 	V = �C. Furthermore, dom(V) ⊃ dom(C), and to each string p ∈ dom(C) we have
HW(p)+ 1 strings in dom(V), p among them.

Proof. We define the domain of the tuatara machine V to be

dom(V) =
⋃

p∈dom(C)

X(p),

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1727

where X(p) is the set {p} ∪ {p0i|pi = 1} and pi is the ith bit of p , numbering from the left and starting
with i = 1. We note that for each p ∈ dom(V) with pi = 1 we have bin−1(p0i) = 2i · bin−1(p), so for
every p ∈ dom(V) we have:

∑

x∈X(p)

1
bin−1(x)

= 1
bin−1(p)

+
|p |∑

i=1

pi

2ibin−1(p)
= bin−1(p)

2|p |bin−1(p)
= 2−|p |.

Consequently, the contribution of 2−|p | to �V is matched by the sum of distinct unit fractions∑
x∈X(p) 1

bin−1(x)
, for each p ∈ dom(C), so 	V = �C .3 Furthermore,X(p) hasHW(p) elements, and for

distinct strings p , q ∈ dom(V), the sets X(p) and X(q) are disjoint, hence the unit fractions derived
are mutually distinct. �
Scholium 23. Given a universal self-delimiting Turing machine U we can effectively construct a
tuatara machine W universal for all self-delimiting Turing machines such that 	W = �U .

Proof. In case U = C is a universal self-delimiting Turing machine, the construction in the proof
of Scholium 22 gives a tuatara machine W which is universal (but not self-delimiting) for the class
of self-delimiting Turing machines. �

Next we turn our attention to universal convergent/tuatara machines.

Theorem 24. The sets of convergent machines and tuatara machines are c.e.

Proof. IfM � 1 is an integer and C[M] = {T | T is a Turing machine with 	T � M }, then the set of
convergent machines is ∪M�1C[M] and C[1] is the set of tuatara machines. Standard proofs (see [2])
show that both sets are c.e. �
Theorem 25. Let (Ci)i�1 be an enumeration of tuatara machines. We define W(0i1x) = Ci(x), for all
x ∈ �∗. Then, W is a universal tuatara machine.

Proof. First note that 0i1bin(n) = bin(2i+1+	log2(n)
 + n), n � 1. Now W acts as follows:

W(bin(2i+1+	log2(n)
 + n)) = Ci(bin(n)). (7)

The machine W is universal because it can simulate any other tuatara machine with a constant
prefix, and it is tuatara because:

	W =
∑

k∈ϒ[dom(W)]

1
k

=
∑

i�1

∑

n∈ϒ[dom(Ci)]

1

2i+1+	log2(n)
 + n

3 For example, X(1011) = {1011, 10110, 1011000, 10110000}; 1
bin−1

(1011)
= 1/27, and 1/27 + 1/54 + 1/216 + 1/432 = 1/16.

Aut
ho

r's

pe
rs

on
al

co

py

1728 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

=
∑

i�1

∑

n∈ϒ[dom(Ci)]

1

2i+12	log2(n)
 + 2log2(n)

�
∑

i�1

∑

n∈ϒ[dom(Ci)]

1

(2i + 1)2log2(n)

=
∑

i�1

1
2i + 1

·
∑

n∈ϒ[dom(Ci)]

1

2log2(n)

=
∑

i�0

1
2i + 1

·
∑

n∈ϒ[dom(Ci)]

1
n

�
∑

i�0

1
2i + 1

· 	Ci � 1. �

Comment. The same argument as in Theorem 25 shows that each C[M] = {T | T is a Turing
machine with 	T � M } has a universal machine.

Theorem 26. There exists a universal convergent machine; furthermore, this machine can be chosen to
be tuatara.

Proof. If (CMi)i�1 is an enumeration of C[M], then we define W(0J(i,M)1x) = CMi (x), for all x ∈ �∗;
here J(i,M) = 2i(2M + 1)− 1. In view of (7) and

	W =
∑

k∈ϒ[dom(W)]

1
k

=
∑

i�1,M�1

∑

n∈ϒ[dom(CMi)]

1

2J(i,M)+1+	log2(n)
 + n

�
∑

i�1,M�1

∑

n∈ϒ[dom(CMi)]

1

(2J(i,M) + 1)2log2(n)

=
∑

i�1,M�1

1
2J(i,M) + 1

· 	CMi

�
∑

i�1,M�1

M

22i(2M+1)−1 + 1

�
∑

i�1,M�1

1

22i + 1
. M

22M + 1
< 1/2.

It follows that W is tuatara and universal for the class of convergent machines. �

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1729

3. Natural complexity

Many properties can be elegantly expressed in terms of complexity. For example,U is a universal
self-delimiting Turing machine iff for every self-delimiting Turing machine C there exists a fixed
constant c, depending on U and C , such that for every string x ∈ �∗, HU(x) � HC(x)+ c. In this
spirit we present a complexity-theoretic proof of the randomness of the zeta number of a universal
tuatara machine. We need first the following definition:

Definition 27. [3] The natural complexity of the string x ∈ �∗ (with respect to the tuatara machine
V) is ∇V (x) = min{n � 1 | V(bin(n)) = x}.
Fact 28 [3]. (a) A tuatara machine W is universal iff for every tuatara machine V there exists a
constant ε (depending upon W and V) such that ∇W (x) � ε · ∇V , for all strings x ∈ �∗.

(b) A real � ∈ (0 , 1) is random iff there exist a universal tuatara machine W and an ε > 0 such
that for all n � 1 , 2 −n · ∇W (�[n]) � ε.

Comment. The natural complexity of a string x is the position in the enumeration given by bin of
the ‘elegant’ program for x, denoted x∗ = bin(∇W (x)). The following facts follow from the definition:

• for each string x, W(bin(∇W (x))) = x,
• for every j � 1, if W(bin(j)) = x, then ∇W (x) � j,
• for each string x, x∗ is the minimal (according to the quasi-lexicographical order) input for W

producing x.

Example 29. For the tuatara machine constructed in the proof of Theorem 25 we have:
∇W (x) � 2i+1 · ∇Ci(x).
Theorem 30. The zeta number 	W of a universal convergent (tuatara) machine W is random.

Proof. The proof follows the same steps as the proof of Theorem 13. We define the tuatara machine
D acting as follows: on a string w, D will try to compute W(x) = y , then continue by enumerat-
ing enough elements bin(n1), bin(n2), . . . , bin(nk) ∈ dom(W) such that

∑k
i=1 1/ni > 0.y and output

C(w) = bin(j), where j is the minimum positive integer not in the set {ni | 1 � i � k}. If the com-
putation W(x) does not halt or the enumeration fails to satisfy the above inequality, then D(x) is
undefined.

If D(x) is defined, then W(x) is also defined, so D is tuatara. More, W(x) = W(x∗), where
x∗ = bin(∇W (x)). It follows that D(x) = D(x∗), hence

∇D(D(x)) � bin−1(x∗) = ∇W (W(x)). (8)

By universality of W we get a constant εD > 0 such that for all strings x,

∇W (x) � εD · ∇D(x). (9)

Next we show that if W(x) = 	W [m], then

∇W (D(x)) > 2m. (10)

Aut
ho

r's

pe
rs

on
al

co

py

1730 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Indeed, from ∇W (D(x)) � 2m it follows that if W(bin(j)) = x, then 1/j contributes towards 	W ,
so it has to be no larger than 2m.

Using in order the inequalities (10), (9), and (8) we get the following inequalities:

2m < ∇W (D(x))
� εD · ∇D(D(x))
� εD · ∇W (W(x))
= εD · ∇W ([m]),

proving that 	U is random. �
Chaitin considered LISP program-size complexity [10] and found that the number of characters

required in a program to produce the first n bits of LISP’s halting probability was asymptotic to
n/ log2 (number of characters). This is the first use we know of where an author has considered the
asymptotic randomness of a string and the idea that the lower bound on the complexity of prefixes
of a binary sequence might be proportional to a constant less than one times the length of the prefix.
In this case, the constant comes from considering characters rather than bits.

Staiger [24,25], Tadaki [30], and Calude, Terwijn, and Staiger [5] have studied the degree of ran-
domness of sequences or reals by measuring their “degree of compression”. Tadaki [30] studied the
partial randomness of a generalisation of Chaitin’s halting probability. The lower bound on the
complexity of successive prefixes of a random sequence is a line with slope 1. The lower bound for
the prefixes of a partially random sequence is a line with slope < 1.

More precisely, following [30] (see also [5]), for every s > 0 and universal self-delimiting Turing
machine U we define the real:4

�U(s) =
∑

p ∈ dom(U)

2−s|p |.

If 0 < s < 1, then �U(s) = ∞.

Theorem 31 [30]. For every computable s > 1 , the number�U(s) is Chaitin 1/s−random, that is, there
exists a constant c > 0 such that for all m � 1 we have:

HU(�U(s)[m]) � m/s− c.
An earlier result in algorithmic information theory states that there is no infinite sequence whose

prefixes have all maximal KT complexity (see more in [2]). To state this result more precisely we fix
a universal Turing machine T and denote by KT the induced plain complexity.

Theorem 32 ([6, 18]). For every c > 0 the set {� ∈ (0 , 1) | KT (�[m]) � m− c, for all m � 1} is
empty.

Theorem 3 has given rise to alternate definitions of random sequences with respect to the plain
complexity [11] and a characterisation of random reals: the real � ∈ (0, 1) is random iff KT (�[m]) �

4 Tadaki’s original notation was �DU , where D = 1/s.

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1731

m− KT (bin(m))− c, for allm � 1, [19]. We are not going to pursue this line here, but instead we will
study the validity of Theorem 3 for partial randomness.

Given a computable s > 1, we will investigate reals �s ∈ (0, 1) for which there is constant c > 0
such that for every m � 1

KT (�
s[m]) � m/s− c. (11)

A real �s satisfying the inequality (11) will be called “1/s− K-random”.
Random reals satisfy (11). We will investigate some other examples of “1/s− K-random” reals.

Example 33. Let T be a universal Turing machine and define M(xx) = T(x), for every string x. The
zeta number of M is 1/2 − K-random.

One particularly simple self-delimiting Turing machine is Barker’s language Iota [1]. The simplest
way to define Iota is in terms of Church’s�-calculus: the universal basis {S = �xyz.xz(yz),K = �xy.x}
suffices to produce every lambda term, but for universality it is not necessary to have two comb-
inators. There are one-combinator bases, known as universal combinators. Iota is a very simple
universal combinator, �f.fSK , denoted 0. To make Iota unambiguous, there is a prefix operator, 1,
for application.

The construction is essentially a very stripped-down version of LISP with only one atom, 0; since
the atom takes a single input, we can represent the open parenthesis with 1, and we note that closing
parentheses are unnecessary.

Example 34. The zeta number of Iota is at least Chaitin 1/193-random.

Proof. The traditional representation of F and T in combinatorial logic is K = F and KI = T . In
Iota, these are represented by the strings 1010100 and 10100, respectively. We can encode bit strings
as lists 〈head , tail〉, where the pairing operator 〈−, −〉 is the lambda-calculus term P = �xyz.zxy . In
Iota, this operator is encoded by the 184-bit string

P=1110101010011101010100110101001010101001110101010011010100101
0100111010101001101010010101010011101010100110101001101010100
1001110101010011010100101010010011101010100110101001010100100

It has the property that 1F 11Pxy = x, while 1T 11Pxy = y , so we can extract the head and the tail
of the list. We can distinguish a list from a Boolean value, so by terminating the list with F , we
can know when we have read the whole string. Each bit in the list requires two applications (one
to apply P to the head, and another to apply the result to the tail), the pairing operator itself, and
a Boolean value. The longest this can possibly be is 2+184+7 = 193 bits. We can write a program
that will read a bit string x = F iTp , where p is any string of bits, and return Ci(p), where Ci is the
ith self-delimiting Turing machine in an enumeration of the set. The zeta number will be at least
Chaitin 1/193−random, because it takes no more than 193n+ c bits to output n bits of �U for
any universal self-delimiting Turing machine U . Therefore the zeta number of Iota itself is at least
Chaitin 1/193−random. �

Comment. A sharper result will be presented in Example 44. There are much better encodings
available in Iota than the naive one above. We conjecture that, in fact, Iota’s zeta number is “more
random” (see our list of open questions at the end of this paper).

Aut
ho

r's

pe
rs

on
al

co

py

1732 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

We continue with a more general construction. Tadaki’s generalization of Chaitin’s halting prob-
ability (see [30]) is a zeta function. Zeta functions appear as partition functions and in expectation
values in statistical systems, and the parameter s corresponds to an inverse temperature. The par-
tition function for a statistical system X has the form

Z(s) =
∑

x∈X
e−sH(x),

whereH is the energy (Hamiltonian) of the state x, and s is inversely proportional to the temperature
of the system.5 An observable is a function � : X → R. The average value of the observable for a
system at equilibrium is

〈�〉(s) =
∑
x∈X �(x)e−sH(x)

Z(s)
.

The partition function acts like a normalization constant.
Taking X to be the set of programs, we let the “energy” of a program be its length. The partition

function becomes

Z(s) =
∑

p∈X
e−s|p |.

We can recover the base 2 if we let s = s′ ln 2:

Z(s′ ln 2) =
∑

p∈X
2−s′|p |.

Taking X to be prefix-free guarantees that the partition function converges at s′ = 1 by the Kraft-
Chaitin Lemma; however, the function converges for any subset of �∗ when s′ > 1. When X = �∗,
the set of all binary strings, Z(s′ ln 2) = 1/(1 − 2−s′+1).

We now define our observable to be the halting function of the Turing machine T : �T (p) = 1 if
T halts on p , 0 otherwise. The probability that a program will halt is then

〈�T 〉(s) =
∑
p∈X �T (p)2−s′|p |

Z(s)
= �T (s

′)
Z(s)

.

All of this passes over nicely to the zeta number. We let X = N and let the “energy” of n ∈ N
be ln n. The partition function becomes

Z(s) =
∑

n∈N

e−s ln n =
∑

n∈N

n−s = 	(s),

5 The notation H—used only in this motivational part—does not denote the program-size complexity, although it is
not too far away from it.

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1733

the Riemann zeta function.
We define the “zeta function of T ” to be

	T (s) =
∑

n∈N

�T (bin(n)) · n−s =
∑

n∈ϒ[dom(T)]
n−s,

and the probability that a program will halt on T is

〈�T 〉(s) = 	T (s)

	(s)
.

Given a Turing machine M (which may or may not be self-delimiting), we define “the halting
probability of M at s” to be

〈�M 〉(s) =

∑

p ∈ dom(M)

2−s|p |

/

∑

q ∈ N

2−s|bin(q)|

 = (1 − 2−s+1)
∑

p ∈ dom(M)

2−s|p |.

Fact 35. For real s > 1 and universal T , 0 < 〈�T 〉(s) < 1 .

Proof. Since T is a universal Turing machine, then there must be some integer q such that bin(q) �∈
dom(T). Therefore the numerator, which sums only over those q such that bin(q) ∈ dom(T), is small-
er than the denominator, which sums over all positive natural q. Since there must be at least one
program that halts, the numerator is positive. �
Theorem 36. For every computable real s > 1 and universal T , 〈�T 〉(s) is 1/s− K-random.

Proof. Given the first m+ 	log2(1 − 2−s+1)
 bits of 〈�T 〉(s), we can compute the halting status of
all programs p ∈ dom(T) such that |p | < m/s. Then, there is a computable function that, given
〈�T 〉(s)[m+ 	log2(1 − 2−s+1)
], produces a string not in the output of those programs, hence

KT (〈�T 〉(s)[m]) � m/s− (c + 	log2(1 − 2−s+1)
). �

Comment. (a) The number 〈�T 〉(s) is a halting probability (see [2]). One particularly nice value is
s = 2 where

∑
n>0 2−2	log2(n)
 = 2. With reference to Example 33, if T = U is self-delimiting, then

�M = �M(1) is Chaitin 1/2−random

�M(1) =
∑

x∈dom(M)

2−|x| =
∑

x∈dom(U)

2−2|x| = �U(2) = 2〈�U 〉(2).

(b) Theorem 36 shows a property true for partial random reals, but not for random reals, cf. [2].
An opposite phenomenon was described in [5]. The following characterisation of random reals is
no longer true for partial random reals: A real � ∈ (0, 1) is random iff there exist a constant c � 0
and an infinite computable set M ⊆ N such that HU(�[n]) � n− c, for each n ∈ M .

Obviously, if � is 1/s− K-random, then it is also Chaitin 1/s−random.

Aut
ho

r's

pe
rs

on
al

co

py

1734 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Corollary 37. IfU is a universal self-delimiting Turing machine, then for every computable real s > 1 ,
〈�U 〉(s) is Chaitin 1/s-random.

Note that in this case, 〈�U 〉(s) is just a computable factor times �U(s).
Furthermore, the converse implication is false:

Proposition 38. There exists a Chaitin 1/2−random real which is not 1/2 − K-random.

Proof. Let K = KT , where T is a universal Turing machine, and let � = 0.x1x2 · · · xn · · · be Chaitin
1−random. On one hand, the real � is not 1 − K-random, cf. [2]. On the other hand, the num-
ber � = 0.0x10x2 · · · 0xn · · · is Chaitin 1/2−random; if � were 1/2 − K-random, then � would be
1 − K-random, a contradiction. Indeed, for all n � 1,KT (0x10x2 · · · 0xn) � KF ◦T (0x10x2 · · · 0xn)+
c′ � KT (x1x2 · · · xn)+ c′, where F ◦ T(y) = 0x10x2 · · · 0xn whenever T(y) = x1x2 · · · xn. �
Lemma 39. Let � ∈ (0, 1). If there exist two integers c,N � 0 and a real a ∈ (0, 1] such that for allm >
N we have KT (�[m]) � a · m− c, then we can find a constant b � 0 such that KT (�[m]) � a · m− b,
for all m � 1.

Proof. Put b = max1�i�N max{0, a · i − KT (�[i])} + c. �
We now define a new form of partial randomness by requiring that the real is as close as we

wish to being (partially) random, without necessarily being random. Following [21,26] we define the
lower asymptotic complexity

k(�) = lim inf
n→∞

1
n
K(�1 . . . �n).

Following [27] we have:

Theorem 40. Let s � 1 be computable. Then, for a real �, the following statements are equivalent:

(1) We have: k(�) � 1/s.
(2) For every computable real t > s > 1 , � is 1/t − K-random.
(3) For every computable real t > s > 1 , � is Chaitin 1/t−random.

Proof. Conditions (2) and (3) are equivalent because of the asymptotics. The equivalence with (1)
can be verified by elementary calculus. �
Definition 41. Let s > 1 be computable. We say that a real number � ∈ (0, 1) is asymptotically 1/s-
random if one of the equivalent conditions in Theorem 40 is satisfied. If s = 1, then � is called
asymptotically random.

The notion of asymptotic 1/s-randomness induces a strict hierarchy on s > 1. We need the fol-
lowing result (for the definition of the Hausdorff dimension see Falconer [13]):

Theorem 42. [21] Let dimH be the Hausdorff dimension and let s > 1 be computable. Then:

dimH({� ∈ [0, 1] | k(�) � 1/s}) = dimH({� ∈ [0, 1] | k(�) = 1/s}) = 1/s.

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1735

In view of Theorem 42 we will refer only to asymptotic 1/s-randomness (without mentioning K
or H). Consequently, using Theorems 40 and 42 we get:

Corollary 43. The notion of asymptotic 1/s-randomness real induces a strict hierarchy for s > 1.

Example 44. The zeta number of Iota is at least 1/194 − K-random and at least asymptotically
1/193-random.

Proof. Since we know where the encoded bit string ends, Iota can simulate an arbitrary universal
Turing machine, not just a self-delimiting one. For any s > 1 we can printm bits of 	U (s)with at most
193m+ c bits. So the zeta number of Iota is at least 1/194 − K-random and at least asymptotically
1/193-random. �

Given an arbitrary Turing machineM , we define “the natural halting probability at s” to be

〈�nM 〉(s) =

∑

q∈ϒ[dom(M)]
q−s

/

∑

q ∈ N

q−s

 = 	M (s)/	(s),

where we have added a superscript to � to distinguish it from the Tadaki-Chaitin case.
Next, we can define the set

P = {pi | bin(i) ∈ dom(M)},
where pi is the ith prime in increasing order, and the set

S = {n | all prime factors of n are in P }.
The set bin(S) is the domain of a Turing machine R(M) (prime product machine) that performs

the following steps on an input x ∈ �∗:

1. Compute n = bin−1(x).
2. Compute the prime factors pi of n.
3. For each pi, simulate M(bin(i)).
4. Output the empty string.

Then,

	R(M)(s) =
∑

n∈S
n−s =

∏

p∈P
1/(1 − p−s).

The definition of the Omega number works nicely for string concatenation (see the product
machine, Example 18); the formula for the zeta number for this machine is complicated. In contrast,
the zeta number works well for integer multiplication as in the case of the prime product machine;
the formula for the Omega number for this machine is complicated.

Theorem 45. For every universal Turing machine T and computable s > 1 , 〈�nR(T)〉(s) is asymptotically
1/s-random.

Aut
ho

r's

pe
rs

on
al

co

py

1736 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Proof. The Prime Number Theorem implies that for i > 5, i log(i) < pi . Fix a computable real s > 1.
Given 	ms
 + 1 bits of 〈�nR(T)〉(s), we can compute the halting status of all programs bin(i) such that
pi < 2m. Consequently,

i log(i) < 2m,

i < 2m/W(2m),

|bin(i)| = 	log2(i)
 < m− log2(W(2
m)) = W(2m)/ ln(2).

Here, W is the Lambert W -function, the inverse function of f(x) = xex, [32]; it has the series ex-
pansion W(x) = ∑∞

n=1
(−n)n−1

n! xn. Therefore, given 	ms
 + 1 bits, we can compute the halting status
of all programs whose lengths are each less than W(2m)/ ln(2). Since

lim
m→∞

W(2m)
m ln(2)

= 1, (12)

the result follows. Indeed, in view of (12), for each i > 5 and ε > 0 there exists a bound Nε such that
KT (〈�nR(T)〉(s)[m]) � (1 − ε)m, for every m � Nε, hence in view of Lemma 39, we can find a constant
cs � 0 such that for all m � 1,KT (〈�nR(T)〉(s)[m]) � m/s− cs. �

Corollary 46. If U is a universal self-delimiting machine and s > 1 is computable, then 〈�nR(U)〉(s) is
asymptotically 1/s−random.

Lemma 47. Let � ∈ (0 , 1). If there exist three integers c, a,N � 0 such that for all m � N we have
KT (�[m+ c	log2m
]) � m− a, then for every computable s > 1 we can find a constant b � 0 such
that KT (�[m]) � m/s− b, for all m � 1 .

Proof. For each computable s > 1 we can find a constant d � 0 such that for all m � 1, KT (�[m+
c	log2m
]) � 1

s (m+ c	log2m
)− d , so the required inequality follows from Lemma 39. �

Theorem 48. If U is a universal self-delimiting Turing machine, then �U is asymptotically random.

Proof. Since�U is random, there exists a constant c � 0 such that for allm � 1HU(�U [m]) � m− c.
On the other hand, there exists a � 0 such that for all m � 1 we have KT (�U [m+ a	log2m
]) �
HU(�U [m]) � m− c, hence in view of Lemma 47, for every computable s > 1 there exists an integer
b � 0 such that for allm � 1 we have: KT (�U [m]) � m/s− b. This shows that�U is asymptotically
random. �
Corollary 49. If U is a universal self-delimiting machine, then 	U is asymptotically random.

Proof. Use Theorem 48 and Scholium 23. �
The converse implication fails to be true:

Theorem 50. There is a self-delimiting Turing machine V such that 	V is asymptotically random, but
not random.

Proof. Let p be a self-delimiting version of the string p such that |p | ≈ |p | + 2 log2 |p | (see for exam-
ple [2]). Let (Ci) be a c.e. enumeration of all self-delimiting Turing machines and define V(0i1p) =

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1737

Ci(p). Clearly, there is a constant c � 0 such that for all m � 1, KT (V [m+ 2	log2m
]) � m− c,
so in view of Lemma 47, 	V is asymptotically random. However, V is not universal, so 	V is not
random. �

Comment. A different proof for Theorem 50 can be obtained using a non-sparse dilution, cf.
Example 3.18 in [24] or Theorem 4.3 in [17].

Corollary 51. There is a self-delimiting Turing machine V such that 	V is asymptotically random, but
not random.

Comment. If x1x2 · · · is a random sequence, then the sequence

x10	log2 1
x20	log2 2
−	log2 1
 · · · xn0	log2 n
−	log2(n−1)
 · · ·

is not random, but asymptotically random.

Lemma 52. For every pair of computable reals r, t > 1 and integer c � 1 there exists a computable
real s > 1 such that for every m � 1 we have: (1

s − 1
r) · m � c

t · log2m.

Proof. Take 1
s = c

t + 1
r . �

Theorem 3 proves that there is no infinite sequence whose prefixes have all maximal KT com-
plexity. A similar result can be proved for program-size complexity HU . However, this result will
be false for asymptotic randomness.

Theorem 53. There exists a real � ∈ (0 , 1) such that for every pair of computable reals r, t > 1 and
integer c � 1 , there exists an integer b � 1 such that for every m � 1 ,

HU(�[m]) �
1
r

· m+ c

t
· log2m− b.

So, HU(�[m]) is as close as we want, but never equal, to max|x|=m HU(x)− O(1).

Proof. Take an asymptotically random real �, consequently, for every computable s > 1 there is a
constant a � 0 such that HU(�[m]) � 1

s · m− a, for all m � 1, and then use Lemma 52. �

4. Open problems

Many interesting questions remain unsolved. For example, can the machine V in Scholium 23 be
taken to be universal self-delimiting or universal tuatara?

The zeta number of Iota is at least 1/194 − K-random and at least asymptotically 1/193-random
(Example 44); we conjecture that natural halting probability of Iota is asymptotically random, but
not random.

Let UK is a universal self-delimiting machine with an oracle to the Halting Problem, and �K =
�UK ; �K(2) is Chaitin 1/2 − 2-random. Is �K(2) random or asymptotically random?

Aut
ho

r's

pe
rs

on
al

co

py

1738 Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739

Acknowledgments

We thank Greg Chaitin, André Nies, and the anonymous referees for many useful comments
and references, Nick Hay for interesting questions, Rich Schröppel for the idea on which the proof
of Lemma 20 is based, and Ludwig Staiger for suggesting Theorems 10 and 40.

References

[1] C. Barker, Iota and Jot: the simplest languages?, 2001, http://ling.ucsd.edu/∼barker/Iota/.
[2] C.S. Calude, Information and Randomness: An Algorithmic Perspective, Second ed., Revised and Extended, Spring-

er-Verlag, Berlin, 2002.
[3] C.S. Calude, M.A. Stay, From Heisenberg to Gödel via Chaitin, Intl. J. Theor. Phys. 44 (7) (2005) 1053–1065.
[4] C.S. Calude, P. Hertling, B. Khoussainov, Y. Wang, Recursively enumerable reals and Chaitin � numbers, Theoret.

Comput. Sci. 255 (2001) 125–149.
[5] C.S. Calude, L. Staiger, S.A. Terwijn, On partial randomness, Ann. Appl. Pure Logic 138 (2006) 20–30.
[6] G.J. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966)

547–569 (Reprinted in: [9], 219–244).
[7] G.J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975)

329–340 (Reprinted in: [9], 113–128).
[8] G.J. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987 (3rd printing 1990).
[9] G.J. Chaitin, Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, Second

ed., World Scientific, Singapore, 1990.
[10] G.J. Chaitin, Lisp program-size complexity II–IV, Appl. Math. Comput. 52 (1992) 103–126, 172–139, 141–147.
[11] R. Downey, D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Heidelberg, to appear.
[12] D. Epstein, Egyptian Fractions, http://www.ics.uci.edu/∼eppstein/numth/egypt/.
[13] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley & Sons, New York, 1990.
[14] A. Kučera, T.A. Slaman, Randomness and recursive enumerability, SIAM J. Comput. 31 (2001) 199–211.
[15] W. Kuich, On the entropy of context-free languages, Information and Control 16 (2) (1970) 173–200.
[16] G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin 29

(1952) 190–195.
[17] J.H. Lutz, The dimensions of individual strings and sequences, Inform. Comput. 187 (2003) 49–79.
[18] P. Martin-Löf, Complexity oscillations in infinite binary sequences, Zeitschrift für Wahrscheinlichkeitstheorie und

Verwandte Gebiete 19 (1971) 225–230.
[19] J. Miller, L. Yu, Contrasting plain and prefix-free complexity, ASL Meeting “Special Session on Computability and

Randomness”, Stanford, March 2005, http://www.cs.auckland.ac.nz/∼nies/.
[20] G. Rozenberg, A. Salomaa, Cornerstones of Undecidability, Prentice-Hall, Englewood Cliffs, 1994.
[21] B.Yu. Ryabko, Coding combinatorial sources and Hasudorff dimension, Soviet Math. Dokl. 30 (1) (1984) 219–222.
[22] R.I. Soare, Recursion theory and Dedekind cuts, Trans. Am. Math. Soc. 140 (1969) 271–294.
[23] R.M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work … done for the most part during the period of

Sept.-Dec. 1974, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
May 1975, 215 pp.

[24] L. Staiger, Kolmogorov complexity and Hausdorff dimenson, Inform. Comput. 103 (1993) 159–194.
[25] L. Staiger, A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory Comput.

Syst. 31 (1998) 215–229.
[26] L. Staiger, The Kolmogorov complexity of real numbers, Theoret. Comput. Sci. 284 (2002) 455–466.
[27] L. Staiger, Private communication to C. Calude, 21 April 2006.
[28] M.A. Stay, Very simple Chaitin machines for concrete AIT, Fundamenta Informaticae 68 (3) (2005) 231–247.
[29] M.A. Stay, Truth and Light: Physical Algorithmic Randomness, MSc thesis, University of Auckland, NZ, 2005.

Aut
ho

r's

pe
rs

on
al

co

py

Cristian S. Calude, Michael A. Stay / Information and Computation 204 (2006) 1718–1739 1739

[30] K. Tadaki, A generalization of Chaitin’s halting probability � and halting self-similar sets, Hokkaido Math. J. 31
(2002) 219–253.

[31] http://www.kcc.org.nz/animals/tuatara.asp.
[32] E.W. Weisstein, Lambert W-Function, MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/

LambertW-Function.html.

